Deformation of the Hopf algebra of plane posets
 Loïc Foissy

To cite this version:

Loïc Foissy. Deformation of the Hopf algebra of plane posets. 2012. hal-00687491v1

HAL Id: hal-00687491
 https://hal.science/hal-00687491v1

Preprint submitted on 13 Apr 2012 (v1), last revised 23 Nov 2012 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Deformation of the Hopf algebra of plane posets

Loïc Foissy
Laboratoire de Mathématiques, Université de Reims Moulin de la Housse - BP 1039-51687 REIMS Cedex 2, France
e-mail : loic.foissy@univ-reims.fr

ABSTRACT. We describe and study a four parameters deformation of the two products and the coproduct of the Hopf algebra of plane posets. We obtain a family of braided Hopf algebras, generally self-dual. We also prove that in a particular case (when the second parameter goes to zero and the first and third parameters are equal), this deformation is isomorphic, as a self-dual braided Hopf algebra, to a deformation of the Hopf algebra of free quasi-symmetric functions.
KEYWORDS. Plane posets; Deformation; Braided Hopf algebras; Self- duality.
AMS CLASSIFICATION. 06A11, 16W30, 16S80.

Contents

1 Recalls and notations 3
1.1 Double and plane posets 3
1.2 Algebraic structures on plane posets 4
1.3 Pairings 6
1.4 Morphism to free quasi-symmetric functions 6
2 Deformation of the products 7
2.1 Construction 7
2.2 Particular cases 9
2.3 Subalgebras and quotients 11
3 Dual coproducts 12
3.1 Constructions 12
3.2 Particular cases 13
3.3 Compatibilities with the products 15
4 Self-duality results 16
4.1 A first pairing on \mathcal{H}_{q} 16
4.2 Properties of the pairing 18
4.3 Comparison of pairings with colinear parameters 20
4.4 Non-degeneracy of the pairing 21
5 Morphism to free quasi-symmetric functions 23
5.1 A second Hopf pairing on $\mathcal{H}_{\left(q_{1}, 0, q_{1}, q_{4}\right)}$ 23
5.2 Quantization of the Hopf algebra of free quasi-symmetric functions 26

Introduction

A double poset is a finite set with two partial orders. As explained in [8], the space generated by the double posets inherits two products and one coproduct, here denoted by m, , and Δ, making it both a Hopf and an infinitesimal Hopf algebra. Moreover, it is self dual as a Hopf algebra. A double poset is plane if its two partial orders satisfy a (in)compatibility condition, see definition 1. The subspace $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ generated by the plane posets is stable under the two products and the coproduct, and is also self-dual $[2,3]$: in particular, two Hopf pairings are defined on it, using the notion of picture. Moreover, as proved in [3], it is isomorphic to the Hopf algebra of free quasi-symmetric functions FQSym, also known as the Malvenuto-Reutenauer Hopf algebra of permutations. An explicit isomorphism Θ is given by the linear extensions of plane posets, see definition 11.

We define in this text a deformation of the products and the coproduct of $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ with four parameters, together with a deformation of the two pairings and of the morphism from $\mathcal{H}_{\mathcal{P P}}$ to FQSym. If $q \in K^{4}$, the product $m_{q}(P \otimes Q)$ of two plane posets P and Q is a linear span of plane posets R such that $R=P \sqcup Q$ as a set, P and Q being plane subposets of R. The coefficients are defined with the help of twe two partial orders of R, see theorem 14, and are polynomials in q. In particular $m_{(1,0,0,0)}=\left\{, m_{(0,1,0,0)}=\boldsymbol{\imath}^{o p}, m_{(0,0,1,0)}=m\right.$ and $m_{(0,0,0,1)}=m^{o p}$. We also obtain the product dual to the coproduct Δ (considering the basis of double posets as orthonormal) as $m_{(1,0,1,1)}$, and its opposite given by $m_{(0,1,1,1)}$. Dually, we define a family of coassociative coproducts Δ_{q}. For any plane poset $P, \Delta(P)$ is a linear span of terms $(P \backslash I) \otimes I$, running over the plane subposets I of P, the coefficients being polynomials in q. In the particular cases where at least one of the component of q is null, only h-ideals, r-ideals or biideals appear in this sum (definition 7 and proposition 22). We study the compatibility of Δ_{q} with the two products m and $\left\{\right.$ on $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ (proposition 23). For example, $\left(\mathcal{H}_{\mathcal{P} \mathcal{P}}, m, \Delta_{q}\right)$ satisfies the axiom

$$
\Delta_{q}(x y)=\sum \sum q_{3}^{\left|x_{q}^{\prime}\right|\left|y_{q}^{\prime \prime}\right|} q_{4}^{\left|x_{q}^{\prime \prime}\right|\left|y_{q}^{\prime}\right|}\left(x_{q}^{\prime} y_{q}^{\prime}\right) \otimes\left(x_{q}^{\prime \prime} y_{q}^{\prime \prime}\right)
$$

If $q_{3}=1$, it is a braided Hopf algebra, with the braiding given by $c_{q}(P \otimes Q)=q_{4}^{|P||Q|} Q \otimes P$; in particular, if $q_{3}=1$ and $q_{4}=1$ it is a Hopf algebra, and if $q_{3}=1$ and $q_{4}=0$ it is an infinitesimal Hopf algebra [6]. If $q_{4}=1$, it is the coopposite (or the opposite) of a braided Hopf algebra. Similar results hold if we consider the second product \downarrow, permuting the roles of $\left(q_{3}, q_{4}\right)$ and $\left(q_{1}, q_{2}\right)$. We define a symmetric pairing $\langle-,-\rangle_{q}$ such that $\left\langle x \otimes y, \Delta_{q}(z)\right\rangle_{q}=\langle x y, z\rangle_{q}$ for all $x, y, z \in \mathcal{H}_{\mathcal{P} \mathcal{P}}$. If $q=(1,0,1,1)$, we recover the first "classical" pairing of $\mathcal{H}_{\mathcal{P} \mathcal{P}}$. We prove that if $q_{2}=0$, this pairing is nondegenerate if, and only if, $q_{1} \neq 0$ (corollary 36). Consequently, this pairing is generically nondegenerate. The coproduct of FQSym is finally deformed, in such a way that the algebra morphism Θ from $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ to FQSym becomes compatible with Δ_{q}, if q has the form $q=\left(q_{1}, 0, q_{1}, q_{4}\right)$. Deforming the second pairing $\langle-,-\rangle^{\prime}$ of $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ and the usual Hopf pairing of FQSym, the map Θ becomes also an isometry (theorem 40). Consequently, the deformation $\langle-,-\rangle_{q}^{\prime}$ is nondegenerate if, and only if, $q_{1} q_{4} \neq 0$.

This text is organized in the following way. The first section contains reminders on the Hopf algebra of plane posets $\mathcal{H}_{\mathcal{P} \mathcal{P}}$, its two products, its coproducts and its two Hopf pairings, and on the isomorphism Θ from $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ to FQSym. The deformation of the products is defined in section 2, and we also consider the compatibility of these products with several natural bijections on $\mathcal{P} \mathcal{P}$ and the stability of special families of plane posets under these products. We proceed to the dual construction in the next section, where we also study the compatibility with the two (nondeformed) products. The deformation of the first pairing is established in section 4. The compatibilities with the bijections on $\mathcal{P P}$ or with the second product $\&$ are also given, and the nondegeneracy is proved for q of the form $q=\left(q_{1}, 0, q_{3}, q_{4}\right)$ if $q_{1} \neq 0$. The last section is devoted to the deformation of the second pairing and of the morphism to FQSym.

1 Recalls and notations

1.1 Double and plane posets

Definition 1 1. [8] A double poset is a triple $\left(P, \leq_{1}, \leq_{2}\right)$, where P is a finite set and \leq_{1}, \leq_{2} are two partial orders on P.
2. A plane poset is a double poset $\left(P, \leq_{h}, \leq_{r}\right)$ such that for all $x, y \in P$, such that $x \neq y, x$ and y are comparable for \leq_{h} if, and only if, x and y are not comparable for \leq_{r}. The set of (isoclasses of) plane posets will be denoted by $\mathcal{P} \mathcal{P}$. For all $n \in \mathbb{N}$, the set of (isoclasses of) plane posets of cardinality n will be denoted by $\mathcal{P} \mathcal{P}(n)$.

Examples. Here are the plane posets of cardinal ≤ 4. They are given by the Hasse graph of \leq_{h}; if x and y are two vertices of this graph which are not comparable for \leq_{h}, then $x \leq_{r} y$ if y is more on the right than x.

$$
\begin{aligned}
& \mathcal{P P}(0)=\{1\}, \\
& \mathcal{P P}(1)=\{\cdot\}, \\
& \mathcal{P P}(2)=\{. ., \mathfrak{l}\}, \\
& \mathcal{P} \mathcal{P}(3)=\{\ldots, . \mathbf{t}, \mathbf{t}, \vee, \downarrow, \Lambda\},
\end{aligned}
$$

The following proposition is proved in [2] (proposition 11):
Proposition 2 Let $P \in \mathcal{P} \mathcal{P}$. We define a relation \leq on P by:

$$
(x \leq y) \text { if }\left(x \leq_{h} y \text { or } x \leq_{r} y\right)
$$

Then \leq is a total order on P.
As a consequence, plane posets are also special posets [8]. For any plane poset $P \in \mathcal{P} \mathcal{P}(n)$, we shall assume that $P=\{1, \ldots, n\}$ as a totally ordered set.

The following theorem is proved in [3] (up to a passage to the inverse):
Theorem 3 Let σ be a permutation in the nth symmetric group \mathfrak{S}_{n}. We define a plane poset P_{σ} in the following way:

- $P_{\sigma}=\{1, \ldots, n\}$ as a set.
- If $i, j \in P_{\sigma}, i \leq_{h} j$ if $i \leq j$ and $\sigma^{-1}(i) \leq \sigma^{-1}(j)$.
- If $i, j \in P_{\sigma}, i \leq_{r} j$ if $i \leq j$ and $\sigma^{-1}(i) \geq \sigma^{-1}(j)$.

Note that the total order on $\{1, \ldots, n\}$ induced by this plane poset structure is the usual one. Then for all $n \geq 0$, the following map is a bijection:

$$
\Psi_{n}:\left\{\begin{aligned}
\mathfrak{S}_{n} & \longrightarrow \mathcal{P} \mathcal{P}(n) \\
\sigma & \longrightarrow P_{\sigma}
\end{aligned}\right.
$$

Examples.

$$
\begin{array}{rlrlll}
\Psi_{2}((12)) & =\boldsymbol{\downarrow}, & \Psi_{2}((21)) & =\ldots, & \left.\Psi_{3}(123)\right) & =!, \\
\left.\Psi_{3}(213)\right) & =\boldsymbol{\AA}, & \Psi_{3}((231)) & =\mathfrak{l}, & \left.\Psi_{3}(312)\right) & =\mathbf{!}, \\
\Psi_{3}((321)) & =\boldsymbol{V},
\end{array}
$$

We define several bijections on $\mathcal{P} \mathcal{P}$:

Definition 4 Let $P=\left(P, \leq_{h}, \leq_{r}\right) \in \mathcal{P P}$ ．We put：

$$
\left\{\begin{aligned}
\iota(P) & =\left(P, \leq_{r}, \leq_{h}\right), \\
\alpha(P) & =\left(P, \geq_{h}, \leq_{r}\right), \\
\beta(P) & =\left(P, \leq_{h}, \geq_{r}\right), \\
\gamma(P) & =\left(P, \geq_{h}, \geq_{r}\right) .
\end{aligned}\right.
$$

Remarks．

1．Graphically：
－A Hasse graph of $\alpha(P)$ is obtained from a Hasse graph of P by a horizontal symmetry．
－A Hasse graph of $\beta(P)$ is obtained from a Hasse graph of P by a vertical symmetry．
－A Hasse graph of $\gamma(P)$ is obtained from a Hasse graph of P by a rotation of angle π ．
2．These bijections generate a group permutations of $\mathcal{P} \mathcal{P}$ of cardinality 8．It is described by the following array：

\circ	α	β	γ	ι	$\iota \circ \alpha$	$\iota \circ \beta$	$\iota \circ \gamma$
α	$I d$	γ	β	$\iota \circ \beta$	$\iota \circ \gamma$	ι	$\iota \circ \alpha$
β	γ	$I d$	α	$\iota \circ \alpha$	ι	$\iota \circ \gamma$	$\iota \circ \beta$
γ	β	α	$I d$	$\iota \circ \gamma$	$\iota \circ \beta$	$\iota \circ \alpha$	ι
ι	$\iota \circ \alpha$	$\iota \circ \beta$	$\iota \circ \gamma$	$I d$	α	β	γ
$\iota \circ \alpha$	ι	$\iota \circ \gamma$	$\iota \circ \beta$	β	γ	$I d$	α
$\iota \circ \beta$	$\iota \circ \gamma$	ι	$\iota \circ \alpha$	α	$I d$	γ	β
$\iota \circ \gamma$	$\iota \circ \beta$	$\iota \circ \alpha$	ι	γ	β	α	$I d$

1．2 Algebraic structures on plane posets

Two products are defined on $\mathcal{P P}$ ．The first is calle composition in［8］and denoted by \rightsquigarrow in［2］． We shall shortly denote it by m in this text．

Definition 5 Let $P, Q \in \mathcal{P} \mathcal{P}$ ．
1．The double poset $P Q=m(P \otimes Q)$ is defined as follows：
－$P Q=P \sqcup Q$ as a set，and P, Q are plane subposets of $P Q$ ．
－if $x \in P$ and $y \in Q$ ，then $x \leq_{r} y$ in $P Q$ ．
2．The double poset P ł Q is defined as follows：
－P 多 $Q=P \sqcup Q$ as a set，and P, Q are plane subposets of P 文 Q ．
－if $x \in P$ and $y \in Q$ ，then $x \leq_{h} y$ in $P \nLeftarrow Q$ ．
Examples．The Hasse graph of $P Q$ is the concatenation of the Hasse graphs of P and Q ．

The vector space generated by $\mathcal{P P}$ is denoted by $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ ．These two products are linearly extended to $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ ；then $\left(\mathcal{H}_{\mathcal{P} \mathcal{P}}, m\right)$ and $\left(\mathcal{H}_{\mathcal{P P}}\right.$, 名）are two associative，unitary algebras，sharing the same unit 1 ，which is the empty plane poset．Moreover，they are both graded by the cardinality of the plane posets．They are free algebras，as implied that the following theorem：

Theorem 6 1．（a）Let P be a nonempty plane poset．We shall say that P is h－irreducible if for all $Q, \in \mathcal{P} \mathcal{P}, P=Q R$ implies that $Q=1$ or $R=1$ ．
(b) Any plane poset P can be uniquely written as $P=P_{1} \ldots P_{k}$, where P_{1}, \ldots, P_{k} are h-irreducible. We shall say that P_{1}, \ldots, P_{k} are the h-irreducible components of P.
2. (a) Let P be a nonempty plane poset. We shall say that P is r-irreducible if for all $Q, \in \mathcal{P} \mathcal{P}, P=Q$ 々 R implies that $Q=1$ or $R=1$.
(b) Any plane poset P can be uniquely written as $P=P_{1} \not \ldots \ldots P_{k}$, where P_{1}, \ldots, P_{k} are r-irreducible. We shall say that P_{1}, \ldots, P_{k} are the r-irreducible components of P.

Remark. The Hasse graphs of the h-irreducible components of H are the connected components of the Hasse graph of $\left(P, \leq_{h}\right)$, whereas the Hasse graphs of the r-irreducible components of H are the connected components of the Hasse graph of $\left(P, \leq_{r}\right)$.

Definition 7 Let $P=\left(P, \leq_{h}, \leq_{r}\right)$ be a plane poset, and let $I \subseteq P$.

1. We shall say that I is a h-ideal of P, if, for all $x, y \in P$:

$$
\left(x \in I, x \leq_{h} y\right) \Longrightarrow(y \in I)
$$

2. We shall say that I is a r-ideal of P, if, for all $x, y \in P$:

$$
\left(x \in I, x \leq_{r} y\right) \Longrightarrow(y \in I)
$$

3. We shall say that I is a biideal of P if it both an h-ideal and a r-ideal. Equivalently, I is a biideal of P if, for all $x, y \in P$:

$$
(x \in I, x \leq y) \Longrightarrow(y \in I)
$$

The following proposition is proved in [2] (proposition 29):

Proposition $8 \mathcal{H}_{\mathcal{P P}}$ is given a coassociative, counitary coproduct in the following way: for any plane poset P,

$$
\Delta(P)=\sum_{I \text { h-ideal of } P}(P \backslash I) \otimes I
$$

Moreover, $\left(\mathcal{H}_{\mathcal{P} \mathcal{P}}, m, \Delta\right)$ is a Hopf algebra, and $\left(\mathcal{H}_{\mathcal{P P}}, \sharp, \Delta\right)$ is an infinitesimal Hopf algebra [6], both graded by the cardinality of the plane posets. In other words, using Sweedler's notations $\Delta(x)=\sum x^{(1)} \otimes x^{(2)}$, for all $x, y \in \mathcal{H}_{\mathcal{P P}}$:

$$
\begin{aligned}
\Delta(x y) & =\sum x^{(1)} y^{(1)} \otimes x^{(2)} y^{(2)}, \\
\Delta(x \nsucceq y) & =\sum x \nsucceq y^{(1)} \otimes y^{(2)}+\sum x^{(1)} \otimes x^{(2)} \nless y-x \otimes y .
\end{aligned}
$$

Remarks. The following compatibilities are satisfied:

1. For all $P, Q \in \mathcal{P} \mathcal{P}$:

$$
\left\{\begin{array}{rlrlr}
\iota(P Q) & =\iota(P) \downarrow \iota(Q), & & \iota(P \& Q) & =\iota(P) \iota(Q), \\
\alpha(P Q) & =\alpha(P) \alpha(Q), & & \alpha(P \not Q Q)=\alpha(Q) \downarrow \alpha(P), \\
\beta(P Q) & =\beta(Q) \beta(P), & & \beta(P \downarrow Q)=\beta(P) \downarrow \beta(Q), \\
\gamma(P Q) & =\gamma(Q) \gamma(P), & & \gamma(P \swarrow Q)=\gamma(Q) \downarrow \gamma(P) .
\end{array}\right.
$$

2. Moreover, $\Delta \circ \alpha=(\alpha \otimes \alpha) \circ \Delta^{o p}, \Delta \circ \beta=(\beta \otimes \beta) \circ \Delta$, and $\Delta \circ \gamma=(\gamma \otimes \gamma) \circ \Delta^{o p}$.

1.3 Pairings

We also defined two pairings on $\mathcal{H}_{\mathcal{P} \mathcal{P}}$, using the notion of pictures:
Definition 9 Let P, Q be two elements of $\mathcal{P} \mathcal{P}$.

1. We denote by $S(P, Q)$ the set of bijections $\sigma: P \longrightarrow Q$ such that, for all $i, j \in P$:

- $\left(i \leq_{h} j\right.$ in $\left.P\right) \Longrightarrow\left(\sigma(i) \leq_{r} \sigma(j)\right.$ in $\left.Q\right)$.
- $\left(\sigma(i) \leq_{h} \sigma(j)\right.$ in $\left.Q\right) \Longrightarrow\left(i \leq_{r} j\right.$ in $\left.P\right)$.

2. We denote by $S^{\prime}(P, Q)$ the set of bijections $\sigma: P \longrightarrow Q$ such that, for all $i, j \in P$:

- $\left(i \leq_{h} j\right.$ in $\left.P\right) \Longrightarrow(\sigma(i) \leq \sigma(j)$ in $Q)$.
- $\left(\sigma(i) \leq_{h} \sigma(j)\right.$ in $\left.Q\right) \Longrightarrow(i \leq j$ in $P)$.

The following theorem is proved in $[2,3,8]$:
Theorem 10 We define two pairings $\langle-,-\rangle$ and $\langle-,-\rangle^{\prime}: \mathcal{H}_{\mathcal{P} \mathcal{P}} \otimes \mathcal{H}_{\mathcal{P} \mathcal{P}} \longrightarrow K$ by:

$$
\langle P, Q\rangle=\operatorname{Card}(S(P, Q)),\langle P, Q\rangle^{\prime}=\operatorname{Card}\left(S^{\prime}(P, Q)\right)
$$

for all $P, Q \in \mathcal{P P}$. They are both homogeneous, symmetric Hopf pairings on the Hopf algebra $\mathcal{H}_{\mathcal{P} \mathcal{P}}=\left(\mathcal{H}_{\mathcal{P} \mathcal{P}}, m, \Delta\right)$. They are both nondegenerate.

1.4 Morphism to free quasi-symmetric functions

We here briefly recall the construction of the Hopf algebra FQSym of free quasi-symmetric functions, also called the Malvenuto-Reutenauer Hopf algebra [1, 7]. As a vector space, a basis of FQSym is given by the disjoint union of the symmetric groups \mathfrak{S}_{n}, for all $n \geq 0$. By convention, the unique element of \mathfrak{S}_{0} is denoted by 1. The product of FQSym is given, for $\sigma \in \mathfrak{S}_{k}, \tau \in \mathfrak{S}_{l}$, by:

$$
\sigma \tau=\sum_{\epsilon \in S h(k, l)}(\sigma \otimes \tau) \circ \epsilon
$$

where $S h(k, l)$ is the set of (k, l)-shuffles, that is to say permutations $\epsilon \in \mathfrak{S}_{k+l}$ such that $\epsilon^{-1}(1)<$ $\ldots<\epsilon^{-1}(k)$ and $\epsilon^{-1}(k+1)<\ldots<\epsilon^{-1}(k+l)$. In other words, the product of σ and τ is given by shifting the letters of the word representing τ by k, and then summing all the possible shufflings of this word and of the word representing σ. For example:

$$
\begin{aligned}
(123)(21)= & (12354)+(12534)+(15234)+(51234)+(12543) \\
& +(15243)+(51243)+(15423)+(51423)+(54123)
\end{aligned}
$$

Let $\sigma \in \Sigma_{n}$. For all $0 \leq k \leq n$, there exists a unique triple $\left(\sigma_{1}^{(k)}, \sigma_{2}^{(k)}, \zeta_{k}\right) \in \mathfrak{S}_{k} \times \mathfrak{S}_{n-k} \times$ $S h(k, n-k)$ such that $\sigma=\zeta_{k}^{-1} \circ\left(\sigma_{1}^{(k)} \otimes \sigma_{2}^{(k)}\right)$. The coproduct of FQSym is then defined by:

$$
\Delta(\sigma)=\sum_{k=0}^{n} \sigma_{1}^{(k)} \otimes \sigma_{2}^{(k)}
$$

For example:

$$
\begin{aligned}
\Delta((43125))= & 1 \otimes(43125)+(1) \otimes(3124)+(21) \otimes(123) \\
& +(321) \otimes(12)+(4312) \otimes(1)+(43125) \otimes 1
\end{aligned}
$$

Note that $\sigma_{1}^{(k)}$ and $\sigma_{2}^{(k)}$ are obtained by cutting the word representing σ between the k-th and the $k+1$-th letter, and then standardizing the two obtained words, that is to say applying to their letters the unique increasing bijection to $\{1, \ldots, k\}$ or $\{1, \ldots, n-k\}$. Moreover, FQSym has a nondegenerate, homogeneous, Hopf pairing defined by $\langle\sigma, \tau\rangle=\delta_{\sigma, \tau^{-1}}$ for all permutations σ and τ.

1. Let $P=\left(P, \leq_{h}, \leq_{r}\right)$ a plane poset. Let $x_{1}<\ldots<x_{n}$ be the elements of P, which is totally ordered. A linear extension of P is a permutation $\sigma \in \mathfrak{S}_{n}$ such that, for all $i, j \in\{1, \ldots, n\}$:

$$
\left(x_{i} \leq_{h} x_{j}\right) \Longrightarrow\left(\sigma^{-1}(i)<\sigma^{-1}(j)\right)
$$

The set of linear extension of P will be denoted by S_{P}.
2. The following map is an isomorphism of Hopf algebras:

$$
\Theta:\left\{\begin{array}{rll}
\mathcal{H}_{\mathcal{P} \mathcal{P}} & \longrightarrow & \text { FQSym } \\
P \in \mathcal{P} \mathcal{P} & \longrightarrow \sum_{\sigma \in S_{P}} \sigma .
\end{array}\right.
$$

moreover, for all $x, y \in \mathcal{H}_{\mathcal{P} \mathcal{P}},\langle\Theta(x), \Theta(y)\rangle^{\prime}=\langle x, y\rangle$.

2 Deformation of the products

2.1 Construction

Definition 12 Let $P \in \mathcal{P} \mathcal{P}$ and $X, Y \subseteq P$. We put:

1. $h_{X}^{Y}=\sharp\left\{(x, y) \in X \times Y / x \leq_{h} y\right.$ in $\left.P\right\}$.
2. $r_{X}^{Y}=\sharp\left\{(x, y) \in X \times Y / x \leq_{r} y\right.$ in $\left.P\right\}$.

Proposition 13 Let X and Y be parts of a plane poset P. Then:

$$
h_{X}^{Y}+h_{Y}^{X}+r_{X}^{Y}+r_{Y}^{X}=3|X \cap Y|^{2}+|X||Y|
$$

In particular, if X and Y are disjoint, $h_{X}^{Y}+h_{Y}^{X}+r_{X}^{Y}+r_{Y}^{X}=|X||Y|$.
Proof. If X and Y are disjoint:

$$
h_{X}^{Y}+h_{Y}^{X}+r_{X}^{Y}+r_{Y}^{X}=\sharp\{(x, y) \in X \times Y \mid x<y \text { or } x>y\}=|X \times Y|=|X||Y| .
$$

If $X=Y$, then:

$$
\begin{aligned}
h_{X}^{X}+r_{X}^{X}+h_{X}^{X}+r_{X}^{X} & =\sharp\left\{(x, y) \in X^{2} \mid x \neq y\right\}+4 \sharp\{(x, x) \mid x \in X\} \\
& =(|X|-1)(|X|)+4|X| \\
& =|X|^{2}+3|X| \\
& =|X||X|+3|X \cap X| .
\end{aligned}
$$

In the general case, we put $X^{\prime}=X \backslash(X \cap Y)$ and $Y^{\prime}=Y \backslash(X \cap Y)$. Then:

$$
\begin{aligned}
h_{X}^{Y}+h_{Y}^{X}+r_{X}^{Y}+r_{Y}^{X}= & \left(h_{X \cap Y}^{Y^{\prime}}+h_{Y^{\prime}}^{X \cap Y}+r_{X \cap Y}^{Y^{\prime}}+r_{Y^{\prime}}^{X \cap Y}\right)+\left(h_{X^{\prime}}^{X \cap Y}+h_{X \cap Y}^{X^{\prime}}+r_{X^{\prime}}^{X \cap Y}+r_{X \cap Y}^{X^{\prime}}\right) \\
& +\left(h_{X^{\prime}}^{Y^{\prime}}+h_{Y^{\prime}}^{X^{\prime}}+r_{X^{\prime}}^{Y^{\prime}}+r_{Y^{\prime}}^{X^{\prime}}\right)+\left(h_{X \cap Y}^{X \cap Y}+h_{X \cap Y}^{X \cap Y}+r_{X \cap Y}^{X \cap Y}+r_{X \cap Y}^{X \cap Y}\right) \\
= & \left|Y^{\prime}\right||X \cap Y|+\left|X^{\prime}\right||X \cap Y|+\left|X^{\prime}\right|\left|Y^{\prime}\right|+|X \cap Y|^{2}+3|X \cap Y| \\
= & \left(\left|X^{\prime}\right|+|X \cap Y|\right)\left(\left|Y^{\prime}\right|+|X \cap Y|\right)+3|X \cap Y| \\
= & |X||Y|+3|X \cap Y| .
\end{aligned}
$$

So the formula holds for any $X, Y \subseteq P$.

Theorem 14 Let $q=\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \in K^{4}$. We consider the following map:

$$
m_{q}:\left\{\begin{array}{rlc}
\mathcal{H}_{\mathcal{P P}} \otimes \mathcal{H}_{\mathcal{P P}} & \longrightarrow & \mathcal{H}_{\mathcal{P} \mathcal{P}} \\
P \otimes Q & \longrightarrow & \sum_{\substack{(R, I) \in \mathcal{P} \mathcal{P}^{2} \\
I \subseteq R, R \backslash I=P, I=Q}} q_{1}^{h_{R \backslash I}^{I}} q_{2}^{h_{I}^{R \backslash I}} q_{3}^{r_{R \backslash I}^{I}} q_{4}^{r_{I}^{R \backslash I}} R, \\
& &
\end{array}\right.
$$

where $P, Q \in \mathcal{P P}$. Then $\left(\mathcal{H}_{\mathcal{P} \mathcal{P}}, m_{q}\right)$ is an associative algebra, and its unit is the empty plane poset 1.

Proof. Let $P, Q, R \in \mathcal{P} \mathcal{P}$. We put:

$$
\left\{\begin{array}{l}
P_{1}=\left(m_{q} \otimes I d\right) \circ m_{q}(P \otimes Q \otimes R) \\
P_{2}=\left(I d \otimes m_{q}\right) \circ m_{q}(P \otimes Q \otimes R)
\end{array}\right.
$$

Then:

$$
\left\{\begin{aligned}
P_{1}= & \sum_{\left(R_{1}, I_{1}, R_{2}, I_{2}\right) \in E_{1}} q_{1}^{h_{R_{1} \backslash I_{1}}^{I_{1}}+h_{R_{2} \backslash I_{2}}^{I_{2}}} q_{2}^{h_{I_{1}}^{R_{1} \backslash I_{1}}+h_{I_{2}}^{R_{2} \backslash I_{2}}} q_{3}^{r_{R_{1} \backslash I_{1}}^{I_{1}}+r_{R_{2} \backslash I_{2}}^{I_{2}}} q_{4}^{r_{I_{1} \backslash I_{1}}^{R_{1}}+r_{I_{2}}^{R_{2} \backslash I_{2}}} R_{2}, \\
P_{2}= & \sum_{\left(R_{1}, I_{1}, R_{2}, I_{2}\right) \in E_{2}} q_{1}^{h_{R_{1} \backslash I_{1}}^{I_{1}}+h_{R_{2} \backslash I_{2}}^{I_{2}}} q_{2}^{h_{I_{1} \backslash \backslash I_{1}}^{R_{1}}+h_{I_{2}}^{R_{2} \backslash I_{2}}} q_{3}^{r_{R_{1} \backslash I_{1}}^{I_{1}}+r_{R_{2} \backslash I_{2}}^{I_{2}}} q_{4}^{r_{I_{1}}^{R_{1} \backslash I_{1}}+r_{I_{2}}^{R_{2} \backslash I_{2}}} R_{2},
\end{aligned}\right.
$$

With:

$$
\begin{aligned}
& E_{1}=\left\{\left(R_{1}, I_{1}, R_{2}, I_{2}\right) \in \mathcal{P} \mathcal{P}^{4} / I_{1} \subseteq R_{1}, I_{1}=Q, R_{1} \backslash I_{1}=P, I_{2} \subseteq R_{2}, I_{2}=R, R_{2} \backslash I_{2}=R_{1}\right\} \\
& E_{2}=\left\{\left(R_{1}, I_{1}, R_{2}, I_{2}\right) \in \mathcal{P} \mathcal{P}^{4} / I_{1} \subseteq R_{1}, I_{1}=R, R_{1} \backslash I_{1}=Q, I_{2} \subseteq R_{2}, I_{2}=R_{1}, R_{2} \backslash I_{2}=P\right\}
\end{aligned}
$$

We shall also consider:

$$
E=\left\{\left(R, J_{1}, J_{2}, J_{3}\right) \in \mathcal{P} \mathcal{P}^{4} / R=J_{1} \sqcup J_{2} \sqcup J_{3}, J_{1}=P, J_{2}=Q, J_{3}=R\right\}
$$

First step. Let us consider the following maps:

$$
\begin{aligned}
& \phi:\left\{\begin{array}{rll}
E_{1} & \longrightarrow & E \\
\left(R_{1}, I_{1}, R_{2}, I_{2}\right) & \longrightarrow & \left(R_{2}, R_{1} \backslash I_{1}, I_{1}, I_{2}\right),
\end{array}\right. \\
& \phi^{\prime}:\left\{\begin{array}{rll}
E & \longrightarrow & E_{1} \\
\left(R, J_{1}, J_{2}, J_{3}\right) & \longrightarrow & \left(J_{1} \sqcup J_{2}, J_{2}, R, J_{3}\right) .
\end{array}\right.
\end{aligned}
$$

By definition of E and E_{1}, these maps are well-defined, and a simple computation shows that they are inverse bijections. Let $\left(R_{1}, I_{1}, R_{2}, I_{2}\right) \in E_{1}$. We put $\phi\left(R_{1}, I_{1}, R_{2}, I_{2}\right)=\left(R, J_{1}, J_{2}, J_{3}\right)$. Then:

$$
h_{R_{1} \backslash I_{1}}^{I_{1}}+h_{R_{2} \backslash I_{2}}^{I_{2}}=h_{J_{1}}^{J_{2}}+h_{J_{1} \sqcup J_{2}}^{J_{3}}=h_{J_{1}}^{J_{2}}+h_{J_{1}}^{J_{3}}+h_{J_{2}}^{J_{3}} .
$$

Similar computations finally give:

$$
P_{1}=\sum_{\left(R, J_{1}, J_{2}, J_{3}\right) \in E} q_{1}^{h_{J_{1}}^{J_{2}}+h_{J_{1}}^{J_{3}}+h_{J_{2}}^{J_{3}}} q_{2}^{h_{J_{2}}^{J_{1}}+h_{J_{3}}^{J_{1}}+h_{J_{3}}^{J_{2}}} q_{3}^{r_{J_{1}}^{J_{2}}+r_{J_{1}}^{J_{3}}+r_{J_{2}}^{J_{3}}} q_{4}^{r_{J_{2}}^{J_{1}}+r_{J_{3}}^{J_{1}}+r_{J_{3}}^{J_{2}}} R .
$$

Second step. Let us consider the following maps:

$$
\begin{aligned}
\psi & :\left\{\begin{array}{rll}
E_{2} & \longrightarrow & E \\
\left(R_{1}, I_{1}, R_{2}, I_{2}\right) & \longrightarrow & \left(R_{2}, R_{1} \backslash R_{1}, R_{1} \backslash I_{1}, I_{1}\right),
\end{array}\right. \\
\psi^{\prime} & :\left\{\begin{aligned}
& E \longrightarrow \\
&\left(R, J_{1}, J_{2}, J_{3}\right) \longrightarrow \\
&\left(J_{2} \sqcup J_{3}, J_{3}, R, J_{2} \sqcup J_{3}\right) .
\end{aligned}\right.
\end{aligned}
$$

By definition of E and E_{2}, these maps are well-defined, and a simple computation shows that they are inverse bijections. Let $\left(R_{1}, I_{1}, R_{2}, I_{2}\right) \in E_{2}$. We put $\psi\left(R_{1}, I_{1}, R_{2}, I_{2}\right)=\left(R, J_{1}, J_{2}, J_{3}\right)$. Then:

$$
h_{R_{1} \backslash I_{1}}^{I_{1}}+h_{R_{2} \backslash I_{2}}^{I_{2}}=h_{J_{2}}^{J_{3}}+h_{J_{1}}^{J_{2} \sqcup J_{3}}=h_{J_{1}}^{J_{2}}+h_{J_{1}}^{J_{3}}+h_{J_{2}}^{J_{3}} .
$$

Similar computations finally give:

$$
P_{2}=\sum_{\left(R, J_{1}, J_{2}, J_{3}\right) \in E} q_{1}^{h_{1}^{J_{1}}+h_{J_{1}}^{J_{3}}+h_{J_{2}}^{J_{3}}} q_{2}^{h_{J_{2}}^{J_{1}}+h_{J_{3}}^{J_{1}}+h_{J_{3}}^{J_{2}}} q_{3}^{r_{J_{1}}^{J_{2}}+r_{J_{1}}^{J_{3}}+r_{J_{2}}^{J_{3}}} q_{4}^{r_{J_{2}}^{J_{1}}+r_{J_{3}}^{J_{1}}+r_{J_{3}}^{J_{2}}} R .
$$

So m_{q} is associative.
Last step. Let $P \in \mathcal{P P}$. Then:

$$
P .1=\sum_{\substack{(R, I) \in \mathcal{P} \mathcal{P}^{2} \\ I \subseteq R, R \backslash I=P, I=1}} q_{1}^{h_{R_{I}}^{I}} q_{2}^{h_{I}^{R \backslash I}} q_{3}^{r_{R \backslash I}^{I}} q_{4}^{r_{I}^{R \backslash I}} R=q_{1}^{h_{P}^{1}} q_{2}^{h_{1}^{P}} q_{3}^{r_{P}^{1}} q_{4}^{r_{1}^{P}} P=P .
$$

Similarly, for all $Q \in \mathcal{P} \mathcal{P}, 1 . Q=Q$.

Examples.

$$
\begin{aligned}
& m_{q}(\cdot \otimes \cdot)=q_{3} q_{4} \cdot \cdot+q_{1} q_{2}!, \\
& m_{q}(\cdot \otimes \mathfrak{l})=q_{3}^{2} \cdot \mathbf{:}+q_{4}^{2} \mathfrak{\mathfrak { C }}+q_{2}\left(q_{3}+q_{4}\right) \boldsymbol{V}+q_{1}\left(q_{3}+q_{4}\right) \boldsymbol{\Lambda}+\left(q_{1}^{2}+q_{1} q_{2}+q_{2}^{2}\right) \mathfrak{!}, \\
& m_{q}(\cdot \otimes \ldots)=q_{1}^{2} \boldsymbol{V}+q_{2}^{2} \boldsymbol{\wedge}+\left(q_{1}+q_{2}\right) q_{4} \cdot \mathbf{l}+\left(q_{1}+q_{2}\right) q_{3} \mathbf{t} \cdot+\left(q_{3}^{2}+q_{3} q_{4}+q_{4}^{2}\right) \ldots, \\
& m_{q}(\mathfrak{t} \otimes \cdot)=q_{3}^{2} \cdot \mathbf{:}+q_{4}^{2} \mathfrak{t}+q_{1}\left(q_{3}+q_{4}\right) \boldsymbol{V}+q_{2}\left(q_{3}+q_{4}\right) \AA+\left(q_{1}^{2}+q_{1} q_{2}+q_{2}^{2}\right)!, \\
& m_{q}(\boldsymbol{\bullet} \otimes \cdot)=q_{2}^{2} \boldsymbol{V}+q_{1}^{2} \boldsymbol{\Lambda}+\left(q_{1}+q_{2}\right) q_{4} \cdot \mathbf{I}+\left(q_{1}+q_{2}\right) q_{3} \mathbf{t} \cdot+\left(q_{3}^{2}+q_{3} q_{4}+q_{4}^{2}\right) \ldots .
\end{aligned}
$$

Proposition $15 \operatorname{Let}\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \in K^{4}$. Then:

$$
\left\{\begin{aligned}
m_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)}^{o p} & =m_{\left(q_{2}, q_{1}, q_{4}, q_{3}\right)}, \\
m_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} \circ(\iota \otimes \iota) & =\iota m_{\left(q_{3}, q_{4}, q_{1}, q_{2}\right)}, \\
m_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} \circ(\alpha \otimes \alpha) & =\alpha \circ m_{\left(q_{2}, q_{1}, q_{3}, q_{4}\right)}, \\
m_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} \circ(\beta \otimes \beta) & =\beta \circ m_{\left(q_{1}, q_{2}, q_{4}, q_{3}\right)}, \\
m_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} \circ(\gamma \otimes \gamma) & =\gamma \circ m_{\left(q_{2}, q_{1}, q_{4}, q_{3}\right)} .
\end{aligned}\right.
$$

Proof. Immediate.

2.2 Particular cases

Lemma 16 Let $P \in \mathcal{P P}$ and $X \subseteq P$.

1. X is an h-ideal of P if, and only if, $h_{X}^{P \backslash X}=0$.
2. X is a r-ideal of P if, and only if, $r_{X}^{P \backslash X}=0$.
3. The h-irreducible components of P are the h-irreducible components of X and $P \backslash X$ if, and only if, $h_{P \backslash X}^{X}=h_{X}^{P \backslash X}=0$.
4. The r-irreducible components of P are the r-irreducible components of X and $P \backslash X$ if, and only if, $r_{P \backslash X}^{X}=r_{X}^{P \backslash X}=0$.

5．$P=X(P \backslash X)$ if，and only if，$h_{P \backslash X}^{X}=h_{X}^{P \backslash X}=r_{P \backslash X}^{X}=0$ ．
6．$P=X \notin(P \backslash X)$ if，and only if，$r_{P \backslash X}^{X}=r_{X}^{P \backslash X}=h_{P \backslash X}^{X}=0$ ．
Proof．We give the proofs of points 1,3 and 5 ．The others are similar．
1．\Longleftarrow ．Let $x \in X, y \in P$ ，such that $x \leq_{h} y$ ．As $h_{X}^{P \backslash X}=0, y \notin P \backslash X$ ，so $y \in X: X$ is an h－ideal．
\Longrightarrow ．Then，for all $x \in X, y \in P \backslash X, x \leq_{h} y$ is not possible．So $h_{X}^{P \backslash X}=0$ ．
3．\Longrightarrow ．Let us put $P=P_{1} \ldots P_{k}$ ，where P_{1}, \ldots, P_{k} are the h－irreducible components of P ． By hypothesis，X is the disjoint union of certain P_{i}＇s，and $P \backslash X$ is the disjoint union of the other P_{i}＇s．So $h_{P \backslash X}^{X}=h_{X}^{P \backslash X}=0$ ．
\Longleftarrow ．Let I be a h－irreducible component of P ．If $I \cap X$ and $I \cap(P \backslash X)$ ，then for any $x \in I \cap X$ and any $y \in I \cap(P \backslash X), x$ and y are not comparable for \leq_{h} ：contradiction．So I is included in I or in $P \backslash X$ ，so is a h－irreducible component of X or $P \backslash X$ ．

5．\Longrightarrow ．If $x \in X$ and $y \in P \backslash X$ ，then $x<_{r} y$ ，so $h_{P \backslash X}^{X}=h_{X}^{P \backslash X}=r_{P \backslash X}^{X}=0$ ．
\Longleftarrow ．If $x \in X$ and $y \in P \backslash X$ ，by hypothesis we do not have $x<_{h} y, x>_{h} y$ nor $x>_{r} y$ ，so $x<_{r} y$ ．Hence，$P=X(P \backslash X)$ ．

Proposition 17 1．Let us assume that $q_{3}=q_{4}=0$ ．Let $P=P_{1} \not \ldots$ ．P_{k} and $P^{\prime}=$ $P_{k+1} \downarrow \ldots \& P_{k+l}$ be two plane posets，decomposed into their r－connected components．Then：

$$
m_{q}\left(P \otimes P^{\prime}\right)=\sum_{\sigma \in S h(k, l)} \prod_{1 \leq i \leq k<j \leq k+l} Q_{i, j}(\sigma)^{\left|P_{i}\right|\left|P_{j}\right|} P_{\sigma^{-1}(1)} \ldots k P_{\sigma^{-1}(k+l)},
$$

where $Q_{i, j}(\sigma)=q_{1}$ if $\sigma(i)<\sigma(j)$ and q_{2} if $\sigma(i)>\sigma(j)$ ．
2．Let us assume that $q_{1}=q_{2}=0$ ．Let $P=P_{1} \ldots P_{k}$ and $P^{\prime}=P_{k+1} \ldots P_{k+l}$ be two plane posets，decomposed into their r－connected components．Then：

$$
m_{q}\left(P \otimes P^{\prime}\right)=\sum_{\sigma \in S h(k, l)} \prod_{1 \leq i \leq k<j \leq k+l} Q_{i, j}^{\prime}(\sigma)^{\left|P_{i}\right|\left|P_{j}\right|} P_{\sigma^{-1}(1)} \ldots P_{\sigma^{-1}(k+l)},
$$

where $Q_{i, j}^{\prime}(\sigma)=q_{3}$ if $\sigma(i)<\sigma(j)$ and q_{4} if $\sigma(i)>\sigma(j)$ ．
Proof．Let us prove the first point．The proof of the second point is similar．Let us consider a plane poset R such that the coefficient of R in $m_{q}\left(P \otimes P^{\prime}\right)$ is not zero．So there exists $I \subseteq R$ such that $R \backslash I=P$ and $I=P^{\prime}$ ．Moreover，as $q_{3}=q_{4}=0, r_{R \backslash I}^{I}=r_{I}^{R \backslash I}=0$ ．By lemma 16－4，the r－connected components of R are the r－components of $R \backslash I$ and I ．As a consequence， there exists a (k, l)－shuffle σ ，such that $R=P_{\sigma^{-1}(1)} \neq \ldots$ 文 $P_{\sigma^{-1}(k+l)}$ ．Then $h_{R \backslash I}^{I}$ is the sum of $\left|P_{i}\right|\left|P_{j}\right|$ ，where $1 \leq i \leq k<j \leq k+l$ ，such that $\sigma(i)<\sigma(j) ; h_{I}^{R \backslash I}$ is the sum of $\left|P_{i}\right|\left|P_{j}\right|$ ，where $1 \leq i \leq k<j \leq k+l$ ，such that $\sigma(i)>\sigma(j)$ ．This immediately implies the announced result．

Remarks．

1．The first point implies that：

- $m_{\left(q_{1}, 0,0,0\right)}\left(P \otimes P^{\prime}\right)=q_{1}^{|P|\left|P^{\prime}\right|} P$ 々 P^{\prime} ．In particular，$m_{(1,0,0,0)}=$ 々．
- $m_{\left(0, q_{2}, 0,0\right)}\left(P \otimes P^{\prime}\right)=q_{2}^{\left|P \| P^{\prime}\right|} P^{\prime}$ 居．In particular，$m_{(0,1,0,0)}=\dot{\psi}^{o p}$ ．
－$m_{\left(0,0, q_{3}, 0\right)}\left(P \otimes P^{\prime}\right)=q_{3}^{|P|\left|P^{\prime}\right|} P P^{\prime}$ ．In particular，$m_{(1,0,0,0)}=m$ ．
- $m_{\left(0,0,0, q_{4}\right)}\left(P \otimes P^{\prime}\right)=q_{4}^{\left|P \| P^{\prime}\right|} P^{\prime} P$. In particular, $m_{(1,0,0,0)}=m^{o p}$.

2. It is possible to define m_{q} on the space of double posets $\mathcal{H}_{\mathcal{P} \mathcal{P}}$. The same arguments prove that m_{q} is still associative. However, $m_{(1,0,0,0)}$ is not equal to $\left\{\right.$ on $\mathcal{H}_{\mathcal{P P}}$ and $m_{(0,0,1,0)}$ is not equal to m; for example, $m_{(1,0,0,0)}(\cdot \otimes \cdot)=1+2 \wp_{2}$ and $m_{(0,0,1,0)}(\cdot \otimes \cdot)=\ldots+2 \wp_{2}$, where \wp_{2} is the double poset with two elements x, y, with x and y not comparable for \leq_{h} and \leq_{r}.

2.3 Subalgebras and quotients

These two particular families of plane posets are used in [2, 3]:
Definition 18 Let $P \in \mathcal{P} \mathcal{P}$.

1. We shall say that P is a plane forest if it does not contain \therefore as a plane subposet. The set of plane forests is denoted by $\mathcal{P \mathcal { F }}$.
2. We shall say that P is WN ("without N ") if it does not contain \cup nor \mathbb{N}. The set of $W N$ posets is denoted by $\mathcal{W N} \mathcal{P}$.

Examples. A plane poset is a plane forest if, and only if, its Hasse graph is a rooted forest.

$$
\begin{aligned}
& \mathcal{P F}(0)=\{1\}, \\
& \mathcal{P F}(1)=\{\cdot\}, \\
& \mathcal{P F}(2)=\{\ldots, \mathfrak{l}\}, \\
& \mathcal{P F}(3)=\{\ldots, .!,!., \vee,!\}, \\
& \mathcal{P F}(4)=\{\ldots, \ldots \downarrow, \ldots, \downarrow \ldots, \downarrow, \vee, . \mathfrak{\downarrow}, \mathfrak{\downarrow}, \mathfrak{\downarrow}, \boldsymbol{\vee}, \downarrow, \vee, \cup, \downarrow\}, \\
& \mathcal{W N P}(0)=\{1\}, \\
& \mathcal{W N P}(1)=\{\cdot\}, \\
& \mathcal{W N P}(2)=\{\ldots,!\}, \\
& \mathcal{W N} \mathcal{P}(3)=\{\ldots, .!,!., \vee,!, \AA\},
\end{aligned}
$$

Definition 19 We denote by:

- $\mathcal{H}_{\mathcal{W N}}$ the subspace of $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ generated by WN plane posets.
- $\mathcal{H}_{\mathcal{P} \mathcal{F}}$ the subspace of $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ generated by plane forests.
- $I_{\mathcal{W N P}}$ the subspace of $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ generated by plane posets that are not $W N$.
- $I_{\mathcal{P} \mathcal{F}}$ the subspace of $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ generated by plane posets that are not plane forests.

Note that $\mathcal{H}_{\mathcal{W N P}}$ and $\mathcal{H}_{\mathcal{P F}}$ are naturally identified with $\mathcal{H}_{\mathcal{P P}} / I_{\mathcal{W N P}}$ and $\mathcal{H}_{\mathcal{P P}} / I_{\mathcal{P F}}$.
Proposition 20 Let $q=\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \in K^{4}$.

1. $\mathcal{H}_{\mathcal{W N P}}$ is a subalgebra of $\left(\mathcal{H}_{\mathcal{P P}}, m_{q}\right)$ if and only if, $q_{1}=q_{2}=0$ or $q_{3}=q_{4}=0$.
2. $\mathcal{H}_{\mathcal{P F}}$ is a subalgebra of $\left(\mathcal{H}_{\mathcal{P P}}, m_{q}\right)$ if and only if, $q_{1}=q_{2}=0$.
3. $I_{\mathcal{W N P}}$ and $I_{\mathcal{P F}}$ are ideals of $\left(\mathcal{H}_{\mathcal{P P}}, m_{q}\right)$.

Proof. 1. \Longleftarrow. We use the notations of proposition 17-1. If $q_{3}=q_{4}=0$, let us consider two WN posets P and P^{\prime}. then the P_{i} 's are also WN, so for any $\sigma \in \mathfrak{S}_{k+l}, P_{\sigma^{-1}(1)} \downarrow \ldots \downarrow P_{\sigma^{-1}(k+l)}$ is WN. As a conclusion, $m_{q}\left(P \otimes P^{\prime}\right) \in \mathcal{H}_{\mathcal{W N P}}$. The proof is similar if $q_{1}=q_{2}=0$, using proposition 17-2.

1. \Longrightarrow. Let us consider the coefficients of \mathfrak{U} and \mathbb{N} in certain products. We obtain:

	\mathfrak{U}	N
$m_{q}(\Omega \otimes)$.	$q_{1} q_{3}^{2}$	$q_{1} q_{4}^{2}$
$m_{q}(\cdot \otimes \AA)$	$q_{2} q_{4}^{2}$	$q_{2} q_{3}^{2}$.

If $\mathcal{H}_{\mathcal{W N P}}$ is a subalgebra of $\left(\mathcal{H}_{\mathcal{P P}}, m_{q}\right)$, then these four coefficients are zero, so, from the first row, $q_{1}=0$ or $q_{3}=q_{4}=0$ and from the second row, $q_{2}=0$ or $q_{3}=q_{4}=0$. As a conclusion, $q_{1}=q_{2}=0$ or $q_{3}=q_{4}=0$.
$2 . \Longleftarrow$. We use the notations of proposition 17-2. If $q_{1}=q_{2}=0$, let us consider two plane forests P and P^{\prime}. Then the P_{i} 's are plane trees, so for any $\sigma \in \mathfrak{S}_{k+l}, P_{\sigma^{-1}(1)} \neq \ldots$ i $P_{\sigma^{-1}(k+l)}$ is a plane forest. As a conclusion, $m_{q}\left(P \otimes P^{\prime}\right) \in \mathcal{H}_{\mathcal{P F}}$.
$2 . \Longrightarrow$. Let us consider the coefficients of Λ in certain products. We obtain:

$$
\begin{array}{c|c}
& \AA \\
\hline m_{q}(\cdot \otimes \boldsymbol{.}) & q_{2}^{2} \\
\hline m_{q}(\ldots \otimes \cdot) & q_{1}^{2} .
\end{array}
$$

If $\mathcal{H}_{\mathcal{P F}}$ is a subalgebra of $\left(\mathcal{H}_{\mathcal{P} \mathcal{P}}, m_{q}\right)$, then $q_{1}=q_{2}=0$.
3. Let P and P^{\prime} be two plane posets such that P or P^{\prime} is not WN. Let us consider a plane poset R such that the coefficient of R in $m_{q}\left(P \otimes P^{\prime}\right)$ is not zero. There exists $I \subseteq R$, such that $R \backslash I=P$ and $I=P^{\prime}$. As P or P^{\prime} is not WN, I or $R \backslash I$ contains \cup or \mathbb{N}, so R contains U or $\mathrm{N}: R$ is not WN. So $m_{q}\left(P \otimes P^{\prime}\right) \subseteq I_{\mathcal{W N P}}$. The proof is similar for $I_{\mathcal{P} \mathcal{F}}$, using Λ instead of M and N.

3 Dual coproducts

3.1 Constructions

Dually, we give $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ a family of coproducts Δ_{q}, for $q \in K^{4}$, defined for all $P \in \mathcal{P} \mathcal{P}$ by:

$$
\Delta_{q}(P)=\sum_{I \subseteq P} q_{1}^{h_{P \backslash I}^{I}} q_{2}^{h_{I}^{P \backslash I}} q_{3}^{r_{P \backslash I}^{I}} q_{4}^{r_{I}^{P \backslash I}}(P \backslash I) \otimes I .
$$

These coproducts are coassociative; their common counit is given by:

$$
\varepsilon:\left\{\begin{array}{rll}
\mathcal{H}_{\mathcal{P} \mathcal{P}} & \longrightarrow & K \\
P \in \mathcal{P P} & \longrightarrow & \delta_{1, P} .
\end{array}\right.
$$

Examples. We put, for all $P \in \mathcal{P} \mathcal{P}$, nonempty, $\tilde{\Delta}_{q}(P)=\Delta(P)-P \otimes 1-1 \otimes P$.

$$
\begin{aligned}
& \tilde{\Delta}_{q}(\mathfrak{r})=\left(q_{1}+q_{2}\right) \cdot \otimes \cdot, \\
& \tilde{\Delta}_{q}(\boldsymbol{\bullet})=\left(q_{3}+q_{4}\right) \otimes \boldsymbol{.}, \\
& \tilde{\Delta}(\mathfrak{t})=\left(q_{1}^{2}+q_{1} q_{2}+q_{2}^{2}\right) \cdot \otimes \mathfrak{I}+\left(q_{1}^{2}+q_{1} q_{2}+q_{2}^{2}\right) \mathbf{!} \otimes ., \\
& \tilde{\Delta}(\boldsymbol{V})=q_{2}\left(q_{3}+q_{4}\right) \cdot \otimes \mathfrak{I}+q_{1}\left(q_{3}+q_{4}\right): \otimes \cdot+q_{1}^{2} \cdot \otimes \boldsymbol{\cdot}+q_{2}^{2} \cdot \cdot \otimes \boldsymbol{\bullet}, \\
& \tilde{\Delta}(\boldsymbol{\Lambda})=q_{1}\left(q_{3}+q_{4}\right) \cdot \otimes \mathbf{I}+q_{2}\left(q_{3}+q_{4}\right) \mathbf{I} \otimes \cdot+q_{2}^{2} \cdot \otimes \boldsymbol{\cdot}+q_{1}^{2} \cdot \cdot \otimes \boldsymbol{\bullet}, \\
& \tilde{\Delta}(\mathfrak{l} \cdot)=q_{4}^{2} \cdot \otimes \mathfrak{l}+q_{3}^{2} \mathbf{t} \otimes \cdot+\left(q_{1}+q_{2}\right) q_{3} \cdot \otimes \cdot \boldsymbol{\bullet}+\left(q_{1}+q_{2}\right) q_{4} \cdot \cdot \otimes \cdot, \\
& \tilde{\Delta}(\cdot \mathbf{!})=q_{3}^{2} \cdot \otimes \mathfrak{I}+q_{4}^{2} \mathbf{t} \otimes \cdot+\left(q_{1}+q_{2}\right) q_{4} \cdot \otimes . .+\left(q_{1}+q_{2}\right) q_{3} \cdot \cdot \otimes ., \\
& \tilde{\Delta}(\ldots)=\left(q_{3}^{2}+q_{3} q_{4}+q_{4}^{2}\right) \cdot \otimes \boldsymbol{\cdot}+\left(q_{3}^{2}+q_{3} q_{4}+q_{4}^{2}\right) \cdot \boldsymbol{\bullet} \otimes .
\end{aligned}
$$

Dualizing proposition 15 :
Proposition 21 Let $\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \in K^{4}$. Then:

$$
\left\{\begin{aligned}
\Delta_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)}^{o p} & =\Delta_{\left(q_{2}, q_{1}, q_{4}, q_{3}\right)}, \\
(\iota \otimes \iota) \circ \Delta_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} & =\Delta_{\left(q_{3}, q_{4}, q_{1}, q_{2}\right)} \circ \iota, \\
(\alpha \otimes \alpha) \circ \Delta_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} & =\Delta_{\left(q_{2}, q_{1}, q_{3}, q_{4}\right)} \circ \alpha, \\
(\beta \otimes \beta) \circ \Delta_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} & =\Delta_{\left(q_{1}, q_{2}, q_{4}, q_{3}\right)} \circ \beta, \\
(\gamma \otimes \gamma) \circ \Delta_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} & =\Delta_{\left(q_{2}, q_{1}, q_{4}, q_{3}\right)} \circ \gamma .
\end{aligned}\right.
$$

3.2 Particular cases

Proposition 22 Let $P \in \mathcal{P P}$. Then:

1. $\Delta_{(q, q, q, q)}(P)=\sum_{I \subseteq P} q^{|P \backslash I| I I \mid}(P \backslash I) \otimes I$.
2.

$$
\left\{\begin{aligned}
\Delta_{\left(0, q_{2}, q_{3}, q_{4}\right)}(P)= & \sum_{I \text { h-ideal of } P} q_{2}^{h_{P \backslash I}^{I}} q_{3}^{r_{I}^{P \backslash I}} q_{P}^{r_{P \backslash I}^{I}} I \otimes(P \backslash I), \\
\Delta_{\left(q_{1}, 0, q_{3}, q_{4}\right)}(P)= & \sum_{I \text { h-ideal of } P} q_{1}^{h_{P \backslash I}^{I}} q_{4}^{r_{I}^{P \backslash I}} q_{3}^{r_{P \backslash I}^{I}}(P \backslash I) \otimes I .
\end{aligned}\right.
$$

3.

$$
\left\{\begin{aligned}
\Delta_{\left(q_{1}, q_{2}, 0, q_{4}\right)}(P) & =\sum_{I r \text {-ideal of } P} q_{1}^{h_{I}^{P \backslash I}} q_{2}^{h_{P \backslash I}^{I}} q_{4}^{r_{P \backslash I}^{I}} I \otimes(P \backslash I), \\
\Delta_{\left(q_{1}, q_{2}, q_{3}, 0\right)}(P) & =\sum_{I r \text {-ideal of } P} q_{2}^{h_{I}^{P \backslash I}} q_{1}^{h_{P \backslash I}^{I}} q_{3}^{r_{P \backslash I}^{I}}(P \backslash I) \otimes I .
\end{aligned}\right.
$$

4.

$$
\left\{\begin{aligned}
\Delta_{\left(0, q_{2}, 0, q_{4}\right)}(P) & =\sum_{I \text { bideal of } P} q_{2}^{h_{P \backslash I}^{I}} q_{4}^{q_{P \backslash I}^{I}} I \otimes(P \backslash I), \\
\Delta_{\left(q_{1}, 0, q_{3}, 0\right)}(P) & =\sum_{I \text { bideal of } P} q_{1}^{h_{P \backslash I}^{I}} q_{3}^{q_{P \backslash I}^{I}}(P \backslash I) \otimes I .
\end{aligned}\right.
$$

5. If $P=P_{1} \cdots P_{k}$, where the P_{i} 's are h-connected,

$$
\Delta_{\left(0,0, q_{3}, q_{4}\right)}(P)=\sum_{I \subseteq\{1, \cdots, k\}} q_{3}^{\alpha_{P}(I)} q_{4}^{\alpha_{P}(\{1, \ldots, k\} \backslash I)} P_{I} \otimes P_{\{1, \cdots, k\} \backslash I},
$$

with, for all $J=\left\{j_{1}, \cdots, j_{l}\right\}, 1 \leq j_{1}<\cdots<j_{l} \leq k, P_{J}=P_{j_{1}} \cdots P_{j_{l}}$, and $\alpha_{P}(J)=$ $\sum_{i \in J, j \notin J, i<j}\left|P_{i}\right|\left|P_{j}\right|$.
6. If $P=P_{1} \downarrow \cdots \xi P_{k}$, where the P_{i} 's are r-connected,

$$
\Delta_{\left(q_{1}, q_{2}, 0,0\right)}(P)=\sum_{I \subseteq\{1, \cdots, k\}} q_{1}^{\beta_{P}(I)} q_{2}^{\beta_{P}(\{1, \ldots, k\} \backslash I)} P_{I}^{\}} \otimes P_{\{1, \cdots, k\} \backslash I}^{\&},
$$

with, for all $J=\left\{j_{1}, \cdots, j_{l}\right\}, 1 \leq j_{1}<\cdots<j_{l} \leq k, P_{J 夕}=P_{j_{1}} \nless \cdots \not P_{j_{l}}$, and $\beta_{P}(J)=$ $\sum_{i \in J, j \notin J, i<j}\left|P_{i}\right|\left|P_{j}\right|$.
7.

$$
\left\{\begin{aligned}
\Delta_{(q, 0,0,0)}(P) & =\sum_{P_{1} \neq P_{2}=P} q^{\left|P_{1}\right|\left|P_{2}\right|} P_{1} \otimes P_{2}, \\
\Delta_{(0, q, 0,0)}(P) & =\sum_{P_{1} \nless P_{2}=P} q^{\left|P_{1}\right|\left|P_{2}\right|} P_{2} \otimes P_{1}, \\
\Delta_{(0,0, q, 0)}(P) & =\sum_{P_{1} P_{2}=P} q^{\left|P_{1}\right|\left|P_{2}\right|} P_{1} \otimes P_{2}, \\
\Delta_{(0,0,0, q)}(P) & =\sum_{P_{1} P_{2}=P} q^{\left|P_{1}\right|\left|P_{2}\right|} P_{2} \otimes P_{1} .
\end{aligned}\right.
$$

8. $\Delta_{(0,0,0,0)}(P)=P \otimes 1+1 \otimes P$ if $P \neq 1$.

Proof. We only prove points $1,2,5,7$ and 8 . The others are proved in the same way.

1. Immediate, as $h_{\mathcal{P} \backslash I}^{I}+h_{I}^{P \backslash I}+r_{\mathcal{P} \backslash I}^{I}+r_{I}^{P \backslash I}=|I||P \backslash I|$ by proposition 13 .
2. By lemma 16 :
$\Delta_{\left(q_{1}, 0, q_{3}, q_{4}\right)}(P)=\sum_{\substack{I \subseteq P \\ h_{P \backslash I}^{I}=0}} q_{1}^{h_{P \backslash I}^{I}} q_{3}^{r_{P \backslash I}^{I}} q_{4}^{r_{I}^{P \backslash I}}(R \backslash I) \otimes I=\sum_{P \backslash I \text {-ideal of } P} q_{1}^{h_{P \backslash I}^{I}} q_{3}^{r_{P \backslash I}^{I}} q_{4}^{r_{I}^{P \backslash I}}(P \backslash I) \otimes I$.
As $\Delta_{\left(0, q_{2}, q_{3}, q_{4}\right)}=\Delta_{\left(0, q_{2}, q_{4}, q_{3}\right)}^{o p}$, we obtain also the first assertion.
3. By lemma 16, point 3:
and it is immediate that $r_{P \backslash P_{I}}^{P_{I}}=\alpha_{P}(I)$ and $r_{P_{I}}^{P \backslash P_{I}}=\alpha_{P}(\{1, \ldots, k\}-I)$.
4. By lemma 16:
5. Let $I \subseteq P$, such that $h_{P \backslash I}^{I}=h_{I}^{P \backslash I}=r_{P \backslash I}^{I}=r_{I}^{P \backslash I}=0$. Then:

$$
|I||P \backslash I|=h_{P \backslash I}^{I}+h_{I}^{P \backslash I}+r_{P \backslash I}^{I}+r_{I}^{P \backslash I}=0,
$$

so $I=1$ or $I=P$.

Remark. In particular, the coproduct defined in section 1 is $\Delta_{(1,0,1,1)}$. The coproduct of deconcatenation, dual of m, is $\Delta_{(0,0,1,0)}$ and the coproduct of deconcatenation, dual of \downarrow, is $\Delta_{(1,0,0,0)}$

3.3 Compatibilities with the products

Proposition 23 Let $x, y \in \mathcal{H}_{\mathcal{P} \mathcal{P}}$. We put $\Delta_{q}(x)=\sum x_{q}^{\prime} \otimes x_{q}^{\prime \prime}$ and $\Delta_{q}(y)=\sum y_{q}^{\prime} \otimes y_{q}^{\prime \prime}$, with the x_{q}^{\prime} 's, $x_{q}^{\prime \prime}$'s, y_{q}^{\prime} 's, $y_{q}^{\prime \prime}$'s homogeneous. Then:

1. $\Delta_{q}(x y)=\sum \sum q_{3}^{\left|x_{q}^{\prime}\right|\left|y_{q}^{\prime \prime}\right|} q_{4}^{\left|x_{q}^{\prime \prime}\right|\left|y_{q}^{\prime}\right|}\left(x_{q}^{\prime} y_{q}^{\prime}\right) \otimes\left(x_{q}^{\prime \prime} y_{q}^{\prime \prime}\right)$.
2. $\Delta_{q}(x \nless y)=\sum \sum q_{1}^{\left|x_{q}^{\prime}\right|\left|y_{q}^{\prime \prime}\right|} q_{2}^{\left|x_{q}^{\prime \prime}\right|\left|y_{q}^{\prime}\right|}\left(x_{q}^{\prime}\right.$ ぬ $\left.y_{q}^{\prime}\right) \otimes\left(x_{q}^{\prime \prime}\right.$ 文 $\left.y_{q}^{\prime \prime}\right)$.

Proof. We only prove the first point; the proof of the second point is similar. Let $P, Q \in \mathcal{P} \mathcal{P}$. Then:

$$
\begin{aligned}
\Delta_{q}(P Q) & =\sum_{I \subseteq P, J \subseteq Q} q_{1}^{h_{(P Q) \backslash(I J)}^{I J}} q_{2}^{h_{I J}^{(P Q) \backslash(I J)}} q_{3}^{r_{(P Q) \backslash(I J)}^{I J}} q_{4}^{r_{I J}^{(P Q) \backslash(I J)}}((P Q) \backslash(I J)) \otimes(I J) \\
& =\sum_{I \subseteq P, J \subseteq Q} q_{1}^{h_{(P Q) \backslash(I J)}^{I J}} q_{2}^{h_{I J}^{P Q \backslash I J}} q_{3}^{r_{P Q \backslash I J}^{I J}} q_{4}^{r_{I J}^{P Q \backslash I J}}((P \backslash I)(Q \backslash J)) \otimes(I J) .
\end{aligned}
$$

Moreover, for all $I \subseteq P, J \subseteq Q$:

- For all $x \in P \backslash I, y \in J, x<_{r} y$ in $P Q$, so $h_{P \backslash I}^{J}=0$. Similarly, $h_{Q \backslash J}^{I}=0$. Hence:

$$
h_{P Q \backslash I J}^{I J}=h_{P \backslash I}^{I}+h_{Q \backslash J}^{J}+h_{P \backslash I}^{J}+h_{Q \backslash J}^{I}=h_{P \backslash I}^{I}+h_{Q \backslash J}^{J} .
$$

- In the same way, $h_{I J}^{P Q \backslash I J}=h_{I}^{P \backslash I}+h_{J}^{Q \backslash J}+h_{J}^{P \backslash I}+h_{I}^{Q \backslash J}=h_{I}^{P \backslash I}+h_{J}^{Q \backslash J}$.
- For all $x \in P \backslash I, y \in J, x<_{r} y$ in $P Q$, so $r_{P \backslash I}^{J}=|P \backslash I||J|$. For all $x \in Q \backslash J, y \in I$, $x>_{r} y$, so $r_{Q \backslash J}^{I}=0$. Hence:

$$
r_{P Q \backslash I J}^{I J}=r_{P \backslash I}^{I}+r_{Q \backslash J}^{J}+r_{P \backslash I}^{J}+r_{Q \backslash J}^{I}=h_{P \backslash I}^{I}+h_{Q \backslash J}^{J}+|P \backslash I||J| .
$$

- In the same way, $r_{I J}^{P Q \backslash I J}=r_{I}^{P \backslash I}+r_{J}^{Q \backslash J}+r_{J}^{P \backslash I}+r_{I}^{Q \backslash J}=r_{I}^{P \backslash I}+r_{J}^{Q \backslash J}+|I||Q \backslash J|$.

So:

$$
\Delta_{q}(P Q)=\sum \sum q_{3}^{\left|P_{q}^{\prime}\right|\left|Q_{q}^{\prime \prime}\right|} q_{4}^{\left|P_{q}^{\prime \prime}\right|\left|Q_{q}^{\prime}\right|}\left(P_{q}^{\prime} Q_{q}^{\prime}\right) \otimes\left(P_{q}^{\prime \prime} Q_{q}^{\prime \prime}\right)
$$

which is the announced formula.

Examples.

1. If $q_{3}=1$, then $\left(\mathcal{H}_{\mathcal{P} \mathcal{P}}, m, \Delta_{q}\right)$ is a braided Hopf algebra, with the braiding given, for all $P, Q \in \mathcal{P} \mathcal{P}$, by:

$$
c_{q_{4}}(P \otimes Q)=q_{4}^{|P||Q|} Q \otimes P
$$

In particular, if $q_{4}=1$, it is a Hopf algebra; if $q_{4}=0$, it is an infinitesimal Hopf algebra.
2. If $q_{4}=0$, the compatibility becomes the following:

$$
\Delta_{q}(x y)=\sum q_{3}^{|x|\left|y_{q}^{\prime \prime}\right|}\left(x y_{q}^{\prime}\right) \otimes y_{q}^{\prime \prime}+\sum q_{3}^{\left|x_{q}^{\prime}\right||y|} x_{q}^{\prime} \otimes\left(x_{q}^{\prime \prime} y\right)-q_{3}^{|x| y \mid} x \otimes y
$$

In particular, if $q_{3}=1$, then it is an infinitesimal Hopf algebra. If $q_{2}=0$, then for all $x, y \in \mathcal{H}_{\mathcal{P} \mathcal{P}}$, such that $\varepsilon(x)=\varepsilon(y)=0, x y$ is primitive: in other terms, for all $x, y \in \mathcal{H}_{\mathcal{P} \mathcal{P}}$:

$$
\begin{aligned}
\Delta_{q}(x y)= & (x y) \otimes 1+1 \otimes(x y)+\varepsilon(x)\left(\Delta_{q}(y)-y \otimes 1-1 \otimes y\right) \\
& +\varepsilon(y)\left(\Delta_{q}(x)-x \otimes 1-1 \otimes x\right)+\varepsilon(x) \varepsilon(y) 1 \otimes 1
\end{aligned}
$$

4 Self-duality results

4.1 A first pairing on \mathcal{H}_{q}

Notations. If $P, Q \in \mathcal{P} \mathcal{P}$, we denote by $\operatorname{Bij}(P, Q)$ the set of bijections from P to Q.
Definition 24 Let P, Q be two double posets and let $\sigma \in \operatorname{Bij}(P, Q)$. We put:

$$
\left\{\begin{aligned}
\phi_{1}(\sigma)= & \sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } \sigma(x)<_{h} \sigma(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } \sigma(x)>_{h} \sigma(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } \sigma(x)<_{r} \sigma(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{r} y \text { and } \sigma(x)<_{h} \sigma(y)\right\}, \\
\phi_{2}(\sigma)= & \sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } \sigma(x)<_{h} \sigma(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } \sigma(x)>_{h} \sigma(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } \sigma(x)>_{r} \sigma(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{r} y \text { and } \sigma(x)>_{h} \sigma(y)\right\}, \\
\phi_{3}(\sigma)= & \sharp\left\{(x, y) \in P^{2} \mid x<_{r} y \text { and } \sigma(x)<_{r} \sigma(y)\right\}, \\
\phi_{4}(\sigma)= & \sharp\left\{(x, y) \in P^{2} \mid x<_{r} y \text { and } \sigma(x)>_{r} \sigma(y)\right\} .
\end{aligned}\right.
$$

Lemma 25 Let P, Q be two double posets and let $\sigma \in \operatorname{Bij}(P, Q)$. For all $i \in\{1, \ldots, 4\}$, $\phi_{i}\left(\sigma^{-1}\right)=\phi_{i}(\sigma)$.

Proof. Indeed, as σ is a bijection:

$$
\begin{aligned}
\phi_{1}\left(\sigma^{-1}\right)= & \sharp\left\{(x, y) \in Q^{2} \mid x<_{h} y \text { and } \sigma^{-1}(x)<_{h} \sigma^{-1}(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } \sigma^{-1}(x)>_{h} \sigma^{-1}(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } \sigma^{-1}(x)<_{r} \sigma^{-1}(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{r} y \text { and } \sigma^{-1}(x)<_{h} \sigma^{-1}(y)\right\} \\
= & \sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } \sigma(x)<_{h} \sigma(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x>_{h} y \text { and } \sigma(x)<_{h} \sigma(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } \sigma(x)<_{r} \sigma(y)\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{r} y \text { and } \sigma(x)<_{h} \sigma(y)\right\} \\
= & \phi_{1}(\sigma) .
\end{aligned}
$$

The other equalities are proved similarly.
Lemma 26 Let P_{1}, P_{2}, Q be double posets. There is a bijection:

$$
\left\{\begin{aligned}
B i j\left(P_{1} P_{2}, Q\right) & \longrightarrow \bigcup_{I \subseteq Q} B i j\left(P_{1}, R \backslash I\right) \times R\left(P_{2}, I\right) \\
\sigma & \longrightarrow\left(\sigma_{\mid P_{1}}, \sigma_{\mid P_{2}}\right), \text { with } I=\sigma\left(P_{2}\right)
\end{aligned}\right.
$$

Let $\sigma \in \operatorname{Bij}\left(P_{1} P_{2}, Q\right)$ and let $\left(\sigma_{1}, \sigma_{2}\right)$ be its image by this bijection. Then:

$$
\left\{\begin{aligned}
\phi_{1}(\sigma) & =\phi_{1}\left(\sigma_{1}\right)+\phi_{1}\left(\sigma_{2}\right)+h_{Q \backslash I}^{I} \\
\phi_{2}(\sigma) & =\phi_{2}\left(\sigma_{1}\right)+\phi_{2}\left(\sigma_{2}\right)+h_{I}^{Q \backslash I} \\
\phi_{3}(\sigma) & =\phi_{3}\left(\sigma_{1}\right)+\phi_{3}\left(\sigma_{2}\right)+r_{Q \backslash I}^{I} \\
\phi_{4}(\sigma) & =\phi_{4}\left(\sigma_{1}\right)+\phi_{4}\left(\sigma_{2}\right)+r_{I}^{Q \backslash I}
\end{aligned}\right.
$$

Proof. We put $P=P_{1} P_{2}$. if $x \in P_{1}$ and $y \in P_{2}$, then $x<_{r} y$, so:

$$
\begin{aligned}
\phi_{3}(\sigma)= & \sharp\left\{(x, y) \in P_{1}^{2} \mid x<_{r} y \text { and } \sigma(x)<_{r} \sigma(y)\right\}+\sharp\left\{(x, y) \in P_{2}^{2} \mid x<_{r} y \text { and } \sigma(x)<_{r} \sigma(y)\right\} \\
& +\sharp\left\{(x, y) \in P_{1} \times P_{2} \mid x<_{r} y \text { and } \sigma(x)<_{r} \sigma(y)\right\} \\
& +\sharp\left\{(x, y) \in P_{2} \times P_{1} \mid x<_{r} y \text { and } \sigma(x)<_{r} \sigma(y)\right\} \\
= & \phi_{3}(\sigma)+\phi_{3}\left(\sigma_{2}\right)+\sharp\left\{(x, y) \in P_{1} \times P_{2} \mid \sigma(x)<_{r} \sigma(y)\right\}+0 \\
= & \phi_{3}(\sigma)+\phi_{3}\left(\sigma_{2}\right)+\sharp\left\{(x, y) \in(Q \backslash I) \times I \mid x<_{r} y\right\} \\
= & \phi_{3}\left(\sigma_{1}\right)+\phi_{3}\left(\sigma_{2}\right)+r_{Q \backslash I}^{I} .
\end{aligned}
$$

The other equalities are proved similarly.
Theorem 27 Let $q=\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \in K^{4}$. We define a pairing on $\mathcal{H}_{\mathcal{P} \mathcal{P}}$ by:

$$
\langle P, Q\rangle_{q}=\sum_{\sigma \in \operatorname{Bij}(P, Q)} q_{1}^{\phi_{1}(\sigma)} q_{2}^{\phi_{2}(\sigma)} q_{3}^{\phi_{3}(\sigma)} q_{3}^{\phi_{4}(\sigma)}
$$

This pairing is symmetric and for all $x, y, z \in \mathcal{H}_{\mathcal{P P}},\langle x y, z\rangle_{q}=\left\langle x \otimes y, \Delta_{q}(z)\right\rangle_{q}$.
Proof. Let P, Q be two double posets. Then, by lemma 25 :

$$
\begin{aligned}
\langle P, Q\rangle_{q} & =\sum_{\sigma \in \operatorname{Bij(P,Q)}} q_{1}^{\phi_{1}(\sigma)} q_{2}^{\phi_{2}(\sigma)} q_{3}^{\phi_{3}(\sigma)} q_{3}^{\phi_{4}(\sigma)} \\
& =\sum_{\sigma \in \operatorname{Bij}(Q, P)} q_{1}^{\phi_{1}\left(\sigma^{-1}\right)} q_{2}^{\phi_{2}\left(\sigma^{-1}\right)} q_{3}^{\phi_{3}\left(\sigma^{-1}\right)} q_{3}^{\phi_{4}\left(\sigma^{-1}\right)} \\
& =\sum_{\sigma \in \operatorname{Bij}(Q, P)} q_{1}^{\phi_{1}(\sigma)} q_{2}^{+\phi_{2}(\sigma)} q_{3}^{\phi_{3}(\sigma)} q_{3}^{\phi_{4}(\sigma)} \\
& =\langle Q, P\rangle_{q}
\end{aligned}
$$

So this pairing is symmetric. Let P_{1}, P_{2}, Q be three double posets. By lemma 26 :

$$
\begin{aligned}
\left\langle P_{1} P_{2}, Q\right\rangle_{q}= & \sum_{\sigma \in \operatorname{Bij(P_{1}P_{2},Q)}} q_{1}^{\phi_{1}(\sigma)} q_{2}^{\phi_{2}(\sigma)} q_{3}^{\phi_{3}(\sigma)} q_{3}^{\phi_{4}(\sigma)} \\
= & \sum_{I \subseteq Q} \sum_{\sigma_{1} \in \operatorname{Bij}\left(P_{1}, Q \backslash I\right)} \sum_{\sigma_{2} \in \operatorname{Bij}\left(P_{2}, I\right)} q_{1}^{\phi_{1}\left(\sigma_{1}\right)+\phi_{1}\left(\sigma_{2}\right)+h_{Q \backslash I}^{I}} \\
& \times q_{2}^{\phi_{2}\left(\sigma_{1}\right)+\phi_{2}\left(\sigma_{2}\right)+h_{I}^{Q \backslash I}} q_{3}^{\phi_{3}\left(\sigma_{1}\right)+\phi_{3}\left(\sigma_{2}\right)+r_{Q \backslash I}^{I}} q_{4}^{\phi_{4}\left(\sigma_{1}\right)+\phi_{4}\left(\sigma_{2}\right)+r_{I}^{Q \backslash I}} \\
= & \sum_{I \subseteq Q} q_{1}^{h_{R \backslash I}^{I}} q_{2}^{h_{I}^{R \backslash I}} q_{3}^{r_{R \backslash I}^{I}} q_{4}^{r_{I}^{R \backslash I}}\left\langle P_{1}, Q \backslash I\right\rangle_{q}\left\langle P_{2}, I\right\rangle_{q} \\
= & \left\langle P_{1} \otimes P_{2}, \Delta_{q}(Q)\right\rangle_{q} .
\end{aligned}
$$

So $\langle-,-\rangle_{q}$ is a Hopf pairing.

Remark. More generally, adapting this proof, it is possible to show that for all $x, y, z \in \mathcal{H}_{\mathcal{P P}}$:

$$
\left\langle m_{(0,0, q, 0)}(x \otimes y), \Delta(z)\right\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)}=\left\langle x \otimes y, \Delta_{\left(q q_{1}, q q_{2}, q q_{3}, q q_{4}\right)}(z)\right\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} .
$$

Examples. $\langle\cdot, \cdot\rangle_{q}=1$. The pairing of plane posets of degree 2 is given by the following array:

	$\mathbf{!}$	$\mathbf{.}$
$\mathbf{!}$	$2 q_{1} q_{2}$	$q_{1}+q_{2}$
$\boldsymbol{\cdots}$	$q_{1}+q_{2}$	$q_{3}+q_{4}$

Proposition 28 For all double posets P, Q :

$$
\langle P, Q\rangle_{\left(q_{1}, 0, q_{3}, q_{4}\right)}=\sum_{\sigma \in S(P, Q)} q_{1}^{\phi_{1}(\sigma)} q_{3}^{\phi_{3}(\sigma)} q_{4}^{\phi_{4}(\sigma)}
$$

Consequently, $\langle-,-\rangle_{(1,0,1,1)}$ is the pairing $\langle-,-\rangle$ described in section 1.
Proof. Let $\sigma \in \operatorname{Bij}(P, Q)$, such that the contribution of σ in the sum defining $\langle P, Q\rangle_{\left(q_{1}, 0, q_{3}, q_{4}\right)}$ is non zero. As $q_{2}=0$, necessarily $\phi_{2}(\sigma)=0$. Hence, if $x<_{h} y$ in P, then $\sigma(x)<_{r} \sigma(y)$ in Q; if $\sigma(x)<_{h} \sigma(y)$ in Q, then $x<_{r} y$ in P. So $\sigma \in S(P, Q)$.

4.2 Properties of the pairing

Lemma 29 Let P_{1}, P_{2}, Q be double posets. There is a bijection:

$$
\left\{\begin{aligned}
B i j\left(P_{1} \& P_{2}, Q\right) & \longrightarrow \bigcup_{I \subseteq Q} B i j\left(P_{1}, R \backslash I\right) \times R\left(P_{2}, I\right) \\
\sigma & \longrightarrow \\
& \left(\sigma_{\mid P_{1}}, \sigma_{\mid P_{2}}\right), \text { with } I=\sigma\left(P_{2}\right) .
\end{aligned}\right.
$$

Let $\sigma \in \operatorname{Bij}\left(P_{1} P_{2}, Q\right)$ and let $\left(\sigma_{1}, \sigma_{2}\right)$ be its image by this bijection. Then:

$$
\left\{\begin{aligned}
\phi_{1}(\sigma) & =\phi_{1}\left(\sigma_{1}\right)+\phi_{1}\left(\sigma_{2}\right)+h_{Q \backslash I}^{I}+h_{I}^{Q \backslash I}+r_{Q \backslash I}^{I} \\
\phi_{2}(\sigma) & =\phi_{2}\left(\sigma_{1}\right)+\phi_{2}\left(\sigma_{2}\right)+h_{Q \backslash I}^{I}+h_{I}^{Q \backslash I}+r_{I}^{Q \backslash I} \\
\psi_{2}(\sigma) & =\psi_{2}\left(\sigma_{1}\right)+\psi_{2}\left(\sigma_{2}\right)+h_{Q \backslash I}^{I}+h_{I}^{Q \backslash I} \\
\phi_{3}(\sigma) & =\phi_{3}\left(\sigma_{1}\right)+\phi_{3}\left(\sigma_{2}\right) \\
\phi_{4}(\sigma) & =\phi_{4}\left(\sigma_{1}\right)+\phi_{4}\left(\sigma_{2}\right)
\end{aligned}\right.
$$

Proof. We put $P=P_{1} \& P_{2}$. Let $x, y \in P$. If $x<_{h} y$, then $x, y \in P_{1}$, or $x, y \in P_{2}$, or $x \in P_{1}, y \in P_{2}$. If $x<_{r} y$, then $x, y \in P_{1}$, or $x, y \in P_{2}$. Moreover, if $x \in P_{1}$ and $x \in P_{2}$, then $x<_{h} y$. So:

$$
\begin{aligned}
\phi_{1}(\sigma)= & \phi_{1}\left(\sigma_{1}\right)+\phi_{1}\left(\sigma_{2}\right) \\
& \left.+\sharp\left\{(x, y) \in P_{1} \times P_{2} \mid\left(x<_{h} y\right) \text { and } \sigma(x)<_{h} \sigma(y)\right)\right\} \\
& \left.+\sharp\left\{(x, y) \in P_{1} \times P_{2} \mid\left(x<_{h} y\right) \text { and } \sigma(x)>_{h} \sigma(y)\right)\right\} \\
& \left.+\sharp\left\{(x, y) \in P_{1} \times P_{2} \mid\left(x<_{h} y\right) \text { and } \sigma(x)<_{r} \sigma(y)\right)\right\} \\
= & \phi_{1}\left(\sigma_{1}\right)+\phi_{1}\left(\sigma_{2}\right) \\
& \left.+\sharp\left\{(x, y) \in P_{1} \times P_{2} \mid \sigma(x)<_{h} \sigma(y)\right)\right\} \\
& \left.+\sharp\left\{(x, y) \in P_{1} \times P_{2} \mid \sigma(x)>_{h} \sigma(y)\right)\right\} \\
& \left.+\sharp\left\{(x, y) \in P_{1} \times P_{2} \mid \sigma(x)<_{r} \sigma(y)\right)\right\} \\
= & \phi_{1}\left(\sigma_{1}\right)+\phi_{1}\left(\sigma_{2}\right)+h_{Q \backslash I}^{I}+h_{I}^{Q \backslash I}+r_{Q \backslash I}^{I} .
\end{aligned}
$$

The other equalities are proved similarly.

Proposition 30 For all $x, y, z \in \mathcal{H}_{\mathcal{P P}},\langle x \nless y, z\rangle_{q}=\left\langle x \otimes y, \Delta_{\left(q_{1} q_{2}, q_{1} q_{2}, q_{1}, q_{2}\right)}(z)\right\rangle_{q}$.

Proof. Let P_{1}, P_{2}, Q be three double posets. By lemma 29:

$$
\begin{aligned}
\left\langle P_{1} \sharp P_{2}, Q\right\rangle_{q}= & \sum_{\sigma \in \operatorname{Bij}\left(P_{1} 乡 P_{2}, Q\right)} q_{1}^{\phi_{1}(\sigma)} q_{2}^{\phi_{2}(\sigma)} q_{3}^{\phi_{3}(\sigma)} q_{3}^{\phi_{4}(\sigma)} \\
= & \sum_{I \subseteq Q} \sum_{\sigma_{1} \in B i j\left(P_{1}, Q \backslash I\right)} \sum_{\sigma_{2} \in B i j\left(P_{2}, I\right)} q_{1}^{\phi_{1}\left(\sigma_{1}\right)+\phi_{1}\left(\sigma_{2}\right)+h_{Q \backslash I}^{I}+h_{I}^{Q \backslash I}+r_{Q \backslash I}^{I}} \\
& \times q_{2}^{\phi_{2}\left(\sigma_{1}\right)+\phi_{2}\left(\sigma_{2}\right)+h_{Q \backslash I}^{I}+h_{I}^{Q \backslash I}+r_{I}^{Q \backslash I}}{ }^{\phi_{3}\left(\sigma_{1}\right)+\phi_{3}\left(\sigma_{2}\right)} q_{4}^{\phi_{4}\left(\sigma_{1}\right)+\phi_{4}\left(\sigma_{2}\right)} \\
= & \sum_{I \subseteq Q}\left(q_{1} q_{2}\right)^{h_{R \backslash I}^{I}\left(q_{1} q_{2}\right)^{h_{I}^{R \backslash I}} q_{1}^{r_{R \backslash I}^{I}} q_{2}^{r_{I}^{R \backslash I}}\left\langle P_{1}, Q \backslash I\right\rangle_{q}\left\langle P_{2}, I\right\rangle_{q}} \\
= & \left\langle P_{1} \otimes P_{2}, \Delta_{\left(q_{1} q_{2}, q_{1} q_{2}, q_{1}, q_{2}\right)}(Q)\right\rangle_{q},
\end{aligned}
$$

which is the announced formula.

Remarks.

1. In particular, if $q=(1,0,1,1)$, for all $x, y, z \in \mathcal{H}_{\mathcal{P} \mathcal{P}},\langle x \nless y, z\rangle=\langle x \otimes y, \Delta(z)\rangle_{(1,0,1,1)}$: this formula is already proved in [2].
2. More generally, it is possible to show that for all $x, y, z \in \mathcal{H}_{\mathcal{P} \mathcal{P}}$:

$$
\left\langle m_{(q, 0,0,0)}(x \otimes y), \Delta(z)\right\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)}=\left\langle x \otimes y, \Delta_{\left(q q_{1} q_{2}, q q_{1} q_{2}, q q_{1}, q q_{2}\right)}(z)\right\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} .
$$

Proposition 31 For all $x, y \in \mathcal{H P P}$:

$$
\begin{aligned}
\langle x, \beta(y)\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} & =\langle x, y\rangle_{\left(q_{1}, q_{2}, q_{4}, q_{3}\right)}, & \langle x, \gamma(y)\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} & =\langle x, y\rangle_{\left(q_{2}, q_{1}, q_{4}, q_{3}\right)}, \\
\langle\alpha(x), \alpha(y)\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} & =\langle x, y\rangle_{\left(q_{2}, q_{1}, q_{3}, q_{4}\right)}, & \langle\alpha(x), \beta(y)\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} & =\langle x, y\rangle_{\left(q_{1}, q_{2}, q_{4}, q_{3}\right)}, \\
\langle\alpha(x), \gamma(y)\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} & =\langle x, y\rangle_{\left(q_{2}, q_{1}, q_{4}, q_{3}\right)}, & \langle\beta(x), \beta(y) &
\end{aligned}
$$

Proof. Let P, Q be two double posets. We put $P^{\prime}=\alpha(P)$ and $Q^{\prime}=\alpha(Q)$. Note that $\operatorname{Bij}(P, Q)=\operatorname{Bij}\left(P^{\prime}, Q^{\prime}\right)$. Let $\sigma \in \operatorname{Bij}(P, Q)$. We denote it by σ^{\prime} is we consider it as an element of $\operatorname{Bij}\left(P^{\prime}, Q^{\prime}\right)$. By definition of P^{\prime} and Q^{\prime}, it is clear that $\phi_{1}\left(\sigma^{\prime}\right)=\phi_{2}(\sigma), \phi_{2}\left(\sigma^{\prime}\right)=\phi_{2}(\sigma)$, $\phi_{3}\left(\sigma^{\prime}\right)=\phi_{3}(\sigma)$, and $\phi_{4}\left(\sigma^{\prime}\right)=\phi_{4}(\sigma)$. Hence:

$$
\begin{aligned}
\left\langle P^{\prime}, Q^{\prime}\right\rangle_{\left.q_{1}, q_{2}, q_{3}, q_{4}\right)} & =\sum_{\sigma^{\prime} \in \operatorname{Bij(P^{\prime },Q^{\prime })}} q_{1}^{\phi_{1}\left(\sigma^{\prime}\right)} q_{2}^{\phi_{2}\left(\sigma^{\prime}\right)} q_{3}^{\phi_{3}\left(\sigma^{\prime}\right)} q_{4}^{\phi_{4}\left(\sigma^{\prime}\right)} \\
& =\sum_{\sigma \in \operatorname{Bij(P,Q)}} q_{1}^{\phi_{2}(\sigma)} q_{2}^{\phi_{1}(\sigma)} q_{3}^{\phi_{3}(\sigma)} q_{4}^{\phi_{4}(\sigma)} \\
& =\langle P, Q\rangle\rangle_{\left(q_{2}, q_{1}, q_{3}, q_{4}\right)} .
\end{aligned}
$$

The other equalities are proved in the same way.
Remark. In general, the pairing defined by $x \otimes y \longrightarrow\langle x, \alpha(y)\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)}$ is not a pairing $\langle-,-\rangle_{q}$. However, if $q_{1}=q_{2}$, it is possible to prove that for all $x, y \in \mathcal{H}_{\mathcal{P} \mathcal{P}},\langle x, \alpha(y)\rangle_{\left(q_{1}, q_{1}, q_{3}, q_{4}\right)}=$ $\langle x, y\rangle_{\left(q_{1}, q_{1}, q_{3}, q_{4}\right)}$. Similarly, $\langle\beta(x), \gamma(y)\rangle_{\left(q_{1}, q_{1}, q_{3}, q_{4}\right)}=\langle x, y\rangle_{\left(q_{1}, q_{1}, q_{4}, q_{3}\right)}$.

4.3 Comparison of pairings with colinear parameters

Proposition 32 Let $q \in K$. We define the following map:

$$
v_{q}:\left\{\begin{array}{rll}
\mathcal{H}_{\mathcal{P P}} & \longrightarrow & \mathcal{H}_{\mathcal{P} \mathcal{P}} \\
P \in \mathcal{P P} & \longrightarrow & q^{h(P)} P,
\end{array}\right.
$$

where $h(P)=\sharp\left\{(x, y) \in P \mid x<_{h} y\right\}$. Then v_{q} is an algebra and coalgebra morphism from $\left(\mathcal{H}_{\mathcal{P P}}, m, \Delta_{\left(q q_{1}, q q_{2}, q_{3}, q_{4}\right)}\right)$ to $\left(\mathcal{H}_{\mathcal{P P}}, m, \Delta_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)}\right)$. Moreover, for all $x, y \in \mathcal{H}_{\mathcal{P P} \mathcal{P}}$:

$$
\left\langle v_{q}(x), v_{q}(y)\right\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)}=\langle x, y\rangle_{\left(q q_{1}, q q_{2}, q_{3}, q_{4}\right)} .
$$

Proof. Let $P_{1}, P_{2} \in \mathcal{P P}$. Then $h\left(P_{1} P_{2}\right)=h\left(P_{1}\right)+h\left(P_{2}\right)$, so $v_{q}\left(P_{1} P_{2}\right)=v_{q}\left(P_{1}\right) v_{q}\left(P_{2}\right)$, and v_{q} is an algebra morphism. Let $P \in \mathcal{P P}$. For any $I \subseteq P$, as $P^{2}=I^{2} \sqcup(P \backslash I)^{2} \sqcup(I \times(P \backslash I)) \sqcup$ $((P \backslash I) \times I)$:

$$
h(P)=h(I)+h(P \backslash I)+h_{P \backslash I}^{I}+h_{I}^{P \backslash I} .
$$

Consequently:

$$
\begin{aligned}
\Delta_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} \circ v_{q}(P) & =\sum_{I \subseteq P}\left(q q_{1}\right)^{h_{P \backslash I}^{I}\left(q q_{2}\right)^{h_{I}^{P \backslash I}} q_{3}^{r_{P I}^{I}} q_{4}^{r_{I}^{P \backslash I}} q^{h(P \backslash I)}(P \backslash I) \otimes q^{h(I)} I} \\
& =\left(v_{q} \otimes v_{q}\right) \circ \Delta_{\left(q q_{1}, q q_{2}, q_{3}, q_{4}\right)}(P) .
\end{aligned}
$$

So v_{q} is a coalgebra morphism. Let $P, Q \in \mathcal{P P}$ and let $\sigma \in \operatorname{Bij}(P, Q)$. We define:

$$
\begin{aligned}
& a_{1}=\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y, \sigma(x)<_{h} \sigma(y)\right\} \\
& a_{2}=\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y, \sigma(x)>_{h} \sigma(y)\right\} \\
& a_{3}=\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y, \sigma(x)<_{r} \sigma(y)\right\} \\
& a_{4}=\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y, \sigma(x)>_{r} \sigma(y)\right\} \\
& a_{5}=\sharp\left\{(x, y) \in P^{2} \mid x<_{r} y, \sigma(x)<_{h} \sigma(y)\right\} \\
& a_{6}=\sharp\left\{(x, y) \in P^{2} \mid x<_{r} y, \sigma(x)>_{h} \sigma(y)\right\} \\
& a_{7}=\sharp\left\{(x, y) \in P^{2} \mid x<_{r} y, \sigma(x)<_{r} \sigma(y)\right\} \\
& a_{8}=\sharp\left\{(x, y) \in P^{2} \mid x<_{r} y, \sigma(x)>_{r} \sigma(y)\right\} .
\end{aligned}
$$

In order to sum up the notations, we give a following array:

$\sharp\left\{(x, y) \in P^{2} \mid \ldots\right.$	$x<_{h} y, \ldots$	$x>_{h} y, \ldots$	$x<_{r} y, \ldots$	$x>_{r} y, \ldots$
$\left.\sigma(x)<_{h} \sigma(y)\right\}$	a_{1}	a_{2}	a_{5}	a_{6}
$\left.\sigma(x)>_{h} \sigma(y)\right\}$	a_{2}	a_{1}	a_{6}	a_{5}
$\left.\sigma(x)<_{r} \sigma(y)\right\}$	a_{3}	a_{4}	a_{7}	a_{8}
$\left.\sigma(x)>_{r} \sigma(y)\right\}$	a_{4}	a_{3}	a_{8}	a_{7}

So $\phi_{1}(\sigma)=a_{1}+a_{2}+a_{3}+a_{5}, \phi_{2}(\sigma)=a_{1}+a_{2}+a_{4}+a_{6}, \phi_{3}(\sigma)=a_{7}$ and $\phi_{4}(\sigma)=a_{8} ; h(P)=$ $a_{1}+a_{2}+a_{3}+a_{4}$ and $h(Q)=a_{1}+a_{2}+a_{5}+a_{6}$. Then:

$$
\begin{aligned}
q^{h(P)} q^{(h(Q)} q_{1}^{\phi_{1}(\sigma)} q_{2}^{\phi_{2}(\sigma)} q_{3}^{\phi_{3}(\sigma)} q_{4}^{\phi_{4}(\sigma)} & =\left(q^{2} q_{1} q_{2}\right)^{a_{1}}\left(q^{2} q_{1} q_{2}\right)^{a_{2}}\left(q q_{1}\right)^{a_{3}}\left(q q_{2}\right)^{a_{4}}\left(q q_{1}\right)^{a_{5}}\left(q q_{2}\right)^{a_{6}} q_{3}^{a_{7}} q_{4}^{a_{8}} \\
& =\left(q q_{1}\right)^{\phi_{1}(\sigma)}\left(q q_{2}\right)^{\phi_{2}(\sigma)} q_{3}^{\phi_{3}(\sigma)} q_{4}^{\phi_{4}(\sigma)} .
\end{aligned}
$$

Finally:

$$
\begin{aligned}
\left\langle v_{q}(P), v_{q}(Q)\right\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)} & =\sum_{\sigma \in \operatorname{Bij}(P, Q)} q^{h(P)} q^{(h(Q)} q_{1}^{\phi_{1}(\sigma)} q_{2}^{\phi_{2}(\sigma)} q_{3}^{\phi_{3}(\sigma)} q_{4}^{\phi_{4}(\sigma)} \\
& =\sum_{\sigma \in B i j(P, Q)}\left(q q_{1}\right)^{\phi_{1}(\sigma)}\left(q q_{2}\right)^{\phi_{2}(\sigma)} q_{3}^{\phi_{3}(\sigma)} q_{4}^{\phi_{4}(\sigma)} \\
& =\langle P, Q\rangle_{\left(q q_{1}, q q_{2}, q_{3}, q_{4}\right)} .
\end{aligned}
$$

So v_{q} is an isometry.

Remark. We can easily prove that for $P, Q \in \mathcal{P} \mathcal{P}, v_{q}\left(P \not\langle Q)=v_{q}(P) \notin v_{q}(Q)\right.$.
Similarly, one can prove:
Proposition 33 Let $q \in K$. We define the following map:

$$
v_{q}^{\prime}:\left\{\begin{array}{rll}
\mathcal{H}_{\mathcal{P} \mathcal{P}} & \longrightarrow \mathcal{H}_{\mathcal{P} \mathcal{P}} \\
P \in \mathcal{P} \mathcal{P} & \longrightarrow & q^{r(P)} P
\end{array}\right.
$$

where $r(P)=\sharp\left\{(x, y) \in P \mid x<_{r} y\right\}$. Then v_{q}^{\prime} is a morphism of algebras and coalgebras from $\left(\mathcal{H}_{\mathcal{P} \mathcal{P}}, \downarrow, \Delta_{\left(q_{1}, q_{2}, q q_{3}, q q_{4}\right)}\right)$ to $\left(\mathcal{H}_{\mathcal{P} \mathcal{P}, ~}, \Delta_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)}\right)$. Moreover, for all $x, y \in \mathcal{H}_{\mathcal{P} \mathcal{P}}$, $\left\langle v_{q}^{\prime}(x), v_{q}^{\prime}(y)\right\rangle_{\left(q_{1}, q_{2}, q_{3}, q_{4}\right)}=\langle x, y\rangle_{\left(q_{1}, q_{2}, q q_{3}, q q_{4}\right)}$.

4.4 Non-degeneracy of the pairing

Lemma 34 For all $P \in \mathcal{P} \mathcal{P}(n), S(P, \iota(P))$ is reduced to a single element and:

$$
\langle P, \iota(P)\rangle_{\left(q_{1}, 0, q_{3}, q_{4}\right)}=q_{1}^{\frac{n(n-1)}{2}}
$$

Proof. Clearly, $I d_{P}: P \longrightarrow P$ belongs to $S(P, \iota(P))$. Let $\sigma: P \longrightarrow P$ be a bijection. Then $\sigma \in S(P, \iota(P))$ if, and only if, for all $i, j \in P$:

- $\left(i \leq_{h} j\right.$ in $\left.P\right) \Longrightarrow\left(\sigma(i) \leq_{h} \sigma(j)\right.$ in $\left.P\right)$.
- $\left(\sigma(i) \leq_{r} \sigma(j)\right)$ in $P \Longrightarrow\left(i \leq_{r} j\right.$ in $\left.P\right)$.

It is clear $S(P, \iota(P))$ is a submonoid of \mathfrak{S}_{P}. As the group \mathfrak{S}_{P} is finite, $S(P, \iota(P))$ is a subgroup of \mathfrak{S}_{P}. So if $\sigma \in S(P, \iota(P))$, then $\sigma^{-1} \in S(P, \iota(P))$. So, if $\sigma \in S(P, \iota(P))$:

- $\left(i \leq_{h} j\right.$ in $\left.P\right) \Longleftrightarrow\left(\sigma(i) \leq_{h} \sigma(j)\right.$ in $\left.P\right)$.
- $\left(i \leq_{r} j\right.$ in $\left.P\right) \Longleftrightarrow\left(\sigma(i) \leq_{r} \sigma(j)\right.$ in $\left.P\right)$.

So σ is the unique increasing bijection from P to P, that is to say $I d_{P}$. Moreover:

$$
\begin{aligned}
\phi_{1}\left(I d_{P}\right)= & \sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } x<_{r} y\right\}+\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } x>_{r} y\right\} \\
& +\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y \text { and } x<_{h} y\right\}+\sharp\left\{(x, y) \in P^{2} \mid x<_{r} y \text { and } x<_{r} y\right\} \\
= & 0+0+\sharp\left\{(x, y) \in P^{2} \mid x<_{h} y\right\}+\sharp\left\{(x, y) \in P^{2} \mid x<_{r} y\right\} \\
= & \sharp\left\{(x, y) \in P^{2} \mid x<_{y}\right\} \\
= & \frac{n(n-1)}{2}, \\
\phi_{3}\left(I d_{P}\right)= & \sharp\left\{(x, y) \in P^{2} \mid\left(x<_{r} y\right) \text { and }\left(x<_{h} y\right)\right\} \\
= & 0, \\
\phi_{4}\left(I d_{P}\right)= & \sharp\left\{(x, y) \in P^{2} \mid\left(x>_{r} y\right) \text { and }\left(x>_{h} y\right)\right\} \\
= & 0 .
\end{aligned}
$$

So $\langle P, \iota(P)\rangle_{\left(q_{1}, 0, q_{2}, q_{3}\right)}=q_{1}^{\frac{n(n-1)}{2}}$.
For all $n \in \mathbb{N}$, we give \mathfrak{S}_{n} the lexicographic order. For example, if $n=3$:

$$
(123) \leq(132) \leq(213) \leq(231) \leq(312) \leq(321)
$$

We then define a total order \ll on $\mathcal{P} \mathcal{P}(n)$ by $P \ll Q$ if, and only if, $\Psi_{n}(P) \leq \Psi_{n}(Q)$ in \mathfrak{S}_{n}. For example, if $n=3$:

$$
t \ll V \ll \wedge \ll t \ll \cdot t \ll \ldots
$$

For all $P \in \mathcal{P} \mathcal{P}(n)$, we put:

$$
m(P)=\min _{\ll}\{Q \in \mathcal{P} \mathcal{P}(n) / S(P, Q) \neq \emptyset\}
$$

Lemma 35 For all $P \in \mathcal{P P}, m(P)=\iota(P)$.
Proof. By lemma 34, $m(P) \ll \iota(P)$. Let $Q \in \mathcal{P P}$, such that $S(P, Q) \neq \emptyset$. Let us prove that $\iota(P) \ll Q$. We denote $\sigma=\Psi_{n}(P)$ and $\tau=\Psi_{n}(Q)$; we can suppose that $P=\Phi_{n}(\sigma)$ and $Q=\Phi_{n}(\tau)$. Moreover, it is not difficult to prove that $\Psi_{n}(\iota(P))=(n \cdots 1) \circ \sigma$.

First step. Let us prove that $\tau(1) \geq n-\sigma(1)+1$. In $P=\Psi_{n}(\sigma), 1 \leq_{h} j$ if, and only if, $\sigma(1) \leq \sigma(j)$. So there are exactly $n-\sigma(1)+1$ elements of P which satisfy $1 \leq_{h} j$ in P. Let $\alpha \in S(P, Q)$ (which is non-empty by hypothesis). Then if $1 \leq_{h} j, \alpha(1) \leq_{r} \alpha(j)$: there are at least $n-\sigma(1)+1$ elements of Q which satisfy $\alpha(1) \leq_{r} j$. Let us put $\alpha^{-1}(1)=i$. Then $\alpha(i)=1 \leq \alpha(1)$ in Q, that is to say $1 \leq_{h} \alpha(1)$ or $1 \leq_{r} \alpha(1)$ in Q. If $1=\alpha(i) \leq_{h} \alpha(1)$ in Q, then $i \leq_{r} 1$ in P, so $i=1$: in both cases, $1 \leq_{r} \alpha(1)$ in P. So there are at least $n-\sigma(1)+1$ elements of Q which satisfy $1 \leq_{r} j$. In $Q, 1 \leq_{r} j$ if, and only if, $\tau(j) \leq \tau(1)$, so there are exactly $\tau(1)$ such elements. As a consequence, $\tau(1) \geq n-\sigma(1)+1$. Moreover, if there is equality, necessarily $1=\alpha(1)$ for all $\alpha \in S(P, Q)$.

Second step. We consider the assertion H_{i} : if $\tau(1)=n-\sigma(1)+1, \cdots, \tau(i-1)=n-\sigma(i-1)+1$, then $\tau(i) \geq n-\sigma(i)+1$ and, if there is equality, then $\alpha(1)=1, \cdots, \alpha(i)=i$ for all $\alpha \in S(P, Q)$. We proved H_{0} in the first step. Let us prove H_{i} by induction on i. Let us assume $H_{i-1}, 1 \leq i \leq n$, and let us prove H_{i}. Let $\alpha \in S(P, Q)$ (non empty by hypothesis). By H_{i-1}, as the equality is satisfied, $\alpha(1)=1, \cdots, \alpha(i-1)=i-1$.

In P, the number N_{i} of elements j such that $i \leq_{h} j$ is the cardinality of $\sigma^{-1}(\{\sigma(i), \cdots, n\}) \cap$ $\{i, \cdots, n\}$, so $N_{i}=n-\sigma(i)+1-|\{k \leq i / \sigma(k)>\sigma(i)\}|$. Using α, there exists at least N_{i} elements j of Q such that $\alpha(i) \leq_{r} j$ in Q.

Let us put $\alpha^{-1}(i)=j$. As $\alpha(1)=1, \cdots, \alpha(i-1)=i-1, j \geq i$ and $i \leq \alpha(i)$. If $i \leq_{h} \alpha(i)$ in Q, then $j \leq_{r} i$ in P, so $j=i$. So we always have $i \leq_{r} \alpha(i)$ in Q, so at least N_{i} elements k of Q satisfy $i \leq_{r} j$ in Q. Hence:

$$
\begin{aligned}
N_{i} & \leq\left|\tau^{-1}(\{1, \cdots, \tau(i)\}) \cap\{i, \cdots, n\}\right| \\
n-\sigma(i)+1-|\{k \leq i / \sigma(k)>\sigma(i)\}| & \leq \tau(i)-|\{k \leq i / \tau(k)<\tau(i)\}| \\
& \leq \tau(i)-|\{k \leq i / n-\sigma(k)+1<n-\sigma(i)+1\}| \\
& \leq \tau(i)-|\{k \leq i / \sigma(k)>\sigma(i)\}|,
\end{aligned}
$$

so $\tau(i) \geq n-\sigma(i)+1$. If there is equality, then necessarily $i=\alpha(i)$ for all $\alpha \in S(P, Q)$.
Conclusion. The hypothesis H_{i} is true for all $0 \leq i \leq n$. So $\tau \geq(n \cdots 1) \circ \sigma$ in \mathfrak{S}_{n}, so $\iota(P) \ll Q$ in $\mathcal{P} \mathcal{P}(n)$. As a conclusion, $\iota(P) \ll m(P)$.

Corollary 36 Let us assume that $q_{2}=0$. Then the pairing $\langle-,-\rangle_{q}$ is non-degenerate if, and only if, $q_{1} \neq 0$.

Proof. Let us fix an integer $n \in \mathbb{N}$. We consider the basis $\mathcal{P} \mathcal{P}(n)$ of $\mathcal{H}(n)$, totally ordered by \ll. In this basis, the matrix of $\langle-,-\rangle_{q}$ restricted to $\mathcal{H}(n)$ has the following form, coming from
lemmas 34 and 35 :

$$
\left(\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & q_{1}^{\frac{n(n-1)}{2}} \\
\vdots & & \therefore & q_{1}^{\frac{n(n-1)}{2}} & * \\
\vdots & \therefore & \therefore & \therefore & \vdots \\
0 & q_{1}^{\frac{n(n-1)}{2}} & \therefore & & \vdots \\
q_{1}^{\frac{n(n-1)}{2}} & * & \cdots & \cdots & *
\end{array}\right)
$$

so its determinant is $\pm q_{1}^{\frac{n!n(n-1)}{2}}$. Hence, $\langle-,-\rangle_{q}$ is non-degenerate if, and only if, $q_{1} \neq 0$.
Remark. With the help of the isometry α (proposition 31), it is possible to prove that if $q_{1}=0,\langle-,-\rangle_{q}$ is non-degenerate if, and only if, $q_{2} \neq 0$.

Corollary 37 If $q_{1}, q_{2}, q_{3}, q_{4}$ are algebraically independent over \mathbb{Z}, then the pairing $\langle-,-\rangle_{q}$ is non-degenerate.

Proof. For all n, let us consider the matrix of the pairing restricted to $\mathcal{H}_{\mathcal{P P}}(n)$ in the basis formed by the plane posets of degree n. Its determinant D_{n} is clearly an element of $\mathbb{Z}\left[q_{1}, q_{2}, q_{3}, q_{4}\right]$. Moreover, $D_{n}\left(1,0, q_{3}, q_{4}\right) \neq 0$ by corollary 36 , so D_{n} is a non-zero polynomial. As a consequence, if $q_{1}, q_{2}, q_{3}, q_{4}$ are algebraically independent over $\mathbb{Z}, D_{n}\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \neq 0$.

5 Morphism to free quasi-symmetric functions

5.1 A second Hopf pairing on $\mathcal{H}_{\left(q_{1}, 0, q_{1}, q_{4}\right)}$

We here assume that $q_{2}=0$ and $q_{1}=q_{3}$. For all double poset P,

$$
\Delta_{\left(q_{1}, 0, q_{1}, q_{4}\right)}(P)=\sum_{I h \text {-ideal of } P} q_{1}^{q_{R \backslash I}^{I}+r_{R \backslash I}^{I}} q_{4}^{r_{I}^{P \backslash I}}(P \backslash I) \otimes I .
$$

For any h-ideal I of $P, h_{I}^{P \backslash I}=0$, so:

$$
\begin{aligned}
h_{R \backslash I}^{I}+r_{R \backslash I}^{I} & =\sharp\{(x, y) \in(P \backslash I) \times I \mid x<y\}, \\
r_{I}^{P \backslash I} & =r_{I}^{P \backslash I}+h_{I}^{P \backslash I} \\
& =\sharp\{(x, y) \in(P \backslash I) \times I \mid x>y\} .
\end{aligned}
$$

Hence:

$$
\Delta_{\left(q_{1}, 0, q_{1}, q_{4}\right)}(P)=\sum_{I} \sum_{\text {-ideal of } P} q_{1}^{\sharp\{(x, y) \in(P \backslash I) \times I \mid x<y\}} q_{4}^{\sharp\{(x, y) \in(P \backslash I) \times I \mid x<y\}}(P \backslash I) \otimes I .
$$

Notations. Let $P, Q \in \mathcal{P}(n)$ and let $\sigma \in \operatorname{Bij}(P, Q)$. As totally ordered sets, $P=Q=$ $\{1, \ldots, n\}$, so σ can be seen as an element of the symmetric group \mathfrak{S}_{n}. Its length $l(\sigma)$ is then its length in the Coxeter group $\mathfrak{S}_{n}[5]$.

Theorem 38 We define a pairing $\langle-,-\rangle_{q}^{\prime}: \mathcal{H}_{q} \otimes \mathcal{H}_{q} \longrightarrow K$ by:

$$
\langle P, Q\rangle_{q}^{\prime}=\sum_{\sigma \in S^{\prime}(P, Q)} q^{\frac{n(n-1)}{2}-l(\sigma)} q_{4}^{l(\sigma)},
$$

for all $P, Q \in \mathcal{P} \mathcal{P}$, with $n=\operatorname{deg}(P)$. Then $\langle-,-\rangle_{q}^{\prime}$ is an homogeneous symmetric Hopf pairing on the braided Hopf algebra $\mathcal{H}_{q}=\left(\mathcal{H}, m, \Delta_{q}\right)$.

Proof. This pairing is clearly homogeneous. For any double posets P and Q, the map from $S^{\prime}(P, Q)$ to $S^{\prime}(Q, P)$ sending σ to its inverse is a bijection and conserves the length: this implies that the $\langle P, Q\rangle_{q}^{\prime}=\langle Q, P\rangle_{q}^{\prime}$.

Let P, Q, R be three double posets. There is a bijection:

$$
\Theta:\left\{\begin{aligned}
\operatorname{Bij}(P Q, R) & \longrightarrow \bigcup_{I \subseteq R} \operatorname{Bij}(P, R \backslash I) \times \operatorname{Bij}(Q, I) \\
\sigma & \longrightarrow\left(\sigma_{\mid P}, \sigma_{\mid Q}\right),
\end{aligned}\right.
$$

with $I=\sigma(Q)$. Let us first prove that $\sigma \in S^{\prime}(P Q, R)$ if, and only if, I is a h-ideal of R and $\left(\sigma_{1}, \sigma_{2}\right) \in S^{\prime}(P, R \backslash I) \times S^{\prime}(Q, I)$.
\Longrightarrow. Let $x^{\prime} \in I$ and let $y^{\prime} \in R$ such that $x^{\prime} \leq_{h} y^{\prime}$. We put $x^{\prime}=\sigma(x)$ and $y^{\prime}=\sigma(y)$. As $\sigma \in S^{\prime}(P Q, R), x \leq y$. As $x \in Q, y \in Q$, so $y^{\prime} \in I: I$ is a h-ideal of R. By restriction, $\sigma_{\mid P} \in S^{\prime}(P, R \backslash I)$ and $\sigma_{\mid Q} \in S^{\prime}(Q, I)$.
\Longleftarrow. Let us assume that $x \leq_{h} y$ in $P Q$. Then $x, y \in P$ or $x, y \in Q$. As $\sigma_{\mid P} \in S^{\prime}(P, R \backslash I)$ and $\sigma_{\mid Q} \in S^{\prime}(Q, I), \sigma(x) \leq \sigma(Q)$ in R. Let us assume that $\sigma(x) \leq_{h} \sigma(y)$ in R. As I is a h-ideal, there are two possibilities:

- $\sigma(x), \sigma(y) \in R \backslash I$ or $\sigma(x), \sigma(y) \in I$. Hence, $x, y \in P$ or $x, y \in Q$. As $\sigma_{\mid P} \in S^{\prime}(P, R \backslash I)$ and $\sigma_{\mid Q} \in S^{\prime}(Q, I), x \leq y$ in $P Q$.
- $\sigma(x) \in R \backslash I$ and $\sigma(y) \in I$. Hence, $x \in P$ and $y \in Q$, so $x \leq y$ in $P Q$.

Finally, we obtain a bijection:

$$
\Theta:\left\{\begin{array}{rll}
S^{\prime}(P Q, R) & \longrightarrow & \bigcup^{I} \text {-ideal of } R \\
& S^{\prime}(P, R \backslash I) \times S^{\prime}(Q, I) \\
\sigma & \longrightarrow & \left(\sigma_{\mid P}, \sigma_{\mid Q}\right),
\end{array}\right.
$$

Let $\sigma \in S^{\prime}(P Q, R)$ and we put $\Theta(\sigma)=\left(\sigma_{1}, \sigma_{2}\right)$. Let $R \backslash I=\left\{i_{1}, \ldots, i_{k}\right\}$ and $I=\left\{j_{1}, \ldots, j_{l}\right\}$. Let $\zeta \in \mathfrak{S}_{k+l}$ defined by $\zeta(1)=i_{1} \ldots, \zeta(k)=i_{k}, \zeta(k+1)=j_{1}, \ldots, \zeta(k+l)=j_{l}$. Then ζ is a (k, l)-shuffle and $\sigma=\zeta \circ\left(\sigma_{1} \otimes \sigma_{2}\right)$, so $l(\sigma)=l(\zeta)+l\left(\sigma_{1}\right)+l\left(\sigma_{2}\right)$. Moreover:

$$
l(\zeta)=\sharp\left\{(p, q) \mid j_{q}<i_{p}\right\}=\sharp\{(i, j) \in(R \backslash I) \times I \mid j<i\}=r_{I}^{R \backslash I}+h_{I}^{R \backslash I}=r_{I}^{R \backslash I}
$$

as I is a h-ideal of R. Finally, $l(\sigma)=l\left(\sigma_{1}\right)+l\left(\sigma_{2}\right)+r_{I}^{R \backslash I}$. Moreover, if $n=|R|$ and $|i|=k$,

$$
h_{R \backslash I}^{I}+r_{R \backslash I}^{I}+r_{I}^{R \backslash I}=h_{R \backslash I}^{I}+r_{R \backslash I}^{I}+h_{I}^{R \backslash I}+r_{I}^{R \backslash I}=k(n-k),
$$

so:

$$
\begin{aligned}
& h_{R \backslash I}^{I}+r_{R \backslash I}^{I}+\frac{k(k-1)}{2}+\frac{(n-k)(n-k-1)}{2} \\
= & k(n-k)+\frac{k(k-1)}{2}+\frac{(n-k)(n-k-1)}{2}-r_{I}^{R \backslash I} \\
= & \frac{n(n-1)}{2}-r_{I}^{R \backslash I} .
\end{aligned}
$$

Finally:

$$
\begin{aligned}
\langle P, Q\rangle_{q}^{\prime} & =\sum_{\sigma \in S^{\prime}(P Q, R)} q_{1}^{\frac{n(n-1)}{2}-l(\sigma)} q_{4}^{l(\sigma)} \\
& =\sum_{I}^{l} \sum_{\text {-ideal of } R} \sum_{\sigma_{1} \in S^{\prime}(P, R \backslash I), \sigma_{2} \in S^{\prime}(Q, I)} q_{1}^{\frac{n(n-1)}{2}-l\left(\sigma_{1}\right)-l\left(\sigma_{2}\right)-r_{I}^{R \backslash I}} q_{4}^{l\left(\sigma_{1}\right)+l\left(\sigma_{2}\right)+r_{I}^{R \backslash I}} \\
& =\sum_{I h \text {-ideal of } R} \sum_{\sigma_{1} \in S^{\prime}(P, R \backslash I), \sigma_{2} \in S^{\prime}(Q, I)} q_{1}^{h_{R \backslash I}^{I}+r_{R \backslash I}^{I}+\frac{k(k-1)}{2}+\frac{(n-k)(n-k-1)}{2}} q_{4}^{l\left(\sigma_{1}\right)+l\left(\sigma_{2}\right)+r_{I}^{R \backslash I}} \\
& =\sum_{I h \text {-ideal of } R} q_{1}^{h_{R \backslash I}^{I}+r_{R \backslash I}^{I}} q_{4}^{r_{I}^{R \backslash I}}\langle P, R \backslash I\rangle_{q}^{\prime}\langle Q, I\rangle_{q}^{\prime} \\
& =\left\langle P \otimes Q, \Delta_{q}(R)\right\rangle_{q}^{\prime} .
\end{aligned}
$$

So this pairing is a Hopf pairing on \mathcal{H}_{q}.
Remark. In particular, $\langle-,-\rangle_{(1,0,1,1)}^{\prime}$ is the pairing $\langle-,-\rangle^{\prime}$ of the section 1.
Examples. Here are the matrices of the pairing $\langle-,-\rangle_{q}^{\prime}$ restricted to $\mathcal{H}_{q}(n)$, for $n=1,2,3$.

	1	V	\wedge	1.	. 1	...
1	q_{1}^{3}	q_{1}^{3}	q_{1}^{3}	q_{1}^{3}	q_{1}^{3}	q_{1}^{3}
V	q_{1}^{3}	$q_{1}^{2}\left(q_{1}+q_{4}\right)$	q_{1}^{3}	$q_{1}^{2}\left(q_{1}+q_{4}\right)$	q_{1}^{3}	$q_{1}^{2}\left(q_{1}+q_{4}\right)$
\wedge	q_{1}^{3}	q_{1}^{3}	$q_{1}^{2}\left(q_{1}+q_{4}\right)$	q_{1}^{3}	$q_{1}^{2}\left(q_{1}+q_{4}\right)$	$q_{1}^{2}\left(q_{1}+q_{4}\right)$
1.	q_{1}^{3}	$q_{1}^{2}\left(q_{1}+q_{4}\right)$	q_{1}^{3}	$q_{1}^{2}\left(q_{1}+q_{4}\right)$	$q_{1}\left(q_{1}^{2}+q_{1}^{4}\right)$	$q_{1}\left(q_{1}^{2}+q_{1} q_{4}+q_{4}^{2}\right)$
. 1	q_{1}^{3}	q_{1}^{3}	$q_{1}^{2}\left(q_{1}+q_{4}\right)$	$q_{1}\left(q_{1}^{2}+q_{1}^{4}\right)$	$q_{1}^{2}\left(q_{1}+q_{4}\right)$	$q_{1}\left(q_{1}^{2}+q_{1} q_{4}+q_{4}^{2}\right)$
\ldots	q_{1}^{3}	$q_{1}^{2}\left(q_{1}+q_{4}\right)$	$q_{1}^{2}\left(q_{1}+q_{4}\right)$	$q_{1}\left(q_{1}^{2}+q_{1} q_{4}+q_{4}^{2}\right)$	$q_{1}\left(q_{1}^{2}+q_{1} q_{4}+q_{4}^{2}\right)$	$\left(q_{1}+q_{4}\right)\left(q_{1}^{2}+q_{1} q_{4}+q_{4}^{2}\right)$

Proposition 39 For all $x, y, z \in \mathcal{H}_{q},\langle x \nless y, z\rangle_{q}^{\prime}=\left\langle x \otimes y, \Delta_{\left(q_{1}, 0, q_{1}, 0\right)}(z)\right\rangle_{q}^{\prime}$.
Proof. Let $P, Q, R \in \mathcal{P P}$. We consider the following map:

$$
\Theta:\left\{\begin{aligned}
B i j(P \nmid Q, R) & \longrightarrow \bigcup_{I \subseteq R} B i j(P, R \backslash I) \times \operatorname{Bij}(Q, I) \\
\sigma & \longrightarrow\left(\sigma_{\mid P}, \sigma_{\mid Q}\right),
\end{aligned}\right.
$$

with $I=\sigma(Q)$. Let us first prove that $\sigma \in S^{\prime}(P Q, R)$ if, and only if, I is a biideal of R and $\left(\sigma_{1}, \sigma_{2}\right) \in S^{\prime}(P, R \backslash I) \times S^{\prime}(Q, I)$.
\Longrightarrow. Obviously, $\left(\sigma_{1}, \sigma_{2}\right) \in S^{\prime}(P, R \backslash I) \times S^{\prime}(Q, I)$. Let $x^{\prime} \in I, y^{\prime} \in R$, such that $x^{\prime} \leq y^{\prime}$. We put $x^{\prime}=\sigma(x)$ and $y^{\prime}=\sigma(y)$. If $y \notin Q$, then $y \in P$ and $x \in Q$, so $y<_{h} x$. As $\sigma \in S^{\prime}(P$ 亿 $Q, R)$, $y^{\prime}<x^{\prime}$: contradiction. So $y \in Q$ and $y^{\prime} \in I$.
\Longleftarrow. Let $x, y \in P$ 名 Q, such that $x \leq_{h} y$. Two cases are possible.

- If $x, y \in P$ or $x, y \in Q$, as $\left(\sigma_{1}, \sigma_{2}\right) \in S^{\prime}(P, R \backslash I) \times S^{\prime}(Q, I), \sigma(x) \leq \sigma(y)$ in R.
- If $x \in P$ and $y \in Q$, as $I=\sigma(Q)$ is a biideal, it is not possible to have $y \leq x$, so $x \leq y$.

Let $x, y \in P \not\left\{Q\right.$, such that $\sigma(x) \leq_{h} \sigma(y)$ in R. As $I=\sigma(Q)$ is a biideal, two cases are possible.

- If $x, y \in P$ or $x, y \in Q$, as $\left(\sigma_{1}, \sigma_{2}\right) \in S^{\prime}(P, R \backslash I) \times S^{\prime}(Q, I), x \leq y$ in $P \not z Q$.
- If $x \in P$ and $y \in Q$, then $x \leq y$ in $P \nless Q$.

Moreover, if $I=\sigma(Q)$ is a biideal of R, then $I=\{k+1, \ldots, k+l\} \subseteq R$, where $k=|P|$ and $l=|Q|$. Then $\sigma=\sigma_{1} \otimes \sigma_{2}$, so $l(\sigma)=l\left(\sigma_{1}\right)+l\left(\sigma_{2}\right)$. So, with $n=|R|$:

$$
\begin{aligned}
\langle P \swarrow Q, R\rangle_{q}^{\prime} & =\sum_{I \text { biideal of } R} \sum_{\sigma_{1} \in S^{\prime}(P, R \backslash I), \sigma_{2} \in S^{\prime}(Q, I)} q_{1}^{\frac{n(n-1)}{2}-l\left(\sigma_{1}\right)-l\left(\sigma_{2}\right)} q_{4}^{l\left(\sigma_{1}\right)+l\left(\sigma_{2}\right)} \\
& =\sum_{I \text { biideal of } R} q_{1}^{\frac{n(n-1)}{2}-\frac{k(k-1)}{2}-\frac{(n-k)(n-k-1)}{2}}\langle P \otimes Q,(R \backslash I) \otimes I\rangle_{q}^{\prime} \\
& =\sum_{I \text { biideal of } R} q_{1}^{(n-k) k}\langle P \otimes Q,(R \backslash I) \otimes I\rangle_{q}^{\prime} \\
& =\sum_{I \text { biideal of } R} q_{1}^{|R \backslash I| \cdot|I|}\langle P \otimes Q,(R \backslash I) \otimes I\rangle_{q}^{\prime} \\
= & \sum_{I \text { biideal of } R} q_{1}^{h_{R \backslash I}^{I}+r_{R \backslash I}^{I}}\langle P \otimes Q,(R \backslash I) \otimes I\rangle_{q}^{\prime} \\
= & \left\langle P \otimes Q, \Delta_{\left(q_{1}, 0, q_{1}, 0\right)}(R)\right\rangle_{q}^{\prime},
\end{aligned}
$$

with the observation that, as I is a biideal, $h_{I}^{R \backslash I}=r_{I}^{R \backslash I}=0$, so $|R \backslash I| \cdot|I|=h_{R \backslash I}^{I}+r_{R \backslash I}^{I}$.
Remark. In particular, for all $x, y, z \in \mathcal{H}_{\mathcal{P P}},\langle x \nless y, z\rangle^{\prime}=\left\langle x \otimes y, \Delta_{(1,0,1,0)}(z)\right\rangle^{\prime}$. This formula was already proved in [3].

5.2 Quantization of the Hopf algebra of free quasi-symmetric functions

Theorem 40 1. We define a coproduct on FQSym in the following way: for all $\sigma \in \mathfrak{S}_{n}$,

$$
\Delta_{q}(\sigma)=\sum_{k=0}^{n} q_{1}^{k(n-k)-l(\sigma)+l\left(\sigma_{k}^{(1)}\right)+l\left(\sigma_{k}^{(2)}\right)} q_{4}^{l(\sigma)-l\left(\sigma_{k}^{(1)}\right)-l\left(\sigma_{k}^{(2)}\right)} \sigma_{k}^{(1)} \otimes \sigma_{k}^{(2)}
$$

For all $q \in K, \mathbf{F Q S y m}_{q}=\left(\mathbf{F Q S y m}, m, \Delta_{q}\right)$ is a graded braided Hopf algebra.
2. One defines a Hopf pairing on $\mathbf{F Q S y m}_{q}$ by $\langle\sigma, \tau\rangle^{\prime}=q_{1}^{\frac{n(n-1)}{2}-l(\sigma)} q_{4}^{l(\sigma)} \delta_{\sigma, \tau^{-1}}$.
3. The following map is an isomorphism of braided Hopf algebras:

$$
\Theta:\left\{\begin{array}{rl}
\mathcal{H}_{q} & \longrightarrow \mathbf{F Q S y m}_{q} \\
P \in \mathcal{P P} & \longrightarrow
\end{array} \sum_{\sigma \in S_{P}} \sigma .\right.
$$

Moreover, for all $x, y \in \mathcal{H}_{q},\langle\Theta(x), \Theta(y)\rangle_{q}^{\prime}=\langle x, y\rangle_{q}^{\prime}$.

Remarks.

1. Let $\sigma \in \mathfrak{S}_{n}$. If $0 \leq k \leq n$, we put $\sigma(\{1, \ldots, k\})=\left\{i_{1}, \ldots, i_{k}\right\}$ and $\sigma(\{k+1, \ldots, n\})=$ $\left\{j_{1}, \ldots, j_{l}\right\}$. Let ζ be the (k, l)-shuffle defined by $\zeta(1)=i_{1} \ldots, \zeta(k)=i_{k}, \zeta(k+1)=$ $j_{1}, \ldots, \zeta(k+l)=j_{l}$. Then $\sigma=\zeta \circ\left(\sigma_{k}^{(1)} \otimes \sigma_{k}^{(2)}\right)$, and $l(\sigma)=l(\zeta)+l\left(\sigma_{k}^{(1)}\right)+l\left(\sigma_{k}^{(2)}\right)$. Moreover, $0 \leq l(\zeta) \leq k(n-k)$, so:

$$
0 \leq l(\sigma)-l\left(\sigma_{k}^{(1)}\right)-l\left(\sigma_{k}^{(2)}\right) \leq k(n-k)
$$

As a consequence, the coproduct on FQSym_{q} is well-defined, even if $q_{1}=0$ or $q_{4}=0$.
2. It is clear that the pairing $\langle-,-\rangle_{q}^{\prime}$ defined on $\mathbf{F Q S y m}_{q}$ is non degenerate if, and only if, $q_{1} \neq 0$ and $q_{2} \neq 0$.

Proof. We already know that Θ is an algebra isomorphism. Moreover, it is also proved there that $S^{\prime}(P, Q)=S(P) \cap S(Q)^{-1}$ for any $P, Q \in P P$, so:

$$
\begin{aligned}
\langle\Theta(P), \Theta(Q)\rangle_{q}^{\prime} & =\sum_{\sigma \in S(P), \tau \in S(Q)}\langle\sigma, \tau\rangle_{q}^{\prime} \\
& =\sum_{\sigma \in S(P), \tau \in S(Q)} q_{1}^{\frac{n(n-1)}{2}-l(\sigma)} q_{4}^{l(\sigma)} \delta_{\sigma, \tau^{-1}} \\
& =\sum_{\sigma \in S(P) \cap S(Q)^{-1}} q^{\frac{n(n-1)}{2}-l(\sigma)} q_{4}^{l(\sigma)} \\
& =\sum_{\sigma \in S^{\prime}(P, Q)} q_{1}^{\frac{n(n-1)}{2}-l(\sigma)} q_{4}^{l(\sigma)} \\
& =\langle P, Q\rangle_{q}^{\prime} .
\end{aligned}
$$

So Θ is an isometry.
As a consequence, for all $x \in \mathcal{H}_{q}, y, z \in \mathbf{F Q S y m}_{q}$:

$$
\begin{aligned}
\langle\Delta \circ \Theta(x), y \otimes z\rangle_{q}^{\prime} & =\langle\Theta(x), y z\rangle_{q}^{\prime} \\
& =\left\langle x, \Theta^{-1}(y z)\right\rangle_{q}^{\prime} \\
& =\left\langle x, \Theta^{-1}(y) \Theta^{-1}(z)\right\rangle_{q}^{\prime} \\
& =\left\langle\Delta_{q}(x), \Theta^{-1}(y) \otimes \Theta^{-1}(z)\right\rangle_{q}^{\prime} \\
& =\left\langle(\Theta \otimes \Theta) \circ \Delta_{q}(x), y \otimes z\right\rangle_{q}^{\prime} .
\end{aligned}
$$

Let us now assume that $q_{1}, q_{4} \neq 0$. Then the pairing $\langle-,-\rangle_{q}^{\prime}$ on $\mathbf{F Q S y m}_{q}$ is non-degenerate, so $\Delta \circ \Theta=(\Theta \otimes \Theta) \circ \Delta$. Hence, Θ is an isometric isomorphism of braided Hopf algebras. This proves the three points immediately.

Up to an extension, we can assume that K is infinite. It is not difficult to show that the set A of elements $\left(q_{1}, q_{4}\right) \in K^{2}$ such that the three points are satisfied is given by polynomial equations with coefficients in \mathbb{Z}, As it contains $(K-\{0\})^{2}$ from the preceding observations, which is dense in K^{2}, it is is equal to K^{2}, so the result also holds for any $\left(q_{1}, q_{4}\right)$.

Corollary 41 The pairing $\langle-,-\rangle_{q}^{\prime}$ is non-degenerate if, and only if, $q_{1} \neq 0$ and $q_{4} \neq 0$.
Proof. As the isometric pairing $\langle-,-\rangle_{q}^{\prime}$ on $\mathbf{F Q S y m}_{q}$ is non-degenerate if, and only if, $q_{1} \neq 0$ and $q_{4} \neq 0$.

References

[1] Gérard Duchamp, Florent Hivert, and Jean-Yves Thibon, Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput. 12 (2002), no. 5, 671-717, arXiv:math/0105065.
[2] Loïc Foissy, Algebraic structures on double and plane posets, to be published in Journal of Algebraic Combinatorics, arXiv:1101.5231, 2011.
[3] _ Plane posets, special posets, and permutations, arXiv:1109.1101, 2011.
[4] Loïc Foissy and Jeremie Unterberger, Ordered forests, permutations and iterated integrals, Int. Math. Res. Notices (2012), doi: 10.1093/imrn/rnr273 F, arXiv:1004.5208.
[5] James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990.
[6] Jean-Louis Loday and María Ronco, On the structure of cofree Hopf algebras, J. Reine Angew. Math. 592 (2006), 123-155, arXiv:math/0405330.
[7] Clauda Malvenuto and Christophe Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967-982.
[8] Claudia Malvenuto and Christophe Reutenauer, A self-dual Hopf algebra on double partially ordered sets, arXiv:0905.3508.

