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Abstract. This paper presents a geometrical method for solving the
overdetermined Nonnegative Blind Source Separation (N-BSS) problem.
Considering each column of the mixed data as a point in the data space,
we develop a Simplicial Cone Shrinking Algorithm for Unmixing Nonneg-
ative Sources (SCSA-UNS). The proposed method estimates the mixing
matrix and the sources by fitting a simplicial cone to the scatter plot
of the mixed data. It requires weak assumption on the sources distri-
bution, in particular the independence of the different sources is not
necessary. Simulations on synthetic data show that SCSA-UNS outper-
forms other existing geometrical methods in noiseless case. Experiment
on real Dynamic Positon Emission Tomography (PET) images illustrates
the efficiency of the proposed method.

Keywords: Blind Source Separation, Nonnegativity, Simplicial Cone,
Minimum Volume, Facet.

1 Introduction

We deal with the problem of Nonnegative Blind Source Separation (N-BSS) in
noiseless, linear intantaneous mixture case. The mixture model is given by:

X
m×p

= A
m×n

S
n×p

(1)

wherem is the number of observations,n is the number of sources and p is the num-
ber of samples.X ,A and S are respectively the given observations matrix, the un-
known mixing matrix and the hidden nonnegative sources matrix. N-BSS consists
on retrieving S andA given onlyX . Possible directions for solving problem (1) are
the geometrical approaches. These methods are very natural and intuitive and re-
quire weak assumption on the sources distribution. The first geometrical method
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was introduced by Puntonet et al. [1] for separating two sources having bounded
probability density functions. The mixing matrix is retrieved by finding the slopes
of the parallelogram containing the scatter plot of mixed data. Babaie-Zadeh et
al. [2] propose another geometrical method applicable to more than two sources
based on clustering the observations points and fitting a line (hyper-plane) to each
cluster to recover the mixing matrix. By assuming the (very strong) condition lo-
cal dominance of the sources (i.e. for every source there is at least one instant
where the underlined source is active and all the others are not), several authors
propose estimating the mixing matrix by looking for the vertices of the convex hull
of the scatter plot of mixed data [3][4]. These methods can unfortunately be very
slow and demanding very large size samples, specially for large scale problem due
to the convex hull computing. Noting that when the sources are nonnegative, the
scatter plot of mixed data is contained in the simplicial cone generated by the mix-
ing matrix, other geometrical methods were proposed for solving problem (1) by
looking for the Minimum Volume (MV) simplicial cone containing the mixed data
[5][6]. MV like methods do not require local dominance of sources. But the sim-
plicial cone generated by the mixing matrix must be well recognizable from the
scatter plot of mixed data. This weaker condition implies that there should be at
least n−1mixed data points on, or close to, each facet of this cone. It’s also neces-
sary to specify that beside the nonnegativity, someMV like methods developed for
hyperspectral data processing [5][6] require full additivity of the sources (i.e.
the sum on every column of the sources matrix is equal to one).

This paper presents a MV like method for solving overdetermined N-BSS
problem called Simplicial Cone Shrinking Algorithm for Unmixing Nonnegative
Sources (SCSA-UNS). This work establishes an extension of [9] in which we only
consider the determined case with nonnegative mixing matrix. Section 2 reviews
the geometrical view of the N-BSS problem and derives the main idea of MV like
methods. In section 3, we describe the proposed SCSA-UNS method. Section 4
presents simulation results on synthetic data and real Dynamic Positon Emission
Tomography (PET) data and comparisons with other MV like methods. Finally
section 5 presents the conclusions and future works.

2 Geometrical View of N-BSS Problem

Let’s review the geometrical view of the N-BSS problem we described in [9]. For a
given matrix W = [w1, w2, · · · , wn], we define the Simplicial Cone Span+(W )
generated by W by :

Span+(W ) =
{
z z = Wy with y ∈ R

n
+

}
(2)

We also define the positive orthant R
n
+ as being the simplicial cone generated

by the identity matrix In: R
n
+ = Span+(In)

By considering each column xi of X (1 ≤ i ≤ p) as a point in the n dimension
data space, it comes that when the sources are nonnegative, the mixed data form
a cloud of points contained in the simplicial cone generated by the mixing matrix.

{xi xi ∈ X, 1 ≤ i ≤ p} ⊆ Span+(A) (3)
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One can thus imagine to estimate A (up to the classical (positive here) scal-
ing and permutation BSS indetermination’s) by finding a simplicial cone con-
taining all the mixed data. But without any additional condition there is an
infinite number of such cones. So for recovering the mixing matrix, we require
the scatter plot of the mixed data to fill enough Span+(A) and we look for
the Minimum Volume (i.e. the smallest) simplicial cone containing the mixed
data [7]. Filling enough means that Span+(A) must be well recognizable from
{xi, xi ∈ X, 1 ≤ i ≤ p} (i.e. there should be at least n− 1 mixed data points on,
or close to, each facet of Span+(A) [8]). This intuitive and natural condition
will be defined more formally in a future work.

3 Geometrical Method Using Simplicial Cones for
Overdetermined Nonnegative Blind Source Separation

3.1 Determined Case : Simplicial Cone Shrinking Algorithm for
Unmixing Nonnegative Sources (SCSA-UNS)

We first restrict to determined case with full column rank nonnegative mixing
matrix (i.e. m = n and A ≥ 0). This case is considered in [9]. SCSA-UNS aims at
estimating A by finding the Minimum Volume simplicial cone containing all the
mixed data. In this objective, we propose a criterion for measuring the volume
of a given simplicial cone and an algorithm to minimize this criterion.

Proposed Criterion : We define V (W ), the volume of a simplicial cone
Span+(W ) generated by a given square matrix W = [w1, w2, · · · , wn], where
wi is the i-th column of W , by :

V (W ) =
|det(W )|

‖w1‖ × ‖w2‖ × · · · × ‖wn‖ (4)

V (W ) strictly represents the “aperture” of the simplicial cone Span+(W ), it is
positive and upper bounded by 1 (Hadamard’s Inequality).
The task of estimating the mixing matrix can then be reduced to solving the
following optimization problem:

W ∗ = argmin
W≥0, W−1X≥0

V (W ) (5)

Proposed Algorithm : We define the Rl
k like matrices by :

Rl
k =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

1 0 · · · 0 rl1k 0 · · · 0
0 1 · · · 0 rl2k 0 · · · 0
...
...
. . .

...
...

... · · · ...
0 0 · · · 1 rlk−1k 0 · · · 0
0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 rlk+1k 1 · · · 0
...
... · · · ...

...
...
. . .

...
0 0 · · · 0 rlnk 0 · · · 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

where rlik ≥ 0, ∀ 1 ≤ i ≤ n, i �= k (6)
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Proposition 1. For a given nonnegative matrix W , the volume V (W ) of Span+(W )
decreases when W is multiplied to the right by Rl

k, ∀ l and ∀ 1 ≤ k ≤ n.

Proof. For fixed l, fixed k (1 ≤ k ≤ n) and a given nonnegative square ma-
trix W = [w1, w2, · · · , wn], let U = WRl

k (U = [u1, u2, · · · , un]). The task is
to demonstrate that V (U) ≤ V (W ):
1. |det(U)| = ∣∣det(WRl

k)
∣
∣ = |det(W )| ∣∣det(Rl

k)
∣
∣ = |det(W )| because det(Rl

k) = 1
2. ∀ j �= k, uj = wj =⇒ ‖uj‖ = ‖wj‖
3. For j = k, ∀ 1 ≤ i ≤ n, uik = wik +

∑n
q=1,q �=k wiqr

l
qk ≥ wik because wiq and

rlqk are all nonnegative. Therefore (uik)
2 ≥ (wik)

2 which leads to ‖uk‖ ≥ ‖wk‖
According to the definition of the volume of a simplicial cone given by (4), 1.,
2. and 3. allow us to conclude that V (U) ≤ V (W )

For solving problem (5), SCSA-UNS starts from an initial simplicial cone con-
taining all the mixed data (typically, the positive orthant Span+(In)) and itera-
tively decreases its volume by performing several sweeps of n right-multiplications
of the matrix which generated this initial cone (W0 = In) by the Rl

k matrices
(1 ≤ k ≤ n). At each iteration, the matrix Rl

k is computed so to keep the mixed
data inside the new simplicial cone. Details for computing the Rl

k are given in Ap-
pendix 1. Let W ≥ 0 be the matrix which generated the current simplicial cone
(W is the current estimation of the mixing matrix and Y = W−1X ≥ 0 is the
current estimation of the sources). The algorithm stops when one cannot decrease
anymore V (W ) without creating negative values in Y . This often corresponds to
the convergence of W to the true mixing matrix A. However, it may happen that
V (W ) does not decrease anymore during the iterations whileW has not converged
yet to A. This freezing1 situation arises when there is at least one zero value on
each row of Y . To avoid this problem, we suggest applying, after each sweep l, an
orthogonal linear transformationQl to Y (andQT

l toW ) to delete the zeros values
of Y without increasing V (W ). The details of computing the unfreezing matrices
Ql are given in Appendix 2.

The whole estimated mixing matrix and sources are given by:

A = W0

∏

l

[(
n∏

k=1

Rl
k

)

QT
l

]

and S = A−1X (7)

3.2 Proposed Method for Overdetermined Case

When the number of observations is greater than the number of sources (m >
n), we propose to first perform a dimension reduction of the mixed data and
afterward run the SCSA-UNS algorithm on the reduced mixed data.

Dimension Reduction : The dimension reduction is performed by the classical
Principle Component Analysis (PCA). We compute the Singular Value Decom-
position (SVD) of the mixed data and we keep only the n largest singular values
and the corresponding singular vectors.

1 See Appendix 2 for more details.
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X
m×p

≈ E
m×n

F
n×n

GT

n×p
(8)

The SCSA-UNS algorithm should be executed on GT but GT is not necessarily
nonnegative, so its scatter plot is not necessarily contained in the positive or-
thant. One must then find an initial simplicial cone containing all the dimension
reduced mixed data GT , since Span+(In) is not necessarily suited any more.

Widening Procedure for Initialization : If all the observations are not non-
negative, we have developed a procedure for finding a convenient initial simplicial
cone containing all the mixed for the SCSA-UNS algorithm. This procedure is
based on widening Span+(In) by multiplying In by Dl

k matrices, with a struc-
ture similar to Rl

k, but with negative entries in order to increase the volume of
Span+(In) up to enclose all the mixed data. The details of computation of the
Dl

k are not given here due to lack of space. This widening procedure is used on
GT to compute W1 and Y1 so that:

GT

n×p
= W1

n×n
Y1
n×p

with Y1 ≥ 0 (9)

Estimating the Mixing Matrix and the Sources : The SCSA-UNS algo-
rithm is finally executed on Y1 to give Y1

n×p
= W2

n×n
Y2
n×p

.

The whole mixing matrix and sources are estimated by:

A
m×n

≈ E
m×n

F
n×n

W1
n×n

W2
n×n

and S
n×p

≈ Y2
n×p

(10)

4 Simulations and Discussions

Case 1: Synthetic Data
The proposed method is first evaluated on synthetic data and compared with
two other MV methods: MVSA [5] and MVES [6]. To make sure that the mixed
data fill enough the simplicial cone generated by the mixing matrix, the non-
negative sources have been generated using “random sparse uniform distribution
generator” with 64% of non-zero elements in the sources matrix. We consider
two cases: full additive sources and non full additive sources. The mixing matrix
has Gaussian random entries. We set m = 20, n = 5 and p = 10000. Comparison
criteria are the CPU time to converge T and the separation error Esep defined
by (11). The smaller Esep, the better the separation.

Esep =
1

n(n− 1)
[
∑

i

(
∑

j

∣
∣(W−1A)ij

∣
∣

maxk |(W−1A)ik| −1)+
∑

j

(
∑

i

∣
∣(W−1A)ij

∣
∣

maxk |(W−1A)kj | −1)]

(11)
Table 1 records the average performance indices for 50 independent Monte-

Carlo runs. One may note that when the sources are full additive, the three
methods perform a good separation but SCSA-UNS is faster than MVSA and
MVES. However when the sources are not full additive, SCSA-UNS still performs
a perfect separation while MVSA and MVES do not.
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Table 1. Average performance indices

Index SCSA-UNS MVSA MVES

Full additive sources Esep 3, 56.10−10 1, 23.10−12 2, 67.10−8

T (s) 0.69 2, 21 8, 37

Non full additive sources Esep 1, 54.10−9 7, 89 6, 01
T (s) 0, 83 4, 76 5, 59

Case 2: Real Dynamic Positon Emission Tomography (PET) Images
Simulations have also been performed on real Dynamic Positon Emission To-
mography (PET) data to study the pharmacokinetics of the [18F]-FDG (Fluo-
roDeoxyGlucose) tracer on human brain. The main objective is to estimate the
arterial pharmacokinetic also called Arterial Input Function (AIF) using only
the dynamic TEP images with no arterial blood sampling (rAIF) which is too
invasive for routine clinic use. The rAIF is only considered here as the reference
AIF to assess the proposed estimator accuracy. As a matter of fact, an accurate
estimation of the AIF allows a quantitative measurement which is indispensable
for an efficient treatment evaluation in oncology. We have 19 human brain PET
images recorded during 33mn. Each 3D PET image is reshaped to form one row
of the observations matrix X . The number of observations is m = 19 and the
number of samples is p = 266742. We set the number of sources to n = 4.

Fig 1 shows the pharmacokinetics compartments estimated by the SCSA-UNS
algorithm. Every subfigure represents the normalized kinetics (estimated mixing
matrix) over the first four minutes (lower left) and the corresponding spatial

(a) Arterial (b) Veinous

(c) Tissue (d) Unidentified

Fig. 1. Estimated pharmacokinetics compartments
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distributions (estimated sources) according to the three views coronal (upper
left), sagittal (upper right) and axial (lower right). Three of the estimated com-
partments are identified to be the Arterial compartment (Fig 1.a), the Veinous
one (Fig 1.b) and the Tissue one (Fig 1.c). Fig 1.a (lower left) shows that the
normalized estimated AIF correctly approximates the normalized rAIF obtained
by blood sampling, which was the main objective. However, one may note nega-
tive values on the kinetic of the unidentified compartment (lower left of Fig 1.d)
which we attribute to measure noise.

5 Conclusions an Future Works

In this paper, we present a geometrical method for separating nonnegative
sources. In overdetermined case, the proposed method first reduces the dimension
of mixed data by performing the classical PCA and afterward runs the SCSA-
UNS algorithm on the reduced data. The SCSA-UNS algorithm, estimates the
mixing matrix by fitting a minimum volume simplicial cone to the scatter plot
of observations. Unlike other geometrical methods that require local dominance
or full additivity of the sources, SCSA-UNS only requires the mixed data to
fill enough the simplicial cone generated by the mixing matrix. Simulations on
synthetic data have showned that the proposed method always performs a good
separation in noiseless case and runs faster than other MV methods. The pro-
posed method also gave very promising results on real Dynamic PET images.
As future works, we will investigate how to avoid the freezing situations without
having to compute unfreezing matrices and we will consider the noisy case.
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Appendix 1: Computing Rl
k

W ≥ 0 and Y = W−1X ≥ 0 are the current estimations of A and S at iteration
k − 1 of sweep l, respectively. At iteration k, we look for a matrix Rl

k, so that
U = WRl

k verify the following three conditions:
i) U ≥ 0
ii) V (U) ≤ V (W )
iii) Z = U−1X ≥ 0

(
Z = U−1X = (Rl

k)
−1W−1X = (Rl

k)
−1Y

)

The first two conditions are automatically satisfied because W and Rl
k are non-

negative and due to Proposition 1. From the definition of Rl
k given by (6), one

may demonstrate that [Z]ij = [Y ]ij − rlik[Y ]kj , ∀ 1 ≤ i ≤ n, ∀ 1 ≤ j ≤ p. For

fixed i, [Z]ij ≥ 0 ⇔ rlik ≤ [Y ]ij
[Y ]kj

, ∀ 1 ≤ j ≤ p.

A convenient Rl
k matrix can then be computed by taking:

rlkk = 1 and rlik = min
1≤j≤p

[Y ]ij
[Y ]kj

, [Y ]kj �= 0, for i �= k (12)

Appendix 2: Computing the Unfreezing Matrix Ql

Before giving details of computation of the unfreezing matrix Ql, lets explain
how arises the freezing situation. Given W ≥ 0 and Y = W−1X ≥ 0 the current
estimated mixing matrix sources respectively and U = WRl

k:
V (U) = V (W ) ⇔ Rl

k = In ⇐⇒ rlik = δik. For i �= k and according to (12),
rlik = 0 ⇐⇒ ∃ 1 ≤ j ≤ p so [Y ]ij = 0 and [Y ]kj �= 0.

The freezing arises if, at sweep l, the algorithm finds Rl
k = In, ∀ 1 ≤ k ≤ n.

This situation happens when there are at least one zero value on each row of the
current estimated sources matrix (i.e. when ∀ 1 ≤ i ≤ n, ∃ 1 ≤ j ≤ p, [Y ]ij = 0).
To avoid this problem, we suggest applying an orthogonal linear transformation
Ql to Y (and QT

l to W ) to delete the zeros values of Y without increasing V (W ).
We then introduce the unfreezing matrix Ql so that X = WQT

l QlY = HT . The
current estimated mixing matrix and sources become H = WQT

l and T = QlY .
We look for a matrix Ql so that QT

l Ql = In and T > 0.
For findind such a Ql matrix, we define the criterion J by:

J(Q) =
n∑

i=1

p∑

j=1

1Tij where 1Tij =

{
1 if Tij = 0
0 elsewhere

(13)

The unfreezing matrix Ql can be computed by solving the following equation:

Ql = argmin
QTQ=In

J(Q) (14)

We developed a regularized gradient algorithm for solving the optimization prob-
lem (14) [9] but this method is not described here due to lack of space.
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