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Abstract. In this work, we deal with the problem of nonlinear blind
source separation (BSS). We propose a new method for BSS in overde-
termined linear-quadratic (LQ) mixtures. By exploiting the assumption
that the sources are sparse in a transformed domain, we define a frame-
work for canceling the nonlinear part of the mixing process. After that,
separation can be conducted by linear BSS algorithms. Experiments with
synthetic data are performed to assess the viability of our proposal.
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1 Introduction

In blind source separation (BSS), the goal is to retrieve a set of signals (sources)
based only on the observation of mixed versions of these original sources [1,2].
Typically, the methods developed to solve this problem work with the assumption
that the mixing process can be modeled as a linear system. However, while
this framework has been proven successful in many applications, there are some
practical examples in which the mixtures are clearly nonlinear — this is the case,
for instance, in chemical sensor arrays [3] and hyperspectral imaging [4].

Several works have already pointed out some problems that arise when the
mixtures are nonlinear (see [5] for a discussion). In particular, the application
of methods based on independent component analysis (ICA) [6], which assumes
that the sources are mutually statistically independent random variables, is not
valid in a general nonlinear system. In view of this problem, the research on
nonlinear BSS has been focused on constrained models, for which the task of
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source separation can be accomplished by extending the ideas already considered
in the linear case. Among the constrained nonlinear models studied so far is the
linear-quadratic (LQ) model [7,4]. This model provides a good description of the
mixing process in applications such as show-through effect removal in scanned
images [8] and design of gas sensor arrays [9]. Besides, the LQ model presents
two interesting properties: 1) it can be seen as a first step toward more general
polynomial mixtures; 2) it is linear with respect to the mixing coefficients.

When the number of sources is equal to the number of mixtures in an LQ
model, the definition of a separating structure is not a simple task, given the
difficulty in writing the inverse of the mixing process in an analytical form [7,10].
However, in an overdetermined case, in which the number of mixtures is greater
than the number of sources, separation can be achieved by means of a linear
structure. This idea has already been exploited in the context of sources belong-
ing to a finite alphabet [11], circular sources [12], non-stationary sources [13] and
independent sources [14].

In the present work, we tackle the problem of BSS in overdetermined mixtures
assuming that the sources admit a sparse representation in a given basis. By
using this property, we propose a strategy to cancel the nonlinear part of the
LQ mixing process, so that the resulting problem can be dealt with by linear
BSS algorithms. Since our approach for dealing with the nonlinear terms does
not rely on the independence assumption, it is possible to tackle problems in
which ICA methods fail. Of course, this can be done if the adopted linear BSS
method is able to work with dependent mixtures.

2 Mixing Model

Let sj = [sj(1) . . . sj(nd)]
T represent j-th source (nd is the number of samples).

In the present work, we consider the case of ns = 2 sources, which is represen-
tative in applications such as the design of gas sensor arrays and separation of
scanned mixtures. In this case, the i-th mixture can be represented by the vector

xi = ai1s1 + ai2s2 + ai3s1 ◦ s2, (1)

where ◦ stands for the element-wise product operator (Hadamard product), while
the mixing coefficients are denoted by aij .

An interesting aspect of (1) is that it can be interpreted as a linear mixing
process in which the sources are given by s1, s2 and s1 ◦ s2. Therefore, in an
overdetermined case, with three mixtures given by

⎡
⎣
x1(n)
x2(n)
x3(n)

⎤
⎦ =

⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦
⎡
⎣

s1(n)
s2(n)

s1(n)s2(n)

⎤
⎦ , ∀n ∈ {1, . . . , nd}, (2)

it is possible to achieve source separation by means of a linear separating system,
in which the recovered sources are given by

[
y1(n)
y2(n)

]
=

[
w11 w12 w13

w21 w22 w23

]⎡
⎣
x1(n)
x2(n)
x3(n)

⎤
⎦ , ∀n ∈ {1, . . . , nd}. (3)
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As will be discussed in the sequel, source separation in this case can be per-
formed by firstly canceling the nonlinear elements of the mixtures, followed by
the application of a linear BSS method.

3 Sparsity-Based Cancellation of Quadratic Terms

3.1 The Main Idea

Since we have access to, at least, three mixtures, it is possible to linearly combine
them in order to extract the quadratic term expressed in (2). Let us consider
the linear combination between the mixtures xi and xj :

zij = xi − αijxj , (4)

where the index ij corresponds to the mixtures considered in the combination.
According to (1), zij can be rewritten as follows

zij = (ai1 − αijaj1)s1 + (ai2 − αijaj2)s2 + (ai3 − αijaj3)s1 ◦ s2 (5)

Therefore, when αij = ai3/aj3, zij becomes a linear mixture of s1 and s2.
The implementation of the idea described above requires the definition of a

criterion to guide the estimation of αij . A possible idea to accomplish this task
can be formulated by rewriting (5) in a transformed domain, which is achieved
by multiplying zij by the nd × nd orthonormal matrix Φ that represents such a
transformation. In mathematical terms,

z′ij = Φzij = (ai1 − αijaj1)Φs1 + (ai2 − αijaj2)Φs2 + (ai3 − αijaj3)Φ(s1 ◦ s2)
= (ai1 − αijaj1)s

′
1 + (ai2 − αijaj2)s

′
2 + (ai3 − αijaj3)Φ(s1 ◦ s2),

(6)
where s′i is the representation in the transformed domain of the source si.

Let us consider for instance that the orthonormal matrix Φ is related to a
frequency transformation, e.g. the discrete cosine transform (DCT). Moreover,
let us assume that both s′1 and s′2 are sparse vectors, in the sense that not all
frequency components of these signals are not null. Note that the term Φ(s1◦s2)
in (6) is related to the convolution of s′1 and s′2, since it is given by the DCT
transform of a product in time. The key point here is that the convolution of s′1
and s′2 tends to produce a signal that is not sparse, or at least less sparse than
s′1 and s′2, as the nonlinear term causes a spreading in the frequency domain
— this feature is illustrated in Figure 1. Based on this observation, our idea
is to adjust αij by maximizing the degree of sparsity of z′ij . If the �0-norm,
which corresponds to the number of non-zero elements of a vector, is adopted
as a measure of sparsity [15], then our idea can be formulated as the following
optimization problem

min
αij

||Φzij ||0. (7)

It is worth mentioning that the matrix Φ should not necessarily be related with
a frequency transform. The only requirement is that Φ somehow spreads the
representation of (s1 ◦ s2). This point will be further discussed in the sequel.
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Fig. 1. DCTs of the sources and of the product between these sources

3.2 Theoretical Aspects

We here discuss some theoretical aspects related to the idea expressed in (7).
In particular, we provide the guidelines for establishing general conditions for
which our proposal is valid. In our analysis, we assume that the mixing matrix is
full rank. Moreover, we assume that ||Φ(s1 ◦ s2)||0 ≥ max(||s′1||0, ||s′2||0). As our
analysis is based on the �0-norm, it is important to introduce some properties
of this measure, which strictly speaking is not a mathematical norm [15]. Yet,
the �0-norm satisfies the triangle inequality, that is, given two vectors a and b,
then ||a+ b||0 ≤ ||a||0 + ||b||0. As a consequence, the �0-norm also satisfies the

reverse triangle inequality, i.e., ||a − b||0 ≥
∣∣∣||a||0 − ||b||0

∣∣∣. Finally, the �0-norm

is scale invariant, i.e., ||ka||0 = ||a||0 for k �= 0.
In order to investigate the cost function ||Φzij ||0, let us rewrite (6) as follows:

z′ij = as′1 + bs′2 + cΦ(s1 ◦ s2). (8)

Ideally, to be in accordance with our idea, ||z′ij ||0 should attain a minimum if,
and only if, αij = ai3/aj3, that is, when c = 0. In this case, one only has the
linear terms of the mixture, and, thus, by considering the triangle inequality and
the scaling invariance property, it turns out that

||z′ij ||0 ≤ ||s′1||0 + ||s′2||0. (9)

We can also investigate ||z′ij ||0 in the cases in which αij does not lead to the
cancellation of the quadratic term, i.e. when c �= 0 in (8). In these situations, our
idea will work when ||z′ij ||0 is greater than the upper bound (9). When a = 0,
b �= 0, and c �= 0, one can use the reverse triangle inequality to obtain the
following lower bound

||z′ij ||0 = ||bs′2 + cΦ(s1 ◦ s2)||0 ≥ ||Φ(s1 ◦ s2)||0 − ||s′2||0. (10)

Analogously, when a �= 0, b = 0, and c �= 0, one can easily show that

||z′ij ||0 ≥ ||Φ(s1 ◦ s2)||0 − ||s′1||0. (11)
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Finally, when a �= 0, b �= 0, and c �= 0, the following lower bound for ||z′ij ||0
can be obtained after the application of the triangle inequality followed by the
application of the reversed triangle inequality

||z′ij ||0 ≥ ||Φ(s1 ◦ s2)||0 − ||s′1||0 − ||s′2||0. (12)

Among the bounds expressed in (10), (11) and (12), and the bound ||Φ(s1◦s2)||0
obtained when a = 0, b = 0, c �= 0, the bound shown in (12) is the smallest one.
Therefore, if the lower bound (12) is greater than the higher bound (9), then
||Φzij ||0 will necessarily reach the global minimum at αij = ai3/aj3 (i.e. c = 0).
This observation leads to the following sufficient condition:

||Φ(s1 ◦ s2)||0 − ||s′1||0 − ||s′2||0 > ||s′1||0 + ||s′2||0, (13)

i.e.
||Φ(s1 ◦ s2)||0 > 2 (||s′1||0 + ||s′2||0) (14)

Some observations can be made on this condition. Firstly, the importance of
defining a proper transformation, for which the representation of the quadratic
terms is as spread as possible, becomes clear. Note that such a requirement
becomes less stringent when the sources have a high degree of sparsity in the
transformed domain. For instance, in the situation illustrated in Figure 1, it is
clear that the DCT satisfies the sufficient condition expressed in (14). Moreover,
when Φ is given by a random matrix submitted to an orthogonalization process,
condition (14) can be satisfied for many different configurations of the sources.

A second point related to (14) is that it provides a sufficient but not necessary
condition. Actually, this condition is quite pessimistic, as it considers a very
peculiar configuration of the positions for which the signals s′1 and s′2 take non-
zero values.

3.3 Implementation Issues

In a practical application, the use of the �0-norm is quite limited, since sparse
signals in practice have many elements that are close to zero, but that are not
necessarily null. Thus, approximations of the �0-norm must be considered. A
possible choice is the smoothed version of �0-norm [16], which, for a given signal
y, is defined as follows:

S�0(y) = nd −
nd∑
i=1

f(y(i), σ), (15)

where f(·, σ) corresponds to a zero mean Gaussian kernel of standard deviation
σ. As σ approaches to zero, (15) approaches to the �0-norm. Ideally, the choice
of σ depends on how close to zero the low-energy elements of a given signal are.

We can now introduce a general scheme for source separation in overdeter-
mined LQ mixtures of two sources. The proposal, which can be applied when
the number of mixtures is greater than 2, is composed of the following steps: 1)
Cancellation of quadratic terms : considering np > 1 pairs of mixtures, xi and
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xj , find, for each of these pairs, an αij which minimizes S�0(z
′
ij). This procedure

will provide the set of signals that, ideally, correspond to linear mixtures of the
sources. 2) Source separation: apply a linear source separation (or extraction)
method on the signals obtained in the first stage.

The first stage of the proposed strategy boils down to np univariate opti-
mization problems, which, in our work, are carried out by an exhaustive search
approach. Note that the first stage can be conducted even when the sources are
not statistically independent. Of course, in this case, the second stage should be
able to deal with linear mixtures of dependent sources.

4 Results

Let us consider an overdetermined LQ source separation problem in which the
mixing matrix is given by A = [1 0.5 2; 0.5 1 4; 1 1 3] (see formulation ex-
pressed in (2)). The sources here are sparse in the DCT domain. To generate the
DCT coefficients, we firstly obtained 500 samples from a distribution uniformly
distributed in [−0.5, 0.5]. Then, we replaced a given percentage of the gener-
ated elements by samples obtained from a zero-mean Gaussian distribution of
standard deviation 0.001 (these are the low-energy DCT coefficients). The per-
centages of these low-energy elements were 90% for the first source and 70%
for the second source, and their position were randomly selected. Finally, the
sources shared 50 DCT coefficients (these coefficiecients are not the ones with
small values), which make them statistically dependent.

In order to remove the quadratic terms in the mixtures, we applied the pro-
posed method to the pairs of mixtures (x1,x2) and (x1,x3). After performing 10
runs, each one considering a different set of sources generated according to the
procedure described above, our method provided very good solutions in every
runs. Indeed, the obtained mean values were α12 = 0.5012 and α13 = 0.6671,
which are very close to the ideal values α12 = 1/2 and α13 = 2/3. To illustrate
that the nonlinear terms were removed in this situation, we plot in Figure 2 the
DCT coefficients of the sources, mixtures and the provided signals z12 and z13
obtained in a given run. Note that the DCT coefficients of the obtained signals
are clearly sparser than those of the mixtures.

With the obtained linear mixtures at hand, we applied the source extraction
method proposed in [17] to retrieve the sparsest component. As discussed in [17],
this method is able to conduct source separation even when the sources are de-
pendent. Indeed, the sparsest source was estimated with a signal-to-interference
ratio1 (SIR) of 58.7dB. On the other hand, the SIRs obtained after the ap-
plication of the ICA-based solution proposed in [14] were 4.0dB (first source)
and 7.1dB (second source). These low values can be attributed to the fact that
the sources were not independent in the considered scenario, thus violating the
central assumption of ICA methods.

1 The SIR is defined as = 10 log
(
E{ŷ2

i }/E{(ŝi − ŷi)
2}), where ŝi and ŷi are, respec-

tively, the actual source and its estimate, being both ones obtained after mean,
variance and sign normalization.
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Fig. 2. Obtained linear mixtures

5 Conclusions

We proposed a method for suppressing the quadratic terms of overdetermined LQ
mixtures. Our approach works with the assumption that the sources are sparse
when represented in a proper domain, which should be known in advance, and is
based on a �0-norm minimization procedure. We provided theoretical elements
that points out that our proposal is suitable for the cases in which the quadratic
terms admit a representation in the considered domain that is less sparse than
those of the sources. A numerical experiment illustrated the effectiveness of the
obtained method, especially when the sources are dependent.

There are several points to be investigated in future works. For instance, a first
one is to extend the theoretical analysis conducted in this paper to the case of the
smoothed �0-norm, paying special attention to the influence of the parameter σ.
Another relevant point is to investigate if the two-stage procedure described in
Section 3.3 can be merged into a unique step guided by the minimization of the
sparsity of the retrieved sources. Finally, we intent to investigate the extension
of the idea to the case in which the number of sources is greater than two, and
its application to actual problems.
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