
HAL Id: hal-00687504
https://hal.science/hal-00687504v2

Preprint submitted on 15 Apr 2012 (v2), last revised 18 Nov 2014 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic resonance in a self-repressing gene with
transcriptional memory

Jingkui Wang, Quentin Thommen, Marc Lefranc

To cite this version:
Jingkui Wang, Quentin Thommen, Marc Lefranc. Stochastic resonance in a self-repressing gene with
transcriptional memory. 2012. �hal-00687504v2�

https://hal.science/hal-00687504v2
https://hal.archives-ouvertes.fr


Stochastic resonance in a self-repressing gene

with transcriptional memory

Jingkui Wang, Quentin Thommen and Marc Lefranc

Laboratoire de Physique des Lasers, Atomes, Molécules,
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Résumé

Biochemical reaction networks are subjected to large fluctuations
due to small molecule numbers, yet underlie reliable biological func-
tions. Most theoretical approaches describe them as purely determinis-
tic or stochastic dynamical systems, depending on which point of view
is favored. Here, we investigate the dynamics of a self-repressing gene
using an intermediate approach based on a moment expansion of the
master equation, taking into account the binary character of gene ac-
tivity. We thereby obtain deterministic equations which describe how
nonlinearity feeds back fluctuations into the mean-field equations, pro-
viding insight into the interplay of determinism and stochasticity. This
allows us to identify a region of parameter space where fluctuations
induce relatively regular oscillations.

The simplest gene regulatory network is formed by a single gene which
is regulated by its own protein. In the case of negative feedback (the gene
is repressed by the protein), it serves as a paradigmatic genetic oscillator,
which has for example been proposed as a model for the somite clock [1].
Accordingly, its dynamics has been actively investigated throughout mathe-
matical biology [2–9]. The self-repressing gene reaction network involves four
chemical species : the free gene G, RNA M , protein P and the DNA-protein
complex GP . These molecular actors interact via the following biochemical
reactions :

G + P
α
−⇀↽−

θ
GP ; G

λ
−→ G + M

GP
µ
−→ GP + M ; M

β
−→ M + P

M
δM

−−→ ∅ ; P
δP

−−→ ∅

(1)
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Parameter α (resp., θ) is the DNA-protein binding (resp., unbinding) rate,
δm (resp., δp) is the linear mRNA (resp., protein) degradation rate, λ (µ) is
the transcription rate of unbound (resp., bound) gene and β is the transla-
tion rate.

Besides its biological significance, the self-regulating gene is interesting
from a mathematical viewpoint because it combines two qualitatively dif-
ferent types of variables. On the one hand, proteins and RNAs may be
present in high copy numbers, and can therefore be described by macrosco-
pic variables in the large volume limit. On the other hand, the gene, which
is a DNA fragment, is a single molecule. We assume that it can only be
in two distinct states, bound or unbound, and therefore must be described
mathematically by a binary variable. In most theoretical treatments, the
difficulty of including this binary variable is circumvented by assuming that
fluctuations of the gene state are fast compared to transcription, transla-
tion, and degradation. Under this aproximation, the binary gene state gene
is replaced by a continuous variable which is the average occupancy time.

To explore the rich dynamics induced by fluctuations associated to gene
state switching, a stochastic treatment is needed. A key point is that fluc-
tuations interact with nonlinearities and modify the mean-field behavior,
because averaging does not commute with evaluating a nonlinear function
(the definition of variance is the simplest example of this fact). In particu-
lar, fluctuations may destabilize a system towards an oscillatory behavior. To
capture the role of fluctuations in a simple setting, we study a model where
nonlinearity only occurs in the transcriptional regulation by a monomer,
RNA and protein degradation being linear. The most general probabilistic
description of the chemical reaction network (1) is provided via the chemical
master equation. If Pg,m,p(t) denotes the probability to find a bound (resp.,
unbound) gene, represented by g = 0 (resp., g = 1), accompanied by m
ARN and p protein copies at time t, its time evolution is governed by the
following master equation in the limit where θ/α is large and µ is zero :

d
dt
Pg,m,p = (−1)g [αpPg,m,p − θPg,m,p] + δg,1λ [P1,m−1,p − Pg,m,p]

+βm [Pg,m,p−1 − Pg,m,p] + δm [(m+ 1)Pg,m+1,p −m Pg,m,p]
+δp [(p+ 1)Pg,m,p+1 − pPg,m,p] .

(2)
The asymptotic probability distribution satisfying (2) has been widely in-
vestigated [10,11] but gives only a static picture of the dynamics, averaged
over time. To better understand the influence of stochastic fluctuations on
the temporal dynamics of the self-repressing gene, we reformulate the mas-
ter equation as an infinite hierarchy of coupled differential equations whose
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variables are the joint cumulants of random variables g, m and p. To be spe-
cific, the first-order and second-order joint cumulants of random variables x
and y are the averages and the covariances

〈x〉 =
∑

g,m,p

xPg,m,p; ∆x,y = 〈xy〉 − 〈x〉 〈y〉 ,

while the third-order joint cumulants are defined by

Kx,y,z = 〈xyz〉 − 〈x〉 〈y〉 〈z〉 − 〈x〉∆y,z − 〈y〉∆x,z − 〈z〉∆x,y.

By rescaling parameters and joint cumulants according to

rt =
1
δm

; rg = 1; rm =
δpθ

βα
rp =

θ
α
; Θ = rt θ; Λ = λ rt

rm
δ =

δp
δm

,

T = rt t; X = rx 〈x〉 ; ∆X,Y = rx ry∆x,y;

KX,Y,Z = rx ry rzKx,y,z x, y, z ∈ {g,m, p};
(3)

the following normalized time evolution equations for averages and cova-
riances are obtained :

dP
dT

= δ (M − P ) ;

dM
dT

= ΛG−M ;

dG
dT

= Θ(1−G−GP −∆G,P ) ;

d∆P,P

dT
= 2δ (∆P,M −∆P,P ) ;

d∆M,M

dT
= Λ [2∆G,M + µG]− 2∆M,M ;

d∆P,M

dT
= Λ∆G,P − (δ + 1)∆P,M + δ∆M,M ;

d∆G,P

dT
= δ [∆G,M −∆G,P ]−Θ [KG,P,P +G∆P,P + (P + 1)∆G,P ]

d∆G,M

dT
= ΛG (1−G)−∆G,M −Θ [KG,M,P +G∆P,M + (P + 1)∆G,M ] .

(4)
Since G is a binary variable, ∆G,G = G(1 − G) and is slaved by G.

Because of the nonlinearity, Eqs. (4) do not form a closed system as the
time derivatives of joint cumulants involve joint cumulants of higher order.
In particular, Eqs. (4) do not constrain the two third-order joint cumulants
KG,M,P and KG,P,P which are unspecified. As is well known, the simplest
way to truncate the hierarchy of moment equations is to set all second-
order cumulants to zero [12]. This neglects all fluctuations and leads to
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deterministic rate equations for the time averages. Here, these equations
predict that only stable stationary states can be observed in the system
studied.

Incorporating fluctuations in the dynamics requires truncating the hie-
rarchy at a higher order. As a first approximation, it would seem natural to
set third-order joint cumulants to zero, which amounts to represent the sto-
chastic variables by Gaussian probability distribution functions whose means
and variances vary with time and interact with each other. In our case, ho-
wever, this is not necessarily a correct approach because of the coexistence
of macroscopic variables (g and p) interacting with a binary (microscopic)
variable (g). In the following, we consider two limiting cases depending on
the value of the gene response time.

In the first case, we assume that the unbinding and binding rates are
very large compared to other dynamical rates and keep their ratio constant
(Θ → ∞, θ/α constant). The gene remains bound or unbound for very
short amounts of time, during which mRNA and proteins copy numbers
can be considered as constant. RNA and protein levels keep a memory of
many previous state switching cycles, and reach a stationary state with
an expected gaussian distribution. In this case the third-order cumulants
KG,M,P and KG,P,P vanish so that Equations (4) become closed. In the
limit where the overall transcription rate is large (Λ ≫ 1), the stationary
state is given by

G∗ ≃ ∆∗

GY ≃ 1√
Λ

(

1 +
δ

2Θ (1 + δ)

)

; ∆∗

GX ≃ −1√
Λ

(

1 + 2
δ

Θ(1 + δ)

)

(5a)

P ∗ ≃ M∗ ≃ ∆∗

PP ≃ ∆∗

MP ≃ ∆∗

MM ≃
√
Λ

(

1 +
δ

2Θ (1 + δ)

)

(5b)

where we include the correction to first order in Θ−1. An interesting finding
is that this correction only depends on the combination Θ(1+ δ)/δ. A linear
stability analysis then indicates that the stationary state is always stable,
in agreement with the rate equation approximation.

Conversely, let us assume that the gene reacts infinitely slowly (Θ → 0).
The dynamics is then driven by the gene jumping between two states accor-
ding to a Poisson process. When the gene is active (GON = 1), protein and
RNA levels quickly converge to high level states MON = PON = Λ. When
the gene is inactive, protein and RNA levels are low (MOFF = POFF = 0).
At the end of an ON/OFF cycle, the system is always in the same state, with
no memory of previous cycles. Protein temporal profiles feature a sequence
of spikes, distributed in time according to a Poisson process.
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In this limit case, averages, covariances and third-order joint cumulants
can easily be derived thanks to the high correlation between variables. The
gene is active during a time tON = 1/(θΛ) and inactive during a time tOFF =
1/θ so that its average activity is G∗ = tON/(tON + tOFF ) = 1/(1 + Λ) and
P ∗ = M∗ = G∗Λ. If the transcription rate is large (Λ ≫ 1), the different
variables scale according to :

G∗ ≃ Λ−1; P ∗ = M∗ = ∆∗

G,P = ∆∗

G,M ≃ 1;

∆∗

P,P = ∆∗

M,M = ∆∗

P,M = K∗

G,P,P = K∗

G,M,P ≃ Λ.
(6)

If we further assume that ΘΛ ≪ δ, 1, the following reduced system un-
couples from the other equations, regardless of whether the third-order joint
cumulants are vanishing or not :

d
dt
P = δ (M − P ) ; d

dt
∆G,P = δ (∆G,M −∆G,P ) ;

d
dt
M = ΛG−M ; d

dt
∆G,M = ΛG (1−G)−∆G,M ;

d
dt
G = Θ(1−G−GP −∆G,P ) .

(7)

Besides the averages, this system involves the covariances of the gene state
variable with protein and mRNA levels. The stationary state of Eqs. (7)
is given by G∗ = Λ−1, with all other variables equal to 1, thus satisfying
scaling (6) exactly. The dynamical behaviour of Eqs. (7) can be studied
by carrying out a stability analysis around the fixed point. It reveals that
unlike with the mean-field equations, the system exibits a Hopf bifurcation
leading to oscillatory behaviour, revealing that it can be destabilized by
the stochastic fluctuations. Under the approximation Λ ≫ 1, the oscillation
criterion is simply

H(Θ) = 4Θ2 +Θ

[

2 (1 + δ)− δ

(1 + δ)
Λ

]

+ δ < 0. (8)

If the gene is infinitely slow (Θ → 0), the criterion is never satisfied because
H(0) = δ > 0. For intermediate values of Θ, the quantity H can be become
negative provided Λ is high enough and δ is not too large compared to 1.
However this can only occur when ΛΘ ≥ δ + 1, which a priori conflicts
with the assumptions under which the reduced model (7) has been derived.
We therefore carry out stochastic simulations of the chemical model (1) to
assess the relevance of the two truncations of the moment equation hierarchy
considered here : Eqs. (7) or Eqs. (4) with third-order cumulants set to zero.

We first study how the average value of the gene activity as a function of
Θ is reproduced by the two truncations. Fig (1-A) shows how this average
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depends on Θ and δ due to the presence of fluctuations, an effect which is
not captured by the mean-field equations. An important result is that the
reduced parameter Θ

(

1 + δ−1
)

which appeared in (5) is indeed the main
parameter controlling the fixed point location throughout the range of Θ
explored, as curves obtained for various values of θ and δ superimpose re-
latively well. The limit values predicted by (6) and (5) for the two extreme
regimes Θ → 0 and Θ → ∞, respectively, are indeed recovered. Fig 1-B
displays the average gene activity predicted from the fixed point of Eqs. (4)
with the third-order cumulants set to zero. The agreement with stochastic
simulations is fairly good : the limit values in Fig 1-A and Fig 1-B are iden-
tical, the same global shape with a maximum around Θ = 1/(1 + δ−1) is
observed and the evolution of the maxima with δ is correctly reproduced.
The main discrepancy is that the transition from the fast to the slow gene
regime is more abrupt in Fig (1-B) than in Fig (1-A). In contrast to this, the
fixed point of Eqs. (7) does not depend on Θ nor δ, thus incorrectly predicts
a constant gene activity (see Fig 1-C). At this stage, the model (4) with
vanishing third-order cumulants correctly captures the effect of fluctuations
but not the simpler model (7).

Figure 1 – Average gene activities as a function of the reduced

parameter Θ
(

1+ δ−1
)

(A) Numerical estimation using stochastic simu-
lations with parameter values : θ/α = 100, Λ = 200, λ = β. Each color
corresponds to a given value of δ, varying from 102 (black) to 10 (cyan) (B)
Fixed point value of gene activity in model (4) with vanishing third-order
joint cumulants. (C) Fixed point value of gene activity in model (7). Arrows
indicate the gene activity limiting values given by (5) for large Θ and by (6)
for small Θ.

Let us now consider the dynamics of protein level fluctuations. Without
feedback, gene switching is a purely Poissonian process. Protein levels fol-
low the gene state with a characteristic time scale determined by protein
and mRNA lifetimes. With feedback, the probability of switching evolves

6



rapidly in time as protein levels increase (gene is active) or decrease (gene
is inactive). This feedback may reduce the stochasticity arising from gene
switching, with protein peaks occur more regularly.

The regularity of a stochastic oscillatory behavior is often quantified
using a temporal autocorrelation function, which is sensitive to reproduci-
bility both in time and in amplitude. However, temporal regularity is cer-
tainly more relevant than amplitude regularity for biological protein signals.
The highly nonlinear response of many signaling cascades can protect them
against fluctuations in amplitude, for example by saturating output above
an input threshold. A standard technique for assessing temporal regularity
is to divide the state space into two regions I and II and to study the distri-
bution of the times where the system leaves I to enter II. It is often useful to
require a minimal excursion in region II to avoid spurious transitions induced
by noise. Here, we detect events where the protein level crosses successively
the mean protein level P ∗ and the P

′
∗ = P ∗+0.25

√

∆∗

pp level before falling
back below the mean protein level.

Given the list of times where the system transits from low to high protein
levels, we compute the probability of detecting n transitions within a time
interval of fixed duration. The probability distribution is then characterized
by its variance to mean ratio (Fano factor). This method is inspired by how
the temporal distribution of photons from a light source is generally charac-
terized, with the event of interest being a photon detection. A Fano factor
close to unity indicates that transition times follow a Poison distribution. A
Fano factor greater (less) than unity indicates a super-Poissonian (resp., sub-
Poissonian) distribution corresponding to a bunching (resp., anti-bunching)
of transition events. Transition anti-bunching can be viewed as a stochastic
counterpart of deterministic oscillations.

Fig 2 shows stochastic simulations of the chemical reaction network (1)
for a slow, an intermediate and a fast gene, as well as the probability dis-
tribution of the number n of transitions within a given time window. As
expected, protein spikes in the slow gene case (Fig 2-A) are slaved to the
switching process, leading to a Poisson probability distribution for n (2-D)
and accordingly a unity Fano factor. In the intermediate gene response time
case (Fig 2-B), protein spikes are mostly antibunched (see red circles). The
probability distribution of spike number is gaussian-like (2-E), the Fano fac-
tor being around 0.35. This anti-bunching degrades in the case of a fast gene
(Fig 2-C) with the Fano factor rising to 0.5. Thus, we oberve a resonance
effect involving the time in which the gene responds to protein variations
and the time during which previous gene states are remembered, which is
controlled by the protein and RNA decay rates.

7



Figure 2 –Dynamical behaviour. Time evolution of protein copy number
for Λ = 200, δ = 1 and θ = 5.10−3, 0.5, 500 (A,B,C). The dashed lines
indicate mean protein level and mean protein level plus variance. Red lines
correspond to the high trigger level and spiking events are indicated by red
circles. (D, E, F) Probabilities of observing n spikes during a given time
window for each of the three regimes.

We have studied systematically how the Fano Factor depends on the gene
unbinding rate Θ and the relative protein decay rate δ in stochastic simula-
tions of reaction network (1). As Fig (3) shows, regularity of protein spikes
is enforced when (1) the decay rates δp and δm are comparable (δ ∼ 1) and
(2) the reduced parameter Θ ∗

(

1 + δ−1
)

is close to unity. Quite remarkably,
the parameter space region where protein spikes are more regularly spaced is
extremely well approached with the region where the reduced model (7) dis-
plays deterministic oscillations. This suggests that this model captures well
the dynamical interaction of mean-field variables and fluctuations, although
it did not reproduce satisfactorily the average gene activities in Fig. 2. This
probably indicates that the dynamically important joint cumulants are those
involving the gene state variable. This is not surprising given that gene state
remains binary in all limits and is thus the most stochastic variable.

In conclusion, we have studied the stochastic time evolution of the self-
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Figure 3 – Fano factor. Dependence of the Fano factor F quantifying
spiking regularity on δ and Θ ∗

(

1 + δ−1
)

. Stochastic simulations of net-
work (1) have been carried out with Λ = 200 ; β = λ ; θ/α = 100. Different
values of the Fano factor F are indicated by red hexagons (F < 0.35), blue
pentagons (0.35 < F < 0.4), green diamonds (0.4 < F < 0.45), cyan tri-
angles (0.45 < F < 0.5), magenta stars (0.5 < F < 0.7), and orange crosses
(0.7 < F ). The black line encloses the region where the reduced model (7)
oscillates.

repressing gene and characterized the regularity of protein spikes using a
Fano-like indicator. This allowed us to evidence a dynamical resonance phe-
nomenon where a more regular time evolution of protein concentration is
observed for certain values of the relative protein degradation rate and of
the gene response time. Average quantities, on one hand, and the location
of the resonance in parameter space, on the other hand, are reproduced se-
parately by two reduced deterministic models obtained from a truncation of
the moment equations hierarchy. It remains to combine these two models to
reach a global description of how averages and fluctuations interact through
nonlinearity in the self-repressing gene circuit.
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