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A New Mixed lterative Algorithm to Solve the Fuel-Optimal Lin ear Impulsive

Rendezvous Problem

D. Arzelier - C. Louembet - A. Rondepierre - M. Kara-Zaitri

Abstract The optimal fuel impulsive time-fixed rendezvous problemeigewed. In a linear setting, it may be reformulated as
a non convex polynomial optimization problem for a pre-gfed fixed number of velocity increments. Relying on vaoatil
results previously published in the literature, an imprbrexed iterative algorithm is defined to address the isswptimization
over the number of impulses. Revisiting the primer vecteotly, it combines variational tests with sophisticated etioal
tools from algebraic geometry to solve polynomial necgsaad sufficient conditions of optimality. Numerical exaeplnder

circular and elliptic assumptions show that this algoritlrafficient and can be integrated into a rendezvous plartoivig

Keywords Orbital rendezvousfuel optimal space trajectorieprimer vector theory impulsive maneuverslinear equations

of motion

1 Introduction

Given the increasing need for satellite servicing in curesmd future space programs developed in conjunction witdeevous
missions for the International Space Station (ISS), trer@st of most space agencies in developing adequate rengezission

planning tools has been rapidly rising. In particular, néaltenges have appeared relating to the synthesis of grédaahemes
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capable of achieving autonomous far range rendezvous diyhadjiptical orbits while preserving optimality in ternts fuel
consumption. Strictly speaking, the space far range reamdszmaneuver is an orbital transfer between a passivet tange
an actuated spacecraft called the chaser, within a fixed atirftptime period. In this paper, we mainly focus on the steda
time-fixed fuel optimal rendezvous problem in a linearizeavigational field for which a renewed interest has been egted
in the literature [1], [2], [3], [4]. Because of the constis of on-board guidance algorithms, numerical solutioased on
linear relative motion are particularly appealing. Witlspect to the numerical solution, direct methods based amediging
the original problem and converting it into a linear progmimg problem may be used as in [2]. Indirect approaches based
the solution of optimality conditions derived from Pontgyeis Maximum Principle, leading to the development of thecalled
primer vector theory presented in [5], have also been anua/ehresearch in numerous studies [6], [7], [8], [9]. As tloeyy
focus on fixed number and location of impulses, these appesafail to optimize trajectory planning in terms of the nanb
of impulsive maneuvers. Neither can they ensure the gloptiinality of the result provided for a fixed number of impudse
To optimize the number of impulses as well as their specifiiegtion times, an iterative algorithm based on the calsuf
variations originally developed by Lion and Handelsmar [ids been designed [11, 12]. The main drawback however isodue
the possible non smoothness and sub-optimality of theteesgutajectory of the primer vector norm due to the localirabf
the proposed approach. To overcome this difficulty, a Dawviflietcher-Powell penalty minimization step is proposedrider

to move the impulses and achieve a smooth trajectory adettai[13] or [12].

The paper’s contribution is to revisit the iterative algom of Lion-Handelsman based on the calculus of variations a
to take advantage of the polynomial nature of the underlyingessary conditions to circumvent the necessity to reésort
local optimization schemes. In particular, this new itseatlgorithm combines the algebraic formulation of Castaecessary
and sufficient conditions, supporting the use of powerfuharical tools from the algebraic geometry field, and impngvi
variational tests as derived in [10]. This results in a migddéfitrent iterative strategy bypassing the local optinesdrsh step and

cusp occurrence. Circular and elliptic Keplerian refeeearbits may be considered indiferrently.

In the first section of this paper, the framework of the minimiuel fixed-time rendezvous problem is presented and
necessary and sufficient conditions of optimality are ftedalRelative dynamics motion for rendezvous are the wedivkn
Tschauner-Hempel equations [14] and the transition mafrixamanaka-Ankersen [15]. The results of [10] are recadlad
the mixed iterative algorithm is presented. For compafissake, the efficiency of the proposed algorithms is ilkistd with
four different numerical examples. Three academic exasnalieen from Carter’s reference [8] are first studied in dietailso
reviewed is one realistic scenario based on PRISMA which'is@hnology in-orbit testbed mission" demonstrating fation

flight [3].
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2 The Time-Fixed Optimal Rendezvous Problem
2.1 Linear impulsive time-fixed optimal rendezvous problem

This paper focuses on the fixed-time minimum-fuel rendegJmiween close orbits of an active (actuated) spacectkdtiche
chaser with a passive target spacecraft assuming a lingatsive setting and a Keplerian relative motion as it is defim the
references [8], [9]. The impulsive approximation for theuit means that instantaneous velocity increments aréedfpl the
chaser whereas its position is continuous. If the relatiygaéions of motion of the chaser are supposed to be lineauiager
the previous Keplerian assumptions, it is shown in the egfees [8], [17], [9] that the considered minimum-fuel rendris

problem may be reformulated as the following optimizatioogtem:

N
N,vi ,rﬂrvir]ﬁ(vi) = i;AVi
N N
o LU R A R (1) N AR
st Uf*i;q) (Vi)B(vi)AviB(vi) i;R(VI)AVIB(VI) )
IBvi) =1

Avi >0

where@(v) is the fundamental matrix associated to the linearizediveléree motion and?(v,v;) = @(v)@(v1) denotes
therefore the transition matrix of the linearized relatfuee motion. Note that the true anomalyhas been chosen as the
independent variable throughout in the papgrand vi denote respectively the initial and final values of the troeraaly

T
during the rendezvousi; = (p*l(vf)xf - (p*l(vl)xo # 0 where the state vectofs = [q Vﬂ at v¢ and the state vector

Xo = {rg v } ! at vg are composed of the relative positions and relative veéscitectors. The optimization decision variables
are the number of impulsés, the sequence of thrust timés; }i—1 ... n, the sequence of thrust magnitudesv; }i—1 ... n and of
thrust directiond (Vi) }i—1,... n. Due to the lack of prioriinformation about the optimal number of impulses to be abersd,
problem (1) is very hard to solve from both theoretical andharical points of view. Therefore, the associated fixedetim
minimum-fuel rendezvous problem for a fixed numbkof impulses has been considered in the literature mainlge@netric
methods near circular [6], [13], [18] or elliptic [17] orbit These results are mainly based on the derivation of ofityma

conditions for the problem (1) whe is fixed a priori.

2.2 Carter’s necessary and sufficient conditions for a fixedlver of impulses

When the number of impulses is not a part of the optimizatiaegss and is fixed priorito N, problem (1) may be considered
as the joint optimal selection & velocity increment&V (v;) = Avi3(v;) andN timesv; of maneuvers. Applying a Lagrange
multiplier rule for the problem (1) as in [17], one can derivecessary conditions of optimality (2) to (6) in terms of the

Lagrange multiplier vectok € R" as is recalled in theorem 2.1 below. Prussing has first shoid9j that these conditions are
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also sufficient in the case of linear relative motion with stkengthening semi-infinite constraint (9) that shoulddillied on

the continuunmvg, v¢] and is expressed in terms of the transition ma(x).

Theorem 2.1 [9]

(Vi,...; UN, AVL, ..., AV, B(V1), ..., B(VN)) is the optimal solution of problerfi) if and only if there exists a non-zero vector

A € R™ m=dim(g) that verifies the necessary and sufficient conditions:

Avi=0o0rB(vi)=R"(v)A,Vi=1,---,N )
Avi=00rATRWV)RW)TA =1, Vi=1--- N ©)
Av, =0 0rvy = Vg Of Uy = Vs OI‘)\T%R(W)T)\ =0,Vi=1,---,N (4)
N
zi [R(Vi)RT(Vi)] AAvV; = ug (5)
i=
Avi >0,Vi=1,---,N (6)
A T
Avi=ulA >0 )
5%
uf A is the minimum of the set defined agkx € R™ : (2) — (7) are verified (8)
AWV <1V ve v, w] )

whereA,(v) = R(v)TA denotes the so-called primer vector. Note that conditidysad (8) may be easily derived from the
previous ones. These results derive directly from the salmmork of [5] in the early sixties and form an alternativerfaration
to the primer vector theory. The primer vector is nothingthetco-state vector associated with the relative velocityia related

to the Lagrange multiplier vector through the precedingtieh.

A numerical solution of optimality conditions (2) to (9) in¢ unknowns\ € R™, {v;}i—1.. N, {B(Vi) }i=1- N, {AVi Fi=1,.. N
is still hard to find for a fixed number of impuls& due to the non convex and transcendental nature of thesaqgmlsl
equalities and inequalities. However, it is shown in [2@]ttthe problem may be tackled by using an adequate dynandidigg
strategy and polynomial optimization. Still, the optimahnber of impulse®* for a particular rendezvous problem is in general
unknown and only a bourld* < Naxis available [21]Nmax= 2 for out-of-plane rendezvoublyax= 4 for in-plane rendezvous
while Nmax = 6 for a general three-dimensional rendezvous problem.tApamgridding step, the necessity to try every case for

2 <N < Npaxin [20] appears be very time-consuming and a more directoggprto solve problem (1) is now proposed.
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3 Optimizing over the Number of Impulses
3.1 Using Lion & Handelsman results on multi-impulse trégeies

In [10], a method is proposed to take advantage of the prireetov theory developed by Lawden in order to improve non
optimal trajectories by adding or shifting impulses. Thé&ohus of variations is used to find conditions on the normhaf t
primer vector for an additional impulse and on the derivatifithis norm for initial and/or final coastings. The methsdnainly
based on derivation of the so-calledriational adjoint equatioresulting from the variation of the cost function. Lateze&eski
[11], [12] developed a numerical algorithm combining LiBlandelsman’s conditions with a modified gradient searchcsgmi

in a linear model setting. The additional local optimizatjgrocedure is used to find the optimal position and moduluhef
additional impulse so as to avoid a resulting cusp for thennof the primer vector as reported in [11], [12]. In this semnti
the conditions of Lion and Handelsman are recalled and ardift Heuristic iterative procedure avoiding local oplisearch
step and cusp occurrence is proposed. It is worth noticiagttie extension of these conditions for elliptical refeeorbit

(Tschauner-Hempel [14] dynamical relative model and YamkarAnkersen transition matrix [15]) from [16] is used here

3.1.1 Additional interior impulse condition

Perturbing a reference initial two-impulse trajectory adding an interior impulse a;, the differential cost can be expressed

as:

33 = AVin(1—Av(Vin) TB(Vin)) = AVin(1—= ATR(Vin) B(Vm)) (10)

From (10), it is easy to conclude tha < 0 whenAy(vy) > 1 and that a maximum decrease in cost is obtained when:
vm=arg max |[A,(v)||=arg max |[RT(v)A] (11)
VE[Vg,Vt] veE[vo,ve]

3.1.2 Additional coasting period conditions

For an additional initial coasting period of duratidn;, the cost variation is given by:

.
53 = —au S (v1)Ay(va)dvy = —Ale\Td—R(vl)RT(vl)Advl =Av§7d|l)\"(v)|l
dv dv lv=vq

v dvy (12)

This condition means that adding an initial coasting ardwaf> 0 duration may improve the cost}if,(vl)T)\v(vl) >0, i.e.,the

right derivative of the primer vector norm & is positive. Similarly, for a final coasting arc of duratidn;, we get:

53 = — vt Y (v Ay (vr)dvs = —aviAT IR ORT (VA dvs = — A2 LAJSV)”l
V=V¢

13
dv dv dvr (13)
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A final coast ofdvs < 0 duration will improve the cost when the left derivative lb&tprimer vector norm at; is negative, i.e.,

dA
whend—v"(vf)T)\v(vf).

3.2 A mixed iterative algorithm

These conditions may be used jointly to reduce the cost deaaiece non optimal two-impulse trajectory but can alsodieeg
alized to multi-impulse trajectories. Consider the faupulse trajectory of Fig. 1a. Overall cost can be reduceddmgidering

the coasting arfvi, vi11] in different ways:

— Adding a new impulse aty,

— Adding an initial coasting arc by shifting toward vy, if %(Vi) >0,

— Adding a final coasting arc by shifting. 1 towardv, if %(vwl) <0,

— Replacingv; andvi1 by vy, if d(lj"\\,” (vi) >0and d(lj"\\,” (vit1) < 0. This is equivalent to adding an initial and a final coasting

arc on[vi, vi+1] and an impulse atn,.

AVl

2 Vi Vm Vi1 Vi oy V1 Vm Vi v
(a) Adding or moving impulses on a multi-impulse trajectory(b) Nonoptimal primer vector norm with a cusp at the inteiiior
pulse

Fig. 1: Nonoptimal primer vector norms

As noted in [11] and in [22], computation of the mid-impulséght nevertheless result in a non optimal trajectory not
verifying the optimality conditions of Lawden and conditig9), particularly in the case of occurrence of a cuspatas
illustrated in Fig. 1b. A particular strategy combining hidlandelsman’s conditions and local direct optimizatiasdd on the
Davidon-Fletcher-Powell penalty method in [12] or base®&GS method in [22] has been proposed to optimize the ragulti
three-impulse trajectory. The objective of this sectiotbipropose an alternative to this complicated procedureevgldping
a mixed iterative algorithm taking advantage of the algiebfermulation of Carter’'s optimality conditions and of thén-
Handelsman’s conditions. Starting from a non optimal twilse trajectory, successive admissible improved trajies will

be iteratively built by:

- Adding impulse avy, if the impulse number does not exceed the upper bdggd ;
- Moving the proximal impulse toy, if an impulse cannot be added dueNe= Nmax ;

- Merging two impulses at, if there is no proximal impulse and if an impulse cannot beegiddue taN = Npax.
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wherevp, is defined by (11). The logic of the proposed heuristic atbamiis depicted at Figure 2 whedgy = %(Vi) and

dpi1= dw (Vi+1). The seflimp denotes the current set impulses and the new impulge always added to it.

Vit1 = Vm andTimp = Timp — {Vi41}

Vi = Vm andTimp = Timp— {Vi}

Ves Vi = Vit1 = Vm andTimp = Timp — {Vi, Vi+1}
n
dn> o Vi = VUm Or Vi1 = Vi andTimp = Timp — {Vi O Vi11}
yes pr1<0 @

Vi = Vm andTimp = Timp— {Vi}

Vit1 = Vm andTimp = Timp— {Vig1}

Vi =Vit1=Vm ar‘|dT|mp = |mp {Vla V|+1}

o y @

Addition atvy

Fig. 2: Heuristic for the iterative mixed algorithm

This heuristic procedure relies on basic principles thatumed to make the successive sequences of maneuvers nionoton

cally converging to an optimal solution.

- The first and final maneuvers time defined respectivelypand v cannot be moved in the process. Therefore, optimal
solutions consisting of an initial and/or final coastingipércannot be found by this algorithm.

- A new impulse is always added g4, In case 8 for an actual number of impuldés< Npyay, it increases the number of
impulses while wheiN = Ny it reduces the number of impulses in cases 3 and 7 and it deehange this number for
cases 1, 2, 4,5 and 6.

- Every move of an actual maneuver timeug is chosen to be the proximal of, (in particular for case 4) except in case
7 which is specific since moves of impulsgsandv;.1 are not required to improve the trajectory. In this casejdea is
rather to re-initialize the iterative process with a newegiimpulse trajectory. In practice, this case has neveurcad on

all the tested numerical examples.

The systematic convergence of the algorithm for any rermlezis not analytically proved but no such case has beentespor
in the different numerical tests performed so far.
The algorithm may now be described in details. It is mainlgnposed of two stages: one initialization step solving a two-

impulse rendezvous problem and the iterative procedurglibgithe final plan of maneuversg,,g and €, are respectively
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precision values on the conditioning humber of the tramsigub-matrix®;, and on the maximum of the norm of the primer

vector. Typically,econg = 10° while g, = 1075,

Initialization step:

a. Solvethe two-impulse problem:

1- Initialize
Timp = {v1,v2} = {vo, Vs } (14)
2- Computethe transition matrices
®11(vs, V1) Pro(Vs, V1) (AR ARV
®(vs,v1) = , @ (vi,v) = @7 T (v, vy) = (15)
@21(ve, V1) Pap(Vi,v1) @51 (ve,v1) Phy(vi, V1)

If cond(@®12(vs, V1)) < €cond Then

AV (v1) = @3 (ve, V1) [rf — Pra(ve, va)rs — Pra(ve, vi)vi]

(16)
AV (Vi) = Vi + [@2p(Vs, V1) D5 (Vi, Vi) Pra(Vi, Vi) — Por(Ve, 1) | 11— ooV, Vi) @t (Ve, va)r ¢
Else
Solvepolynomial system w.r.{A, {Av; }i=11)
ATR(VI)RV)TA =1, V v € Timp
Z [R(VI)RT (V)] AAV, = ug, ¥V Vi € Timp, i =1, f 17)
Vi€ limp
Av; >0,i=1f
Choosethe minimum-fuel solution:
Ainit = arg [n}in uh} (18)
Computeimpulses:
B(vi) = RWV)T Ainit, ¥ Vi € Timp, i =1, f
(19)
AV (Vi) = AviB(vi), Y Vi € Timps i=1f
b. Propagateprimer vectorA,(v) on a grid/1 = {v1,---v¢ }:
If cond(®%,(vs,v1)) < &ona Then
AV (vq) AV (vy)
Av(vy) = Av(vi) =
Wv) = T v = 5 o0

A(V) = D (v,v1) D5 (v, va) [Au(vi) — (v, vi)Au(va)] + @Ey(v, v1)Ay(v1)
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Else

Compute R(v) on grid [T andPropagateA,(Vv) via

A(V) =RT(v)A (21)

c. Compute

Avm= mw|mwmwwm—am{mw|mwm]
veE(vo,ve] veE(vo,ve]

d. If Ayvm— 1< €, Then stop.The two-impulse trajectory is optimal.

Elsestart iterative procedure.

&1, andey, are two different precision values used in the iterativepdure to test the maximum value of the norm of the primer

vector with respect to ko5t is a parameter used to check the evolution of the cost duniegerative process.

Iterative procedure:

While (Aym—1> &1,) and (diffcost: |U1f—}\iter - U}—)\iterfl‘ > Ecost OF Aym— 12> &)

a. iter— iter+1 ; Choosevy, vy € Timp such that
(Va < Vm < Vp) and(Va = Vi, Vp = Viy1)

If dim(Timp) > Nmax Then Modify Timp as

dAv(vp) T
dv

dAv(va) T
dv

Q) If Av(va) > 0 and Av(vp) < 0Then
(i) If va=v1Then

Vb = Vi andTimp = Timp— {Wb} (22)

(i) Else
If vp =v¢ Then

Va = Vm andTimp = Timp— {Va} (23)
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(i) Else
Va = Vp = Vm andTimp = Timp — {Va, Wb} if Vm= (Va+vp)/2 (24)
Va OF Vp = Vi @ndTimp = Timp — {Va OF Vp} if [Vm— Va| < |Vm— Vp| OF |Vm— V| < |Vm — Va| (25)
dAv(va) T dAy(v
@ 1t P ) <oor P ) -0
0 If d’\V("a) Av(va) > 0 Then
T
iy 1f )5 () < 0 Then
dv
Vb = Vm andTimp = Timp— {Vb} (27)
T
(iii) 1If dAV( o)’ Av(vb) > Oand d’\VE}"a) M(Va) <0
Va = Vb = Vm andTimp = Timp— {Va, Vo} (28)

c. Solvepolynomial system w.r.{A, {Av; }i=1 1)

ATR(VI)RV)TA =1, V vj € Timp

Z [R(VI)RT (V)] AAV = ug, YV V; € Timp, i =1,--+,N (29)

Vi€ limp

Av, >0,i=1,---,N

d. Choosethe minimum-fuel solution:

Aiter = arg [n]\in u?)\} (30)

e. Computeimpulses:

B(Vi) - R(Vi)T)\iteh v Vi ETimp» I = 17 7N
(31)

AV (vi) = AviB(vi), Y Vv € Timp, i =1,---,N
f. Compute cost difference

diff cost= |U}-)\iter - U}-)\iterfl‘ (32)

g. Compute R(v) on grid T andPropagateA,(Vv) via

A(V) = RT (V) Ajter (33)
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h. Compute

Am=_max |[Ay(v)]| andvm—arg{ max |)\v(V)||}
ve(vy,ve] ve(vy,ve]

Repeat Iterative Procedure until Ay, < 1

Initialization stage and stepof iterative procedure require solving a system of polyradraguations ((17) in the first case
if the transition matrix®(v¢, v;) is ill-conditioned and (29) in the iterative procedure)wiespect tod andAv;. The set of
solutions to the two first set of equations of this polynonsigtem is composed of 8 couples of soluti@As{Av; }i—1.... f).
Among this set of solutions, only those corresponding tositipe magnitude are kept to compute the minimum-fuel sofut
Note that regular algebraic tools for finding all real s@uas of multivariate polynomial equations based on formak@er
basis computation may fail due to highly complex equatid¢tee, homotopy continuation methods have been used [23]. In
particular, the free software package PHCPack developethhyerschelde [24] is used to solve the system of polynomial
equations at each iteration at stepf the iterative procedure and at the initialization stepatessary. The efficiency of this

algorithm is now demonstrated on several different exasaple

4 Applications and Numerical Examples

In this section, numerical results obtained from the mixedative algorithm are compared with previous ones pubdsim

the literature [8] and on a more realistic case borrowed ftbenPRISMA test bed [3]. When the mixed iterative algorithm
converges to am; solution, then the PRDV algorithm from [20] is used to ceriiiptimality of this solution for this fixed
number of impulses. Only coplanar elliptic rendezvous f[aoils based on the Yamanaka-Ankersen transition matrixdé]
considered for numerical illustration of the results pregah Note also that the algorithm has been successfullyeapal the
highly elliptic rendezvous mission SIMBOL-X in [16]. In thicase and under Keplerian assumptions, the bound of Neéustad
[21] on the optimal number of impulses is 4 and therefdygx = 4 in the following. Note that for the first three particular
cases in which eccentricity = 0, the Yamanaka-Ankersen transition matrix reduces to teJtbhessy-Wiltshire transition
matrix [25]. Finally, all numerical examples are processsithg PHCpack 2.3.52 [23], [24] under Matlab 20@brunning on

an Intel® Core(TM) i7 X920 2.0GHz system with 8GB ram.

4.1 Case study 1

The first numerical example is defined by the third case firasictered in the reference [8] and later in [20] via polyndmia
optimization. Data given in Table 1 define a circle-to-@rokndezvous problem where the chaser is one unit beforardet t

with the same velocity and has to rendezvous with the targhtazpositive vertical velocity after one orbital period.
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12
Eccentricity e=0
Vo Orad
Xq (1000
Vi 2mrrad
X{ [0 0 0 0427

Table 1: Data for Carter’s third example

The mixed iterative algorithm reaches the optimal fourditsp solution within 16 seconds after 6 iterations with dtiah
and a final impulse. For comparison’s sake, the Table 2 ett@lresults given in the references [8] and [20] alongdidehes
given by the mixed iterative algorithm and obtained fromdpelication of the procedure given in [18]. Remember that&ls
results are obtained usirgpriori pre-assigned thrust times. The results of the mixed iteratigorithm may be certified via
the comparison with those of [20] and by applying the quachtzased method proposed in [18] to build 4-impulse optimal

solutions for circular rendezvous.

Carter [8] Mixed iterative algorithm| PRDV algorithm [20]| Analytic procedure [18]
vi, (rad) 7 ~1.5708 1.7016 1.7077 1.70033
vz, (rad) ST~ 47123 458137 4.5859 4.58286
AV (vo)T | [-0.02729 003436] [—0.02626 003281] [—0.02655 00329 [—0.02627 003282
AV (vy)T [0.08965 001194 [0.0914 000439 [0.0917 0004614 [0.09139 000447
AV (v,)T [0.3901 001194 [—0.0914 000439 [—0.09011 000434] | [—0.09139 0004472
AV (vi)T [0.02729 003436] [0.022626 003281] [0.0259 00322] [0.02327 003282
2 /1, cost 0.2686 0.267085 0.2667 0.267085

Table 2: Results comparison for the third case of [8]

Note that the results of PRDV algorithm are rather optirnistiterms of consumption due to numerical approximations in
the computation process leading to a solution that doesespect exactly the symmetry requirements of four-impujsgeral

solutions [18]. Norm of the primer vector, thrust direcsomprimer vector locus, cost evolution during the iterafivecess are

depicted on Figure 3.
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Fig. 3: ||Av(v)]], primer vector locus# /I, cost for the third case of Carter's example [8]

Figures 4 to 5 show the iterative construction of the optis@ltion following the proposed strategy. Note that themor
of the primer vectot|Ay(v)]| is a smooth function of the anomaly at every step of the psydbereby overcoming the main
drawback of the usual iterative procedure originally psgabby Lion-Handelsman [10] and developed lately in [12] @rid.
Red impulses give the localization of the thrusts effetyie®mputed at the preceding step while the green impulsesgive

localization of the resulting impulse from either additiofira new impulse or move of a red impulse.

Al

[IX @)1l

B 6 o 1 2 B 4 5 6

v (rad)

(a) Iteration 1:vy, = 4.7438 (b) lteration 2:vy,, = 2.25671 (c) Iteration 3:vp = vy = 1.7331

o _ p s
v (rad)

Fig. 4: Details of iterations 1-3 for the third case of Caf&gr

The whole process is formed of two separate stages as byilis@aduced from the analysis of these details. The firstestag
consists mainly in a successive addition of new impulsem filee initial two-impulse solution to a non-optimal fourpuise

solution. Once the upper-bound of Neustadt is reached |glogithm moves the interior impulses to find their optimatdtion.



14 D. Arzelier et al.

VN TN VN /T

A )ll

o T 2 3 5 5 o 1 2 3 5 5 o T 2 3 5 5
v (rad) v (rad) v (rad)

(a) Iteration 4:vp = vy, = 4.5814 (b) lteration 5:vp = vy = 1.7017 (c) Final norm of primer vector

Fig. 5: Details of iterations 4-6 for the third case of Caf&jr

Relative positions, relative velocities in the LVLH framedaimpulses of the optimal plan maneuver are shown on Figures
6a while the Figure 6b depicts the trajectory of the chasémnérorbital plane. Only linear simulations based on Hilbl@ssy-

Wiltshire transition matrix have been performed.

15
g 1
é M 01
o 0.5 —
% o 2l oosp
=¥
-0.5 L
0 1 2 3 4 5 6 7 oF
. v [rad]
< 05 T T T T T T
S / ~0.051
= e N
A o , "
¢ \/ — bl
£ -05 q LAY
S
T _ . . . ) ) -0.15[
= 10 1 2 3 4 5 6 7
— v [rad _02k
T o1 Irad] T T 02
g
=
0.05 L
% 4 ! —o x| 0%
E =
2 —0z| .l
£ -005f 03
2
g o1 ‘ ‘ ‘ ‘ ‘ ‘
— 0 1 2 3 4 5 6 7 -0.35
v [rad] w02
(a) Relatives positions and velocities trajectories anguiises (b) Trajectory of the chaser in the orbital plafez)

Fig. 6: State and control trajectories for the Carter'sdtle@xample

4.2 Case study 2

The second numerical illustration is still a coplanar @rtd-circle rendezvous that should be completed within oréal
period and that is borrowed from the reference [8]. The bamndonditions of the rendezvous are modified so that theethss

one unit above the target with the same initial and final vigksz All characteristics are summarized in Table 3.

Eccentricity e=0
Vo Orad

X =gl [ (0100
Vs 2rmrad

X[ =[] V] | [0000
Nmax 4

Table 3: Carter’'s second example characteristics
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The resulting optimal trajectory computed with the mixestative algorithm is a three-impulse rendezvous as camedt

by Carter. The primer vector trajectory plot depicted in.Hgconfirms the optimality of the solution for a fixed number of

impulses equal tt = 3.

Unit circle
A(t)
B(ti)

15 -10 —05 0 05 10 15
A'Ufl/'

Fig. 7: Primer vector in-plane trajectory for Carter’s casaly 2 [8]

The optimization process requires 9 iterations during Zsese ten steps are detailed in Figures 8 through 10, whehe ea
iteration is associated with one particuliah, update case. As previously, the whole process may be dividedwo different
stages. The first one is similar to the first example while #e&sd one is made off two alternate operations: Addition of a
fourth interior impulse to the previous three-impulse ngtiroal solution and merging of two interior impulses to gdiedter
three impulse solution. It is important to note that theneasdmissible extreme two-impulse solution since the fahg linear

system corresponding to the two-point boundary value proldias no solution.

0 26m2 AVy(0) 0
0 1 0 1| | AV,(0) 0
= (34)
2 02 0| | AW%(2m) 3
—10-10{ | AV,(2m) -2
and ~ _ - o
0 26m2 0 26m2 0
0101 0101 0
rank =3 <rank =4 (35)
2020 2020 3
-10-10 -10-10 -2
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Fig. 10: Details of iterations 7-9 for Carter’s case stud@R [

The results presented in [8] are clearly not optimal witlpees to the choice of the date of application of the interlpeity

increment. In [8], this location has been choseprioriand it obviously results in a non optimal consumption as sarnzad
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in Table 4 where the results of the mixed iterative algorithmm compared to those presented by Carter in [8] with 12% fuel

consumption improvement. Additionally, Table 4 lists thgtimality certificate furnished by the PRDV algorithm [20].

Carter [8] Mixed iterative Algorithm | PRDV algorithm [20]
Vint (rad) 7 ~ 15708 2.4119 2.4085
AV (vo)T [1.6294 —0.6667| [1.7775—0.3828] [1.7771—0.38449]
AV (vy)T [0.3901 00964 [0.2896 —0.0165] [0.28995—0.015971]
AV (vi)T | [-0.0633-0.0259] [—0.0672 —0.0143] [—0.06706—0.014384
A /1, cost 2.2307 2.1770 2.1772

Table 4: Results from [8], mixed iterative and PRDV algarithfor Carter’s case study 2 [20]

Figure 11 shows the in-plane trajectory of the chaser foteCarsolution (green) and mixed iterative algorithm (Blue
Interestingly, the simulation of Carter's maneuver plagras proposed in [8] leads to an error at the final point oféhdezvous

even with the Hill-Clohessy-Wiltshire state-transitiomtmx.

0.6
0.4

0.2

-0.4 L L L L L L I Il
-0.2 0 0.2 0.4 0.6 0.8 1 12 1.4

Fig. 11: In-plane trajectory and impulse dates for Cartea'se study 2: Mixed iterative algorithm (blue) and Carteokition
(green)

4.3 Case study 3

The final academic case of Carter is recalled in the Table Svikde seen in the sequel, this simple example is partitylar

interesting since it exhibits numerical hurdles to find tp&mal solution that is quite surprising for so simple anrapte.

Eccentricity| e=0
Vo Orad
Xq (1000
Vi 2mrrad
X{ [0000

Table 5: Data for Carter’s first example [8]
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4.3.1 Analysis of Carter’s solution

The solution proposed in [8] is a two-impulse solution withiaitial and final thrust in opposite directions along thaxis of

the LVLH frame. This solution is analytical in the sense ftihé the minimum-fuel solution of the linear system:

Rhow(0)AV (0) + Raew( 2m)AV (271) = ¢tk (21Xt — @ (0) X0 = Ug (36)
and may readily be computed as:

AV(0) = {% OT AV (2m) = [f% OT 37)

This conjecture appears to be reasonable if the followisgltérom [18] is recalled.

Theorem 4.1 ([18])

For HCW rendezvous problems, there is no optimal four-im@wonditions for boundary conditions defined gs =X

w4~ posd

Unfortunately, the solution (37) is suboptimal as may be alestrated by the associated primer vector that does nsfysatl

the necessary conditions of optimalify(Vv) is defined by:

A(V) =RT(V)A (38)
whereA is a real solution of the polynomial system (39):

R(O)R(0)T AvoA +R(2mR(2m) T AviA = ug
ATRO)R(0)TA =1 (39)

ATR2MR(2m)™A =1

minimizing A Tus. This minimum-fuel solutior * is given by

T
A" = | -0.106103295393226.212206590785999.000443462832762-0.99912 (40)

The norm and the locus of the primer vector associated te€agolutionA,(v)¢ = R" (v)A* are depicted on Figure 12.
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Fig. 12: Norm and primer vector locus for Carter’s two-imgrikolution

We get that it violates the necessary condition of optim&B) since its maximum is numerically given by:

ASh= max [[Ay(v)¢| = 1.052327525631438 (41)

ve[vy,ve]

The sub-optimality of Carter’s solution may be formally yed by considering thax* must be the solution of the following

linear system: i o ) i
36 +84 121 —6m| | A1 —6mr
4 20 O A2 0
= (42)
12r 0 8 -4 A3 0
—-6mr 0 -4 2 A4 0
HenceA* may be parametrized as:
T
* 1 2
A== = -1422 (43)
3m 3’ e

If A* is a solution verifying the optimality condition (9) then

IA(v)°]l = IRfen(V)A*|| < 1, Vv e (0,2m) (44)
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The condition (44) is equivalent to the existencé@k R such that' v € (0,2m):

IAV()? = IRiu(VAIIP < 1

4 (45)
= [4(cosv —1)2 +siPv]AZ - 7—T(cosv —1)[v—m—sinv] A3
(3(v — 1) — 4sinv)? 4 4(cosv — 1)
+
o2

2
<1

Forv = 2—72 it is easy to show that the second order polynomial of (48igys strictly greater than ¥, A3 € R. Carter's

solution is therefore not optimal.
4.3.2 Analytical two-impulse solution

Let us now consider this problem but without setting the timees of thrustinga priori but by defining(vy, v2) as decision

variables. The two-point boundary value problem reads as:
Xt — @(2m,0)Xo = @ (21, v1)BAV (v1) + @ (211, v2) BAV (v2) (46)

and is equivalent to the system (47) to be solved:

—61+ 3v1 —4sinvy 2—2cosvy —61+ 3v, —4sinvy, 2—2c0svy | | AVk(vi) -1

—2+2c0svy —sinvy —2+2c0svs —sinvy AVy(v1) 0

—3+4cosvy —2sinv; —3-+4cosv, —2sinv; AVy(v2) 0
(47)

2sinvy Ccosv, 2sinvy cosVy AVy(V2) 0

M(v1,V2)AV = s
The determinant of1(v1, V) is:

detM(vl, Vg) = 165i|'12((V2 — V1)/2) — 3(V2 — V1) Sin(Vz — V1) = g(9) (48)

where 0< 6 = v, — v1 < 211. The functiong(8) is a strictly positive on0,2rm) and vanishes for 0 andr2as may be easily

verified [6]. Case® = 0 and8 = 2t may be excluded for obvious reasons. We get the vector oéthas functions afvy, vo).

-AVx(vl)_ - —sin@ _
, —4sir?
AV, (Vl) _ M*l(e)wf _ W19) 4si (9/2) (49)
AVy(Vv2) sin
AV, (vs) —4sirf(0/2)
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The #1/l, minimum-fuel rendezvous problem is nothing but the paraimeiptimization problem (50) wher@ is the only

decision variable.

_2/si 6 + 16sirf(6/2)

" esit(e/2) —sesine  2®

(50)

st. 0< 6 <2

As it is, this problem appears difficult to solve analytigalh fact, (50) is a convex optimization problem for which aimum

may be computed via the computation of the only zero of itevdéve (51) on the interval0, 2r1) by a Newton method.

d3,(6) _ 186 +8sin(20) —9sin(36)/4—37sing/4+ 240(2sirf(6/2) — 1) —66(2sirf(8) — 1) (51)
dé (165ir7(6/2) — 30in)2, /165irf (6/2) + si? 6
We get the minimizeB* of (50) as
6* = 6.230033575529312 (52)

The first and second derivatives gf6) are shown on Figures 13a and 13b confirming the convexity eftioblem on the

interval (0,2m).

dJiy
a0

dJ,(6) d2J,(6)
do g2

Fig. 13: on (0,2m)

Finally, the optimal cost and the optimal maneuvers for &@&example are given by:

AV (vy) —0.052902333870518
AV,(vy) ~0.002812512822111
J,(6%) = 0.105954087364712 = (53)
AV (Vo) 0.052902333870518
AV,(vy) ~0.002812512822111
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These results show that the optimal two-impulse solutiotHis example is non unique. There is an infinity of optimdutons

with the same consumption and a couple of optimal impulsegiverifying(v;, v;) € (0,2m—6*) x (6%, 2m) with v —vj = 0*.

4.3.3 The mixed iterative algorithm solution

The results of the mixed iterative algorithm are presentettié Table 6 and clearly show that Carter’s solution is iddes an

optimal solution. The mixed algorithm converges after &84tions to a four-impulse solution illustrated by the Fegli5a.

Mixed iterative Algorithm
v (rad) [0 0.0681 61837 2]
AV (V)T [0.021453 0001138
AV (vy)T 0.031449 0001685
AV (vo)T 0.006797 0000364
AV (vi)T 0.046105 0002446
flﬂz Cost 0.105954

Table 6: Results of the mixed iterative algorithm for Castéirst example [8]

The norm of the primer vector is given on Figure 14 whifg(v) = 1.0000048.

X @)l

X
1102
1.1015

1101

Ji /s

1.1005 -

Iterations

Fig. 14: Norm of the primer vector and cost evolution

The distribution of this solution may be defined as two pafralmost simultaneous impulses at the beginning and at the

end of the rendezvous (as is illustrated on the plot of thjedtary in the orbital plane at Figure 15b).
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Fig. 15: State and control trajectories for the Carter's fiese [8]

Keeping in mind that the optimal solution has been computedytically as a two-impulse solution with one initial and
one final coasting period and recalling the result presebyettheorem 4.1, the result of the mixed iterative algorithiayrbe

analyzed as a tight approximation of the genuine optimalitmoulse solution.

4.4 Case study 4

Following the first three academic numerical examples, aemealistic illustration based on PRISMA [3] is how presente
PRISMA programme is a cooperative effort between the Swelditional Space Board (SNSB), the French Centre National
d’Etudes Spatiales (CNES), the German Deutsche Zentrubruftrund Raumfahrt (DLR) and the Danish Danmarks Tekniske

Universitet (DTU) [2]. Launched on June 15, 2010 Yasny (Rysst was intended to test in-orbit new guidance schemes

(particularly autonomous orbit control) for formation figh and rendezvous technologies. This mission includes FW@RD

experiment led by CNES which features a rendezvous manéfaveration acquisition). The orbital elements of the tamybit

as well as initial and final rendezvous conditions are ligteBable 7.

Semi-major axis a=7011km
Inclination i =98 deg.
Argument of Perigee w =0 deg.
Right Ascension of the Ascending Node  Q = 190 deg.
Eccentricity e=0.004
True Anomaly Vo = O rad.
to Os
Xg =[5 V] [—10 0 0 Q km -km/s
ts 64620s
X{ =1[r] v]] [-100 00 0 m -m/s
Nmax 4

Table 7: PRISMA rendezvous characteristics
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To save fuel and allow for in-flight testing throughout thd GRD experiment, the rendezvous maneuver must last several
orbits. Duration of the rendezvous is approximately 12 kdar an expected average cost of 20 cm/s [3].
The mixed iterative algorithm achieves optimization withi3 seconds and within 3 iterations. Global optimality afth

three-impulse solution has been established in [20] byingnthe PDRYV algorithm.

PRDV Algorithm Mixed iterative algorithm
tine (S) 31893 31986
Vint (rad) 3.4285 3.4377
AV (vo)T [—0.04911 0002152 [—0.04911 0001933
AV (vy)T [—0.002038 00000099 | [—0.002039 00000112
AV (vi)T [0.051315 0001423 [0.051316 0001404
/1, Cost m/s 0.102525 0.10252

Table 8: Results of the mixed iterative algorithm and PRDyo&athm [20] for the PRISMA case study

Figure 16b shows primer vector magnitude during transfetethe low magnitude of the second impuls®Q2 m/s) with
respect to the initial and final velocity incrementsO@2 m/s and @513 m/s) but these velocity increments play a significant
role in the optimality of the result. In particular, they pide the right chaser orientation for the long drift (614QMstween
the second impulse and the final one. Indeed, the designét beutempted to remove this interior impulse and resort éo th
suboptimal two-impulse strategy. The latter solution pto be strongly suboptimal since i#4 /I, cost is 27 % greater than
the optimal solution (4506 m/s). The long drifting period of 61400 s of the optisalution is clearly illustrated in Figure
16a where the in-plane trajectory and impulse positionsegreesented. Finally, it is worth noticing that the optiroast is half

the expected average cost of 20 cm/s [3].
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Fig. 16: Primer vector norm and trajectory for the PRISMA sios

5 Conclusion

A new numerical algorithm based on heuristic rules deducexh fthe work of [10] and tools from algebraic geometry has

been proposed to address the issue of time-fixed optimakrends in a linear setting. This algorithm is a mixed itewrati
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algorithm optimizing over the number of impulses with a lowmrerical complexity mainly consisting in the solution of a
small size polynomial system of equations. Even withoutrenfd proof of convergence, this heuristic algorithm appearbe
very efficient in practice on very different missions rarggfrom circular to elliptic rendezvous missions. In partiouit is not
necessary to resort to some local optimization scheme direferences [11] and [12] to eliminate cusp occurrencéisen
graph of the norm of the primer vector.

Despite the good numerical results presented, some immevecan still be expected if more sophisticated transition
matrices including orbital perturbation effects are usethsas atmospheric drag or gravity harmonics tesrAdother avenue

of research deals with the extension of this algorithm fdmoal trajectory planning with collision avoidance corastts.
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