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APPROXIMATE HEDGING IN A LOCAL VOLATILITY
MODEL WITH PROPORTIONAL TRANSACTION COSTS

By Emmanuel LEPINETTE∗ , Tuan TRAN∗

CEREMADE, UMR CNRS 7534,
Paris-Dauphine University

Local volatility models are popular because they can be simply
calibrated to the market of European options. We extend the results
of [4], [3] for such models, i.e. we propose a modified Leland method
which allows us to approximately replicate a European contingent
claim when the market is under proportional transaction costs.

1. Introduction. There are indications that the Black and Scholes
model does not fit certain financial market phenomenons. In practice, the
implied volatility is not constant, i.e. depends on the expiration date and
the strike. This problem is known as the implied smile effect. More natural
is then to consider local volatility models. Indeed, under mild assumptions,
the strong Markov property and the continuity of the price process S im-
plies that S is given by a local volatility function σ(t, St). Bouchouev and
Isakov [1] and later Egger, Hein and Hofmann [5] suggest to search for lo-
cal volatility in the product form σ(t, x) = σ(x)ρ(t). These local volatility
models are very popular because they are simple to calibrate the call prices
by the Dupire formula. In this paper, we consider a standard two-asset local
volatility model in presence of transaction costs. Our goal is to provide a
strategy which replicates approximately a European contingent claim h(ST )
when the number of revision dates of the portfolio tends to ∞. We show
that the Leland method can be adapted to the case of a local volatility
model. This is a generalization of Papers [4] and [3] to the case where the
volatility is not constant and depends on the underlying asset. The Leland
strategy derives from the solution Ĉ to the heat equation of the Black and
Scholes model where we increase the volatility in order to compensate for
the transaction costs. Contrarily to the case where the volatility is constant,
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2 EMMANUEL LEPINETTE ET AL.

we do not have explicit expressions of the solution to the heat equation. The
main difficulty is to obtain appropriate estimates of the derivatives of Ĉ,
which is necessary to show the convergence of our scheme. To do so, we use
PDEs techniques and our main concern is the case where the proportional
transaction costs coefficient is constant, i.e. does not depend on the number
n of revision dates. For this model, the usual Leland method fails [4]. By
modifying the Leland technique, we show that it is possible to obtain an
approximate hedging of the pay-off h(S1) without limit error as n→∞ for
a large class of pay-off functions h.

2. The model. We assume without loss of generality that the time
horizon is T = 1. The non-risky asset is the numéraire S0 = 1 and the risky
asset is given under the martingale probability measure by the SDE:

dSt = Stσ(t, St)dWt, 0 ≤ t ≤ 1.

We suppose that trading involves proportional transaction costs with the
transaction cost coefficients depending on the number of revision dates n:

kn = k0n
−α, α ∈ [0,

1

2
].

The case α > 0 means that the transaction costs decreases as the number
of times the agent rebalances his/her portfolio increases. This is the Leland
model. If α = 0, the transaction costs coefficient is constant, i.e. does not
depend on n. This model may be considered as more realistic and represents
our main concern. Although, a transaction costs rate, e.g. r = 0.001, can
be also seen as r = k0n

−α with α > 0 and n large enough. In this case,
k0 depends on α and we leave the qualitative analysis of such approach for
future research.

In our model the current value of the portfolio process at time t is defined
by

V n
t = V n

0 +

t∫
0

Dn
udSu −

∑
ti≤t

knSti |Dn
i+1 −Dn

i |, t ≤ 1.(2.1)

where ti = tni , 0 ≤ i ≤ n, t0 = 0, tn = 1, are the revision dates; and Dn = Dn
i

on the interval ]ti−1, ti], D
n
n+1 := Dn

n, where Dn
i is Fti−1-mesurable, i.e. Dn is

the trading strategy. The number of the risky asset that the holder possesses
in the period i is then Dn

i . The dynamics (2.1) means that the portfolio
process V n is self-financed and in presence of transaction costs which are

imsart-aap ver. 2011/05/20 file: Lepinette-Tran.tex date: April 13, 2012



APPROXIMATE HEDGING IN LOCAL VOLATILITY MODEL WITH FRICTION 3

proportional to the traded volume. We suppose that the dates t′is are uniform
i.e. ti = tni = i/n, i = 0, . . . , n.

In the complete model without friction, a contingent claim h(S1) is exactly
replicated by the terminal value of the self-financed portfolio:

Vt = E(h(S1)|Ft) = C(t, St) = V0 +

∫ t

0
Cx(r, Sr)dSr, t ≤ 1

where C is solution of the PDE:

(e0) =

{
Ct(t, x) + 1

2σ
2(t, x)x2Cxx(t, x) = 0, (x, t) ∈]0,∞[×[0, 1[

C(1, x) = h(x), x ∈]0,∞[.

With transaction costs, we follow Leland’s approach [9], i.e. we construct
a strategy which can be considered as a modified Delta of Black-Scholes
replication formula. The idea is to subtitute the volatility σ by an enlarged
one σ̂(t, x) in order to compensate for the transaction costs. The ”enlarged
volatility” is defined by:

σ̂2(t, x) = σ2(t, x) + σ(t, x)γn,

where

γn = knn
1
2

√
8

π
.

So, we introduce the PDE:

(e) =

{
Ĉt(t, x) + 1

2 σ̂
2(t, x)x2Ĉxx(t, x) = 0, (x, t) ∈]0,∞[×[0, 1[ ,

Ĉ(1, x) = h(x), x ∈]0,∞[.

The existence of a solution to the PDE (e) is ensured by Lemma 5.2. Let
us precise the intuition behind the Leland strategy. By the Ito Formula,
assuming that the solution Ĉ to (e) is smooth enough, we have

Ĉ(t, St) = Ĉ(0, S0) +

∫ t

0
Ĉx(u, Su)dSu

+
1

2

∫ t

0

[
σ2(u, Su)− σ̂2(u, Su)

]
S2
uĈxx(u, Su)du.

Then, Ĉ(t, St) can be seen as the continuous version of a portfolio process
(2.1) provided that Dn

i = Ĉ(ti−1, Sti−1) and the drift term in the formula
above corresponds to the cumulated transaction costs, i.e. we want to make
equal the two following increments :

1

2

[
σ2(u, Su)− σ̂2(u, Su)

]
S2
uĈxx(u, Su)∆u
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4 EMMANUEL LEPINETTE ET AL.

and
−k0n

−α
∣∣∣Ĉx(u+ ∆u, Su+∆u)− Ĉx(u, Su)

∣∣∣Su+∆u.

To do so, we use the Taylor approximation

Ĉx(u+ ∆u, Su+∆u)− Ĉx(u, Su) ' Ĉxt(u, Su)∆u + Ĉxx(u, Su) (Su+∆u − Su) ,

' Ĉxx(u, Su) (Su+∆u − Su)

where
Su+∆u − Su ' σ(u, Su)Su (Wu+∆u −Wu) .

Assuming that Ĉxx ≥ 0, we should thus look for σ̂ such that

1

2

[
σ2(u, Su)− σ̂2(u, Su)

]
∆u ' −k0n

−ασ(u, Su) |Wu+∆u −Wu|
Su+∆u

Su
.

Then, considering the conditional expectation knowing Fu, and the equali-
ties

E|W∆u| =
√

∆u

√
2

π
,

Su+∆u

Su
= 1 + σ(u, Su) (Wu+∆u −Wu) .

we obtain, considering only the main terms, that

1

2

[
σ2(u, Su)− σ̂2(u, Su)

]
∆u = −k0n

−ασ(u, Su)
√

∆u

√
2

π
.

We deduce that

σ̂2(u, Su) = σ2(u, Su) + k0n
1/2−α

√
8

π
σ(u, Su).

We recall that the Leland strategy fails in the case α = 0, i.e. an approx-
imation error appears. We propose a modified strategy as in [3] to treat the
general case α ∈ [0, 1

2 ] :

V̂ n
t = V̂ n

0 +

t∫
0

D̂n
udSu −

∑
ti≤t

knSti |D̂n
i+1 − D̂n

i |, 0 ≤ t ≤ 1,

where V̂ n
0 = Ĉnx (0, S0), and D̂n

t = D̂n
ti on ]ti−1, ti], ti ≤ 1, D̂n

ti is given by

D̂n
ti = Ĉnx (ti−1, Sti−1,)−

∑
1≤j≤i−1

[
Ĉnx (tj , Stj−1,)− Ĉnx (tj−1, Stj−1,)

]
.(2.2)
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APPROXIMATE HEDGING IN LOCAL VOLATILITY MODEL WITH FRICTION 5

We make use the abbreviations Ĥt = Ĉx(t, St) = Ĉnx (t, St) where we often
omit the index n, ĥt = Ĉxx(t, St), Ĥ

n
ti = Ĉx(ti, Sti,), ti = tni , and

Kn
t =

∑
tni <t

∆Kn
tni

where ∆Kn
tn0

= 0 and for i ≤ 1 :

∆Kn
tni

= −
[
Ĉx(tj , Stj−1,)− Ĉx(tj−1, Stj−1,)

]
.

In this paper, we impose hypothesis on the pay-off function:

Assumption (H): h is a continuous function on [0,∞[ which is differen-
tiable except at the points K1 < · · · < Kp < . . . where the first derivative h′

admits right and left limits. Moreover, h′ is bounded and h has polynomial
growth, i.e, |h(x)| ≤M(1 + xa)| for some positive constants M,a.

In the case α = 0, we only consider pay-off functions h behaving as affine
functions at infinity. The pay-off functions in the European option contracts
are generally of this form.

Assumption (H’) h(x) = h1(x)+ax+ b where h1 is a bounded continuous
function.

Assumption (E): There exists some positive constant K such that:

(a) m ≤ σ ≤M for some positive constants M,m.

(b) |σ(t, x)− σ(t′, x′)| ≤ K(|t− t′|+ |x− x′|).

(c)
∂k

∂xk
σ(t, x) and

∂2

∂x∂t
σ(t, x) are continuous, and

|xk ∂
k

∂xk
σ(t, x)|+ | ∂

2

∂x∂t
σ(t, x)| ≤ K, ∀ 0 ≤ k ≤ 3.

Remark 2.1. Observe that Assumption (E) is satisfied by the local
volatility functions σ(t, x) = γ(t)e−cx

2
, σ(t, x) = γ(t)(atan(x) + π), where

c > 0 and γ is a bounded, positive and Lipschitz function. In the second
case, the local volatility of the model increases as the price of the risky asset
increases. The following example is given in [5]:

σ(t, x) =

√
1

10

(
1− 1

2
exp

(
−4 ln2(x)

)
sin(2πx)

)√
1 +

3

5
sin(2πt).
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6 EMMANUEL LEPINETTE ET AL.

It is clear that Condition (a) holds. Since we have the inequalities

exp
(
−2 ln2(x)

)
≤ exp (2 ln(x)) ≤ x2

if x ≤ e−1, we easily deduce that the first derivative σx(t, x) is uniformly
bounded in x, hence Condition (b) holds.

Using the bounds exp
(
−4 ln2(x)

)
≤ exp (−4 ln(x)) ≤ x−4 if x ≥ e1, and

the fact that lnk(x) exp
(
−2 ln2(x)

)
is bounded for all k > 0,we also deduce

that Condition (c) holds.

Remark 2.2. Note that Condition (c) implies that (t, x) 7→ σ(t, ex) is
a Lipschitz function uniformly with respect to (t, x) ∈ R (since the first
derivative of this function is bounded).

Our main result in this paper is the following convergence theorem.

Theorem 2.3. Assume that α ∈ [0, 1
2 ], the conditions (H), (E) hold in

the case α ∈]0, 1
2 ], and the conditions (H), (H’) (E) hold in the case α = 0.

Moreover, suppose that h and σ are such that Ĉxx ≥ 0. If the strategy D̂n
i is

given by (2.2), then the terminal value of the portfolio

V n
1 = Ĉn0 +

1∫
0

D̂n
udSu − kn

n−1∑
i=1

Sti |D̂n
i+1 − D̂n

i |

converges to the contingent claim h(S1) in probability.

Remark 2.4. We can in fact show that the convergence still holds in
the case α = 0 with only assumptions (H’) and (E). We add the condition
(H) to this case just to avoid repeating all calculations for α ∈]0, 1

2 ].

Remark 2.5. We do not need the portfolio rebalancing at the horizon
date; that is why the cumulated sum of all transaction costs is taken only up
to n−1. Notice that we need the condition Ĉxx ≥ 0 to avoid the approximative
error. In fact, this condition will not restrict so many our interesting cases.
We refer to Lemma 5.6 for a sufficient condition ensuring the convexity of
C(t, x) in the variable x and more generally to the papers [10] and [11] on
the convexity propagation.
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APPROXIMATE HEDGING IN LOCAL VOLATILITY MODEL WITH FRICTION 7

The paper is structured as follows. In Section 3, we state the proof of our
main result, i.e. the convergence of the suggested terminal portfolio value
to the pay-off. To do so, we need the upper bounds of the function Ĉ(t, x)
and its derivatives given in Section 4. Appendix is devoted to some auxiliary
results used in the proofs.

3. Proof of the Theorem 2.3. By the Ito formula, we represent the
difference V n

1 − h(S1) in a convenient form.

Lemma 3.1. We have V n
1 − h(S1) = Fn1 + Fn2 + Fn3 where

Fn1 :=

∫ 1

0
(Hn

t − Ĥt)dSt,(3.1)

Fn2 :=
1

2

∫ 1

0
σ(t, St)γnS

2
t |Ĉxx(t, St)|dt− kn

n−1∑
i=1

|∆Hn
ti + ∆Kn

ti |Sti ,(3.2)

Fn3 := kn

1∫
0

Kn
t dSt.(3.3)

Our objective is to prove that Fn1 , F
n
2 , F

n
3 converge to zero in probability.

We will only separate two cases α = 0 and α ∈]0, 1/2] in proving Fn3 → 0
since Fn1 , F

n
2 → 0 without Condition (H’). Throughout the section, C will

designate a strictly positive constant independent of n that could be changed
from a line to another one. We put γn = n1/2−α.

Lemma 3.2. We have P − lim Fn1 = 0.

Proof Let us first consider the case α < 1
2 .As Ĉx(t, x) and E(supu∈[0,1] S

2
u)

are bounded, the integral ∫ 1

1− 1
γn

(Hn
t − Ĥt)dSt

tends to 0 in L2, so in probability. For each t ∈ [ti−1, ti[, t < 1 − 1
γn

, let us
consider the Taylor expansion

Ĉx(ti−1, Sti−1)− Ĉx(t, St) = Ĉxt(θi, Sti−1)(ti−1 − t) + Ĉxx(t, S̃t)(Sti−1 − St)

where θi ∈ [ti−1, t] and S̃t ∈ [Sti−1 , St]. Using Theorem 4.4, we obtain that:

|Ĉx(ti−1, Sti−1)− Ĉx(t, St)| ≤ C
∣∣∣∣ t− ti−1

1− t

∣∣∣∣+ C
|Sti−1 − St|
S̃t
√
γn(1− t)
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8 EMMANUEL LEPINETTE ET AL.

As |∆ti| ≤
C

n
and 1 − t ≥ 1

γn
, the first term tends to 0. Moreover, since

(St)0≤t≤1 is strictly positive and continuous we deduce that the second term
tends to 0 a.s. Hence

Ĉx(ti−1, Sti−1)− Ĉx(t, St)→ 0, a.s.

Keeping in mind that E(supu∈[0,1] S
2
u) and Ĉx(t, x) are bounded, we get the

convergence

E(

∫ 1− 1
γn

0
(Hn

t − Ĥt)dSt)
2 =

∫ 1− 1
γn

0
E[S2

t (Hn
t − Ĥt)

2]dt→ 0 as n→∞

by virtue of the Lebesgue dominated convergence theorem. Hence we have
shown that lim E(Fn1 )2 = 0 with α < 1

2 . The case α = 1
2 is obivious because

Ĉ does not depend on n. �

Let us now show that Fn2 −→ 0. By the Ito Formula, we have

Ĉx(t, St) = Ĉx(0, S0) +Mn
t +Ant

where

Mn
t :=

∫ t

0
σ(u, Su)SuĈxx(u, Su)dWu,

Ant :=

∫ t

0

[
Ĉxt(u, Su) +

1

2
σ2(u, Su)S2

uĈxxx(u, Su)

]
du.

We write Fn2 =
∑5

i=1 Li where

Ln1 :=
1

2

∫ 1

0
σ(t, St)γnS

2
t ĥtdt−

1

2

∫ 1

0

n−1∑
i=1

σ(ti−1, Sti−1)γnS
2
ti−1

ĥti−1I]ti−1,ti](t)dt

Ln2 :=

n−1∑
i=1

σ(ti−1, Sti−1)ĥti−1S
2
ti−1

(
1

2
γn∆ti − kn n1/2

√
∆ti|∆Wti |

)
,

Ln3 := kn

n−1∑
i=1

σ(ti−1, Sti−1)S2
ti−1

ĥti−1n
1/2
√

∆ti|∆Wti | − kn
n−1∑
i=1

Sti−1 |∆Mti |,

Ln4 := kn

n−1∑
i=1

Sti−1 |∆Mti | − kn
n−1∑
i=1

Sti−1 |∆Hti + ∆Kti |,

Ln5 := −kn
n−1∑
i=1

∆Sti |∆Hti + ∆Kti |
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APPROXIMATE HEDGING IN LOCAL VOLATILITY MODEL WITH FRICTION 9

Lemma 3.3. We have P − lim Ln1 = 0.

Proof. We rewrite

Ln1 =
1

2

∫ 1

tn−1

σ(t, St)γnS
2
t ĥtdt+

6∑
k=1

Ln1k.

It is obvious that the first integral tends to 0 as n tends to∞. We now show
that Ln1k → 0, ∀k. These terms are defines as follows.

Ln11 :=
1

2

∫ 1

0

n−1∑
i=1

[σ(t, St)− σ(ti−1, St)] γnS
2
t ĥtI]ti−1,ti](t)dt.

Using the hypothesis on σ, and Theorem 4.4, we deduce a constant cω de-
pending on ω ∈ Ω such that:

Ln11 ≤
cω
n

∫ tn−1

0

√
γn√

1− t
≤ cωn−

3
4
−α

2 → 0.

Ln12 :=
1

2

∫ 1

0

n−1∑
i=1

[
σ(ti−1, St)− σ(ti−1, Sti−1)

]
γnS

2
t ĥtI]ti−1,ti](t)dt.

Similarly, there is a constant cω depending on ω ∈ Ω such that |Ln12| ≤ cωL̃n12,
where

L̃n12 =
√
γn

∫ tn−1

0

n−1∑
i=1

|St − Si−1|√
1− t

I]ti−1,ti](t)dt.

Since E|St − Si−1| ≤ C
√
t− ti we obtain that

E(L̃n12) ≤ C n−
1
4
−α

2 → 0.

Hence Ln12 → 0 in probability.

Ln13 :=
1

2

∫ 1

0

n−1∑
i=1

[
S2
t − S2

ti−1

]
γnσ(ti−1, Sti−1)ĥtI]ti−1,ti](t)dt.

A reasoning similar to the one used for Ln12 leads to P − |Ln13| → 0.

Ln14 :=
1

2

∫ 1

0
Rnt dt,

Rnt :=

n−1∑
i=1

[
|Ĉxx(t, St)| − |Ĉxx(t, Sti−1)|

]
γnσ(ti−1, Sti−1)S2

ti−1
I]ti−1,ti](t)dt.
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10 EMMANUEL LEPINETTE ET AL.

Using the inequality ||a| − |b|| ≤ |a− b| and the Taylor expansion

Ĉxx(t, St)− Ĉxx(t, Sti−1) = Ĉxxx(t, S̃i)
(
St − Sti−1

)
where S̃i ∈ [St, Sti−1 ], we deduce a.s. a constant cω such that |Ln15| ≤ cωL̃

n
15

with

L̃n15 :=

∫ tn−1

0

n−1∑
i=1

γn|St − Sti−1 |(
1√

γn(1− t)
+

1

γn(1− t)
)I]ti−1,ti](t)dt.

Since E|St − Sti−1 | ≤ C
√

∆ti, we get that

EL̃n15 ≤
C√
n

∫ tn−1

0

( √
γn√

1− t
+

1

1− t

)
dt

≤ C n−
1
4
−α

2 + C
lnn√
n
→ 0.

Ln16 :=
1

2

∫ 1

0

n−1∑
i=1

[
|Ĉxx(t, Sti−1)| − |Ĉxx(ti−1, Sti−1)|

]
γnσ(ti−1, Sti−1)S2

ti−1
I]ti−1,ti](t)dt.

We use the same arguments as for Ln15. The Taylor expansion yields:

Ĉxx(t, Sti−1)− Ĉxx(ti−1, Sti−1) = Ĉxxt(t̃i, Sti−1)(t− ti−1)

where t̃i ∈ [ti−1, ti]. Using Theorem 4.4, we deduce that, for some constant
cω, |Ln16| ≤ cωL̃n16 where

L̃n16 =

∫ tn−1

0

γ2
n

n

(
1√

γ3
n(1− t)3

)
dt.

This integral tends to 0 as n→∞, i.e. P − lim Ln16 = 0. �

Lemma 3.4. We have P − lim Ln2 = 0.

Proof. By hypothesis there exists a.s. a constant cω such that

Ln2 ≤ cω
n−1∑
i=1

∣∣∣Ĉxx(ti−1, Sti−1)
∣∣∣Sti−1ξi
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APPROXIMATE HEDGING IN LOCAL VOLATILITY MODEL WITH FRICTION11

where

ξi =
1

2
γn∆ti − kn n1/2

√
∆ti|∆Wti |

is independent of Fti−1 , verifies Eξi = 0, and Eξ2
i = k2

nn(∆ti)
2. Using The-

orem 4.4 we obtain that Ln2 ≤ cωL̃n2 where

L̃n2 :=
n−1∑
i=1

ξi
ρti−1

.

By independence, we have

E(L̃n2 )2 ≤
n−1∑
i=1

Eξ2
i

ρ2
ti−1

≤ nk2
n(∆ti)

2

γn(1− ti−1)

≤ Cn−α−
1
2

n−1∑
i=1

∆ti
1− ti−1

.

The sum
∑n−1

i=1

∆ti
1− ti−1

can be approximated by
tn−1∫
0

dt

1− t
which is O(lnn).

It then follows that L̃n2 → 0 in L2 and then Ln2 → 0 in probability. �

Lemma 3.5. We have P − lim Ln3 = 0.

Proof. Let us write |Ln3 | ≤ Dn
1 +Dn

2 +Dn
3 where Dn

i , i = 1, 2, 3, are defined
below.

Dn
1 = kn

n−1∑
i=1

∣∣∣∣∣
∫ ti

ti−1

ξi(t)dWt

∣∣∣∣∣
with

ξi(t) = S2
ti−1

[
σ(ti−1, Sti−1)− σ(ti−1, St)

]
Ĉxx(ti−1, Sti−1).

We immediately get that

‖Dn
1 ‖2 ≤ C n−α

n−1∑
i=1

(∫ ti

ti−1

Eξ2
i (t)dt

)1/2

.

Using the hypothesis on σ and Theorem 4.4, we obtain that:

‖Dn
1 ‖2 ≤ c n−α

n−1∑
i=1

(∫ ti

ti−1

∆tidt

γn(1− ti−1)

)1/2

.
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12 EMMANUEL LEPINETTE ET AL.

Hence

‖Dn
1 ‖2 ≤ c n−

α
2
− 1

4

n−1∑
i=1

∆ti√
1− ti−1

→ 0.

We have

Dn
2 = kn

n−1∑
i=1

∣∣∣∣∣
∫ ti

ti−1

ξ̃i(t)dWt

∣∣∣∣∣
where

ξ̃i(t) = S2
ti−1

[σ(ti−1, St)− σ(t, St)] Ĉxx(ti−1, Sti−1).

Using he hypothesis on σ and Theorem 4.4, we also deduce that ‖Dn
2 ‖2 → 0.

The last term is

Dn
3 = kn

n−1∑
i=1

∣∣∣∣∣
∫ ti

ti−1

Xi(t)dWt

∣∣∣∣∣
where

Xi(t) =
[
Sti−1Ĉxx(ti−1, Sti−1)− StĈxx(t, St)

]
σ(t, St).

We first observe that

‖Dn
3 ‖2 ≤ C n−α

n−1∑
i=1

(∫ ti

ti−1

EX 2
i (t)dt

)1/2

.

Using the Ito formula

d[Stĥ
t] = d[StĈxx(t, St)] = ftdWt + gtdt

where
ft := σStĈxx(t, St) + σS2

t Ĉxxx(t, St)

gt := StĈxxt(t, St) +
1

2
σ2S3

t Ĉxxxx(t, St) + σ2S2
t Ĉxxx(t, St),

we deduce that

E(Stĥ
t − Sti−1 ĥti−1)2 ≤ 2

ti∫
ti−1

E(f2
u)du+ 2∆ti

ti∫
ti−1

E(g2
u)du.

It follows that(∫ ti

ti−1

EX 2
i (t)dt

)1/2

≤
√

2∆ti

(∫ ti

ti−1

E(f2
u)du

) 1
2

+∆ti

(
2

∫ ti

ti−1

E(g2
u)du

) 1
2

.
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APPROXIMATE HEDGING IN LOCAL VOLATILITY MODEL WITH FRICTION13

By Theorem 4.4, we get the bounds

E(|Dn
3 |) ≤ C n−α

n−1∑
i=1

(
∆ti
ρti−1

+
∆ti
ρ2
ti−1

)
+ C n−1/2−α

n−1∑
i=1

(∆ti)γn
ρ3
ti−1

≤ C n−
1
2 lnn+ C n−1/4−α/2.

where C is a constant. It follows that E(|Dn
3 |) converges to 0. �

Lemma 3.6. We have P − lim Ln4 = 0.

Proof. We first show that we may replace ∆Kti by

∆K̃ti := −
∫ ti

ti−1

Cxt(u, Su)du.

To do so, it suffices to show that χn → 0 where

χn := kn
∑
i≤n−1

Sti−1

∫ ti

ti−1

(
Ĉxt(u, Su)− Ĉxt(u, Sti−1)

)
du.

Using a Taylor expansion

Ĉxt(u, Su)− Ĉxt(u, Sti−1) = Ĉxxt(u, S̄ti−1)
(
Su − Sti−1

)
we deduce that χn ≤ cωχ̄n where, by Theorem 4.4,

χ̄n := knγn

n−1∑
i=1

∫ ti

ti−1

Su − Sti−1

(1− t)3/2γ
3/2
n

du.

As E
∣∣Su − Sti−1

∣∣ ≤ c√∆ti, we easily conclude that Eχ̄n → 0.

Using the inequality ||a| − |b|| ≤ |a− b| and assuming that ∆Kti = ∆K̃ti ,
we get that

|L4
n| ≤ kn

n−1∑
i=1

Sti−1 |∆Ati + ∆Kti | ≤ c(ω) kn

∫ tn−1

0
σ2S2

u|Ĉxxx(u, Su)|du.

By virtue of Theorem 4.4, we get that:

|L4
n| ≤ c(ω) kn

∫ tn−1

0

(
1√

γn(1− t)
+

1

γn(1− t)

)
dt→ 0.

�
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14 EMMANUEL LEPINETTE ET AL.

Lemma 3.7. We have P − lim Ln5 = 0.

Proof. We use similar arguments. First, using a Taylor expansion and
Theorem 4.6, we deduce that

An := kn

n−1∑
i=1

∆Sti |∆Hti | ≤ cωkn
n−1∑
i=1

[
(∆Sti)

2√
γn(1− ti)

+
∆ti∆Sti
(1− ti)

]
.

As E(∆Sti)
2 ≤ C∆ti, we deduce that An → 0. Secondly, as in Lemma 3.6 ,

we may assume without loss of generality that ∆Kti = ∆K̃ti . Therefore, it
remains to estimate, by virtue of Theorem 4.4

Bn := kn

n−1∑
i=1

∆Sti |∆K̃ti | ≤ cωkn
n−1∑
i=1

∫ ti

ti−1

∆Sti
1− u

du.

We easily get that Bn → 0. �

Lemma 3.8. We have P − lim Fn3 = 0.

Proof. Let us define F̄n3 :=

∫ 1

0
Kn
t dSt. Observe that F̄n3 can be rewritten

as

F̄n3 =
n∑
i=1

Kn
ti∆Sti = −

n−1∑
i=1

Sti∆K
n
ti +Kn

1 S1 −Kn
t1S0 = −

n−1∑
i=1

Sti∆K
n
ti +Kn

1 S1

Since Fn3 = knF̄
n
3 , we assume without loss of generality that ∆Kti = ∆K̃ti

as shown in Lemma 3.6. Therefore,

F̄n3 =

n−1∑
i=1

∫ ti

ti−1

Ĉtx(u, Su)Stidu− S1

∫ tn−1

0
Ĉtx(u, Su)du,

=

∫ tn−1

0
Ĉtx(u, Su)(Su − S1)du+

n−1∑
i=1

∫ ti

ti−1

Ĉtx(u, Su)(Sti − Su)du

Note that E|Su − St| ≤ C
√
|t− u| ≤ C

√
|1− u|, ∀u, t, and recall that

E( sup
0≤u≤1

Su) <∞. Let us now separate the analysis in two cases:

• α ∈]0, 1/2]. We use the bound
∣∣∣Ĉxt(t, x)

∣∣∣ ≤ C

1− t
and we deduce that

E|Fn3 | ≤ cn−α
∫ tn−1

0

√
1− u 1

1− u
du ≤ cn−α → 0.
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APPROXIMATE HEDGING IN LOCAL VOLATILITY MODEL WITH FRICTION15

• α = 0. In this case we use Lemma 4.5. We get that

E|Fn3 | ≤ c
∫ tn−1

0

1
√
γn(1− t)

du ≤ cn−1/4 lnn→ 0.

Therefore, we have shown that P − lim Fn3 = 0. �

4. Estimation of the Derivatives of Ĉ(t, x). Before analysing the
function Ĉ(t, x) and getting some upper bounds for its derivatives, we are
going to use the time change technique to reduce our problem into the case
where the diffusion coefficient in (e) is bounded independently of n. We then
give an explicit expression of Ĉ(t, x) and Ĉx(t, x) and we deduce estimates of
the derivatives. To do so, we utilize the analysis of the fundamental solution
associated to a parabolic-type PDE given in [7] with the change of variable
x = ey, y ∈ R. Notice that Friedman imposes that the coefficients of the
parabolic-type PDE are Holder continuous of exponent 0 < β < 1. In fact,
the uniform Lipschitz condition is sufficient as shown in [2] but the conditions
we impose on σ implies that the mapping x 7→ σ̂2(t, ex) is Holder continuous
whatever the exponent 0 < β < 1. In all this section, we suppose that the
assumptions (E), (H) hold. We shall pay special attention to the case α = 0
with Assumption (H’). This is the most difficult case of our analysis for
which we need specific bounds of the derivatives of Ĉ.

Recall that Ĉ(t, x) satisfies the equation{
Ĉt(t, x) + 1

2 σ̂
2(t, x)x2Ĉxx(t, x) = 0, (x, t) ∈]0,∞[×[0, 1[ ,

Ĉ(1, x) = h(x), x ∈]0,∞[.

Consider the change of time s := tγn. Then, u(s, x) := Ĉ(
s

γn
, x) satisfies the

following PDE:

(f) =

{
ût(t, x) + 1

2(σ̂∗)2(t, x)x2ûxx(t, x) = 0, (x, t) ∈]0,∞[×[0, γn[ ,
û(γn, x) = h(x), x ∈]0,∞[ ,

where (σ̂∗)2(t, x) =
σ̂2(t, x)

γn
. We easily check that σ̂∗(s, x) satisfies Assump-

tion (E) for some constants which do not dependent of n. Using the definition
of u, it can be shown that

∂k

∂xk
∂r

∂sr
u(s, x) =

1

γrn

∂k

∂xk
∂r

∂tr
C(t, x).(4.1)
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16 EMMANUEL LEPINETTE ET AL.

According to the proof of Lemma 5.2, the unique solution of (f) is given
by

û(s, x) = Eh(Ŝs,x(γn))(4.2)

where Ŝs,x is solution of the PDE

(Ŝ) =

{
dŜs,x(u) = σ̂∗(u, Ŝs,x(u))Ŝs,x(u)dWu, u ∈]s, γn]

Ŝs,x(s) = x

We need the probabilistic representation (4.2) of û(s, x) in the case α = 0.
If α > 0, we use the following representation of ûx(s, x). Let us define

Λ̂∗(t, x) := (σ̂∗(t, x) + xσ̂∗x(t, x)) σ̂∗(t, x)

and, by Lemma 5.3, we consider S̃x,t the solution of the eds:{
dS̃x,t(u) = σ̂∗(u, S̃x,t(u))S̃x,t(u)dWu + Λ̂∗(u, S̃x,t(u))S̃x,t(u)du, u ∈]s, γn]

S̃x,t(t) = x.

Then, we have:

Lemma 4.1.

ûx(s, x) = Eh′(S̃s,x(γn)).(4.3)

Proof. We write:

û(t, x)− û(t, x0) = Eh(Ŝx,t(γn))− Eh(Ŝx0,t(γn)),

û(t, x)− û(t, x0) = E

∫ γn

0

d

dµ
h
(
Ŝx0,t(γn) + µ(Ŝx,t(γn)− Ŝx0,t(γn))

)
dµ.

Since h′ exists out of a countable set,
(
Ĉ(t, x)− Ĉ(t, x0)

)
/(x−x0) is equal

to

E

∫ γn

0
h′
(
Ŝx0,t(γn) + µ(Ŝx,t(γn)− Ŝx0,t(γn)

) Ŝx,t(γn)− Ŝx0,t(γn)

x− x0
dµ.

As Assumption (E) holds, we apply Theorem 5.12 p120 [6] and deduce that
∂Ŝx,t(γn)

∂x exists in the L2 sense, i.e.:

Ŝx,t(γn)− Ŝx0,t(γn)

x− x0
→ ∂Ŝx0,t(γn)

∂x
in L2.(4.4)
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APPROXIMATE HEDGING IN LOCAL VOLATILITY MODEL WITH FRICTION17

Indeed, we check that Condition (A) page 108 [6] is satisfied by the sde
(Ŝ). First, we have |σ̂∗(t, x)x| ≤ C |x| and secondly:

|σ̂∗(t, x)x− σ̂∗(t, x)x| ≤ |σ̂∗(t, x)| |x− x|+ |x (σ̂∗(t, x)− σ̂∗(t, x))|

where a Taylor expansion yields

σ̂∗(t, x)− σ̂∗(t, x) = σ̂∗x(t, x0)(x− x), x0 ∈ [x, x].

Then,

|x (σ̂∗(t, x)− σ̂∗(t, x))| ≤ |σ̂∗(t, x)− σ̂∗(t, x)| |x− x0|+ |x0σ̂
∗
x(t, x0)| |x− x|

where |x0σ̂
∗
x(t, x0)| is bounded by virtue of Assumption (E). It follows that

there exists a constant such that for all x

|σ̂∗(t, x)x− σ̂∗(t, x)x| ≤ C |x− x|.

As σx is continuous, we conclude that Condition (A) holds.
Furthermore, we have:

∂Ŝx,t(u)

∂x
= 1 +

∫ u

t

Λ̂∗
(
s, Ŝx,t(s)

)
σ̂∗
(
s, Ŝx,t(s)

) ∂Ŝx,t(s)
∂x

dWs

which is a strictly positive martingale (see Lemma 5.4). In the proof Lemma
4.2, it is shown that the distribution of Ŝx0,t(γn) is of density with respect

to the Lebesgue measure. We deduce that, out of the null-set Ŝx0,t(γn) ∈
{Kp : p ∈ N∗}, we have almost surely:∫ γn

0
h′
(
Ŝx0,t(γn) + µ(Ŝxn,t(γn)− Ŝx0,t(γn)

)
dµ→ h′(Ŝx0,t(γn))

provided that xn is sufficiently near to x0 and xn is a subsequence such that
(4.4) holds. Since h′ is bounded, it follows that

ûx(t, x) = Eh′(Ŝx,t(γn))
∂Ŝx,t(γn)

∂x
.

Finally, we define dP =
∂Ŝx,t(γn)

∂x dP so that ûx(t, x) = Eh′(Ŝx,t(γn)). By
virtue of the Girsanov theorem ((5.1) p 190 [8]), the process

Bu = Wu −Wt −
∫ u

t

Λ̂∗
(
s, Ŝx,t(s)

)
σ̂∗
(
s, Ŝx,t(s)

)du
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18 EMMANUEL LEPINETTE ET AL.

is a standard brownian motion under P . Moreover, Ŝx,t verifies the eds

dŜx,t(u) = σ̂∗(u, Ŝx,t(u))Ŝx,t(u)dBu + Λ̂∗(t, Ŝx,t(u))Ŝx,t(u)du.(4.5)

Since σ̂∗ and Λ̂∗ are bounded, (4.5) admits a unique strong solution, hence
a unique weak solution. We conclude that ûx(t, x) = Eh′(S̃x,t(γn)). �

Let us now give an explicit representation of ûx(t, x) using the notion of
fundamental solution of a PDE of parabolic type.

Lemma 4.2. We have:

ûx(t, x) =

∫ ∞
−∞

h′(ez)Γ∗(x, t, z, γn)dz

where Γ∗(x, t, z, τ) is the fundamental solution of the operator:

1

2
σ̂2
a(t, x)

∂2

∂x2
+ σ̂b(t, x)

∂

∂x
+
∂

∂t

and

σ̂a(t, x) = σ̂∗(t, ex),

σ̂b(t, x) = Λ̂∗(t, ex)− 1

2
(σ̂∗)2(t, ex).

Proof. Let us define the process η̂x,t(u) = ln S̃ex,t(u). It satisfies the fol-
lowing SDE:

(f ′) =

{
dη̂x,t(u) = σ̂a(u, η̂x,t(u))dWu + σ̂b(u, η̂x,t(u))du
η̂x,t(t) = x

To see it, it suffices to apply the Ito formula with the process exp(η̂x,t) where
η̂x,t is the solution of (f ’). By virtue of Lemma 5.5, η̂x,t is a Markov process
of transition density function Γ∗(x, t, z, γn), the fundamental solution of the
operator:

1

2
σ̂2
a(t, x)

∂2

∂x2
+ σ̂b(t, x)

∂

∂x
+
∂

∂t
.

This means that: P (η̂x,t(u) ∈ dz) = Γ∗(x, t, z, u)dz hence

Ĉx(t, x) =

∫ ∞
−∞

h′(ez)Γ∗(lnx, t, z, γn)dz.

�
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Let us now consider the special case α = 0. With Assumption (H’), the
function h is assumed to be of the form h(x) = h1(x) + ax+ b. As Ŝs,x(u) is
a martingale, Lemma 4.1 yields

û(s, x) = Eh1(Ŝs,x(γn)) + ax+ b.

Using the same arguments as in Lemma 4.2 , the function Eh1(Ŝs,x(γn))
has also an explicit representation, and so is û(s, x), which is given by the
following lemma.

Lemma 4.3. Assume that Assumption (H’) holds. Then,

û(t, x) =

∫ ∞
−∞

h1(ez)Γ∗(x, t, z, γn)dz + ax+ b

where Γ∗(x, t, z, τ) is the fundamental solution of the operator:

1

2
σ̂2
a(t, x)

∂2

∂x2
+ σ̂b(t, x)

∂

∂x
+
∂

∂t

and

σ̂a(t, x) = σ̂(t, ex), σ̂b(t, x) = −1

2
σ̂2(t, ex).

We now aim to estimate the fundamental solution Γ∗(x, t, z, γn). To do so
we use the bounds given by Theorem 8, p.263 [7]. Notice that we only need
the differentiability of σ(t, x) up to order n = 3. In particular, we recall that∣∣∣∣ ∂k+r

∂xk∂tr
Γ∗(x, t, ξ, γn)

∣∣∣∣ ≤ C ′

ρn(t)
k+2r

2

exp

{
−C |x− ξ|

2

ρn(t)

}
(4.6)

where C,C ′ are two positive constants which, because of the change of
time, do not depend on n and ρn(t) = γn − t.

We then obtain explicit expressions of the derivatives of Ĉ(t, x). According
to Lemma 4.3, we have

ûx(t, x) =

∫ ∞
−∞

h′(ey)Γ∗(lnx, t, y, γn)dy
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20 EMMANUEL LEPINETTE ET AL.

and by the change of variable z = ey, we obtain:

ûx(t, x) =

∫ ∞
0

h′(z)

z
Γ∗(lnx, t, ln y, γn)dz,

ûxx(t, x) =
1

x

∫ ∞
0

h′(z)

z

∂

∂x
Γ∗(lnx, t, ln y, γn)dz,

ûxxx(t, x) = −1

x
ûxx(t, x) +

1

x2

∫ ∞
0

h′(z)

z

∂2

∂x2
Γ∗(lnx, t, ln y, γn)dz,

ûxxxx(t, x) = − 1

x2
ûxx(t, x)− 3

x
ûxxx(t, x) +

1

x2

∫ ∞
0

h′(z)

z

∂3

∂x3
Γ∗(lnx, t, ln y, γn)dz,

ûxt(t, x) =

∫ ∞
0

h′(z)

z

∂

∂t
Γ∗(lnx, t, ln y, γn)dz,

ûxxt(t, x) =

∫ ∞
0

h′(z)

z

∂2

∂t∂x
Γ∗(lnx, t, ln y, γn)dz.

Using the bounds given by (4.6) and the relations (4.1), we immediately
deduce some bounds for the derivatives of Ĉ(t, x) which are given in the
following theorem.

Theorem 4.4. There exists some constants A,C > 0 independent of n
such that:

∣∣∣Ĉxx(t, x)
∣∣∣ ≤ C

xρt
,(4.7) ∣∣∣Ĉxxx(t, x)

∣∣∣ ≤ C

x2ρt
+

C

x2ρ2
t

,(4.8) ∣∣∣Ĉxxxx(t, x)
∣∣∣ ≤ C

x2ρt
+

C

x2ρ2
t

+
C

x2ρ3
t

,(4.9) ∣∣∣Ĉxt(t, x)
∣∣∣ ≤ C

1− t
,(4.10) ∣∣∣Ĉxxt(t, x)

∣∣∣ ≤ Cγn
xρ3

t

,(4.11)

where ρ2
t := γn(1− t).

We conclude this section with a specific bound we need in the case α = 0
under Assumption (H’). As u(s, x) has a probabilistic representation given
by Lemma 4.3) where the function h1 is bounded, we get a bound for Ĉxt(t, x)
which is comparable to that of Ĉxxt(t, x) in the case α > 0. Indeed, recall
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that the bound we obtain for Ĉxxt(t, x) is deduced from the probabilistic
representation of ux(s, x). Therefore, we have

Lemma 4.5. Suppose that Assumption (H’) holds. Then,∣∣∣Ĉxt(t, x)
∣∣∣ ≤ Cγn

xρ3
t

(4.12)

where ρ2
t := γn(1− t).

5. Appendix.

Lemma 5.1. The stochastic equation defined on [s,+∞[ for all s > 0 by:

(Ŝ) =

{
dŜx,s(t) = σ̂(t, Ŝx,s(t))Ŝx,s(t)dWt

Ŝx,s(s) = x

has a unique solution such that for some constant C∗ = C∗(n, T ),

E sup
0≤t≤T

Ŝ2
x,s(t) ≤ C∗(1 + x2).

Proof. It suffices to apply Theorem 2.2 p104 [6]. �

Lemma 5.2. Assume that Condition (H) holds. Then, the PDE (e) has
a unique solution.

Proof. Note that it is not possible to conclude immediately on the exis-
tence of a solution of (e) because the operator is not uniformly parabolic on
]0,∞[⊗[0, 1[. This is why, we transform the problem in such a way that the
required uniform parabolic condition holds.

By virtue of Lemma 5.1, recall that Ŝx,s(t) is the unique solution of the
stochastic equation defined on [s, 1], s ∈ [0, 1] by :{

dŜx,s(t) = γ̂(t, Ŝx,s(t))dWt

Ŝx,s(s) = x

where γ̂(t, x) =
√
σ2(t, x)x2 + σ(t, x)x2γn. Recall that

E sup
s≤t≤1

Ŝ2
x,s(t) ≤ C∗n(1 + x2)
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where C∗n is a constant depending on n. Let us define g(x, t) := Eh(Ŝx,t(1)).
It satisfies the inequality

|g(x, t)| ≤ c
(

1 + E|Ŝx,t(1)|
)
≤ c

(
1 + (EŜ2

x,t(1))1/2
)

≤ c (1 + |x|).

Since h′ is bounded, we obtain by virtue of the Cauchy–Schwarz inequality,
that

|g(x, t)− g(y, u)| ≤ c
√
E
(
Ŝx,t(1)− Ŝy,u(1)

)2
.

Let Ŝ
(m)
x,s be the solution of the sde{

dŜ
(m)
x,s (t) = γ̂(m)(t, Ŝ

(m)
x,s (t))dWt

Ŝ
(m)
x,s (s) = x

where γ̂(m)(t, x) :=
√
σ2(t, x)x2 + σ(t, x)γnx2 +m−1. Observe than ‖γ̂(m)−

γ̂‖∞ ≤ m−1/2 hence Ŝx,s(1)(m) → Ŝx,s(1) in L2(Ω, P ) as m→∞ uniformly

in x and s. Then, g(m)(x, t) := Eh(Ŝ
(m)
x,t (1)) converges uniformly to g(x, t).

Applying Lemma 3.3 p 112 with Condition (A′) p 113 [6], we deduce the

existence of a constant C
(m)
R such that

|g(m)(x, t)− g(m)(y, u)| ≤ C(m)
R

√
(x− y)2 + |t− u|

if |x|, |y| ≤ R. We deduce that g(m) is continuous hence so is g.
We use the notations of page 138 [6] where we replace t by 1− t. Let us

consider the following sets with m ∈ N\{0}:

Qm = ]
1

m
,m[×]0, 1[,

Bm = ]
1

m
,m[×{1},

Tm = ]
1

m
,m[×{0},

Sm = { 1

m
,m} × [0, 1[.

For each y ∈ ∂Qm, it is easy to observe that there exists a closed ball Km
y

such that Km
y ∩ Qm = ∅ and Km

y ∩ Qm = {y}. It follows that the function
Wy proposed p 134 [6] defines a barrier for each y ∈ Sm ⊆ ∂Qm. Moreover,

observe that g(x, t) = Eh(Ŝx,1(1)) = h(x) if (x, t) ∈ Bm ∩ Sm. By virtue of
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Theorem 3.6 p 138 [6], Assumptions (G) and (P), implie that the Dirichlet
problem

(Dm) =

{ ut(t, x) + 1
2 σ̂

2(t, x)x2uxx(t, x) = 0 (x, t) ∈ Qm ∪ Tm
u(1, x) = h(x) x ∈ Bm
u(t, x) = g(x, t) (x, t) ∈ Sm

admits a unique solution um. Indeed, g and h are continuous. Since Qm is
bounded, there is a constant cm depending on m such that∣∣γ̂2(t, x)− γ̂2(t, x)

∣∣ ≤ cm|x− x|.
Note that um is continuous onQm and the derivatives umt , u

m
xx are continuous

on Qm ∪ Tm (see Theorem 3.6 p 138 [6]). By virtue of Theorem 5.2 p 147
[6], we deduce that that um has the following stochastic representation

um(x, t) = Eg(Ŝx,t(τ), τ)Iτ<1 + Eh(Ŝx,t(1))Iτ=1,

where τ is a stopping time. It follows that um(x, t) = Eg(Ŝx,t(τ), τ).
On the other hand,

g(Ŝx,t(τ), τ) = Eh
(
Ŝ
Ŝx,t(τ),τ

(1)
)

where Ŝ
Ŝx,t(τ),τ

(1) = Ŝx,t(1). It follows that um(x, t) = g(x, t) and, as m →
∞, we deduce that g is a solution to the PDE (e). Indeed, it is easy to check
that g verifies (e). Moreover, v(t, y) = u(t, ey) is a solution of the following
uniformly parabolic PDE

(f) =

{
vt(t, y) + 1

2 σ̂
2(ey)vyy(t, y) −1

2 σ̂
2(ey)vy(t, y) = 0, (y, t) ∈ R× [0, 1[

v(1, y) = h(ey), x ∈ R.

By virtue of Theorem 3.6 [6], v is also the unique solution of the same PDE
restricted to an arbitrary smooth bounded domain. Moreover, by virtue of
Theorem 5.2 p 147 [6], we deduce that the solution v has a probabilistic
representation which is unique. We then conclude that u is also unique. �

Lemma 5.3. Assume that t ∈ [0, γn]. Then, the stochastic equation:{
dS̃x,t(u) = σ̂∗(u, S̃x,t(u))S̃x,t(u)dWu + Λ̂∗(u, S̃x,t(u))S̃x,t(u)du

S̃x,t(t) = x

has a unique solution on [t, γn].
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Proof. It suffices to use Theorem 2.2 p104 [6]. For this, we verify the
needed conditions with:

σ̃(t, x) = σ̂∗(t, x)x,

b(t, x) = Λ̂∗(t, x)x.

From

(σ̂∗)2(t, x) =
1

γn
σ2(t, x) + σ(t, x)

we deduce that

2σ̂∗x(t, x)σ̂∗(t, x) =
2

γn
σx(t, x)σ(t, x) + σx(t, x).

Recall that
Λ̂∗(t, x) = (σ̂∗)2(t, x) + σ̂∗x(t, x)σ̂∗(t, x)x.

Then, from the hypothesis |xσx(t, x)| ≤ const it is easy to deduce that
|b(t, x)| ≤ const |x|. Otherwise, it is clear that |σ̃(t, x)| ≤ const |x|.
Finally, we suppose that |x|, |x| ≤ N . We have

|b(t, x)− b(t, x)| ≤
∣∣∣Λ̂∗(t, x)

∣∣∣ |x− x|+ |x| ∣∣∣Λ̂∗(t, x)− Λ̂∗(t, x)
∣∣∣

where
∣∣∣Λ̂∗(t, x)

∣∣∣ ≤ const, |x| ≤ N and

Λ̂∗(t, x)−Λ̂∗(t, x) = (σ̂∗)2(t, x)−(σ̂∗)2(t, x)+xσ̂∗x(t, x)σ̂∗(t, x)−xσ̂∗x(t, x)σ̂∗(t, x).

But we have
∣∣(σ̂∗)2(t, x)− (σ̂∗)2(t, x)

∣∣ ≤ const |x− x| and

2xσ̂∗x(t, x)σ̂∗(t, x) = x
2

γn
σx(t, x)σ(t, x) + xσx(t, x).

Since the next expression is bounded, we first write x = (x − x) + x and
finally, we have to estimate

σx(t, x)σ(t, x)− σx(t, x)σ(t, x) = σ(t, x) (σx(t, x)− σx(t, x))

+σx(t, x) (σ(t, x)− σ(t, x))

where

|σx(t, x)− σx(t, x)| ≤ const |x− x|,
|σ(t, x)− σ(t, x)| ≤ const |x− x|.
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because σxx(t, x) is bounded. Then, we can conclude that for |x|, |x| ≤ N ,

|b(t, x)− b(t, x)| ≤ const(N) |x− x|.

In a similar way, it is easy to prove that

|σ̃(t, x)− σ̃(t, x)| ≤ const(N) |x− x|.

�

Lemma 5.4. The local martingale

∂Ŝx,t(u)

∂x
= 1 +

∫ u

t

Λ̂∗
(
s, Ŝx,t(s)

)
σ̂
(
s, Ŝx,t(s)

) ∂Ŝx,t(s)

∂x
dWs

is a strictly positive martingale on any interval [t, T ] ⊆ [0,∞).

Proof. The Doleans–Dade formula give us

∂Ŝx,t(u)

∂x
= exp

{∫ 1

t
Λ̂∗
(
v, Ŝx,t(v)

)
dWv −

1

2

∫ 1

t
(Λ̂∗)2

(
v, Ŝx,t(v)

)
dv

}
.

Since Λ̂∗ is bounded, we deduce that there exists a constant c such that(
∂Ŝx,t(u)

∂x

)2

≤ cNu

where

Nu = exp

{∫ u

t
2Λ̂∗

(
v, Ŝx,t(v)

)
dWv −

1

2

∫ 1

t
4(Λ̂∗)2

(
v, Ŝx,t(v)

)
dv

}
is a strictly positive locale martingale, hence a supermartingale verifying

dNu = 2NuΛ̂∗
(
u, Ŝx,t(u)

)
dWu.

In particular N is integrable and finally

sup
u∈[t,T ]

E

(
∂Ŝx,t(u)

∂x

)2

<∞.

So, we can conclude about the lemma. �
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Lemma 5.5. The process η̂x,t is a Markov process of transition density
function Γ∗(x, t, z, τ), the fundamental solution of the operator:

1

2
σ̂2
a(t, x)

∂2

∂x2
+ σ̂b(t, x)

∂

∂x
+
∂

∂t
.

Proof. According to Theorem 5.4 p 149 [6], it suffices to verify the needed
conditions. Condition (A1) is well verified since σ̂2

a(t, x) ≥ const > 0. Let
us verify Condition (B1)(i): First, σ̂2

a(t, x) = (σ̂∗)2(t, x) and σ̂b(t, x) are
bounded. Secondly, suppose that |x|, |x| ≤ N . Then∣∣σ̂2(t, ex)− σ̂2(t′, ex)

∣∣ ≤ ∣∣(σ̂∗)2(t, ex)− (σ̂∗)2(t′, ex)
∣∣+∣∣(σ̂∗)2(t′, ex)− (σ̂∗)2(t′, ex)

∣∣
where, as already shown,

∣∣(σ̂∗)2(t′, ex)− (σ̂∗)2(t′, ex)
∣∣ ≤ c|x− x|. Moreover,

∣∣(σ̂∗)2(t, ex)− (σ̂∗)2(t′, ex)
∣∣ ≤ 1

γn

∣∣σ2(t, ex)− σ2(t′, ex)
∣∣+∣∣σ(t, ex)− σ(t′, ex)

∣∣ .
It follows that if |x|, |x| ≤ N ,∣∣σ̂2

a(t, e
x)− σ̂2

a(t
′, ex)

∣∣ ≤ C(N)
(
|t− t′|+ |x− x|

)
.

In a similar way, since we suppose that σ̂x,t is bounded, we have∣∣σ̂b(t, ex)− σ̂b(t′, ex)
∣∣ ≤ const(N)

(
|t− t′|+ |x− x|

)
.

Finally, since xσ̂x(t, x) is bounded, we deduce that Condition (B1)(ii) holds,
i.e. for any x, x, ∣∣σ̂2

a(t, e
x)− σ̂2

a(t, e
x)
∣∣ ≤ C (|x− x|) .

�

Lemma 5.6. Assume that h is a convex function verifying Condition H.
If σ does not depend on t, then Ĉxx ≥ 0.

According to the Tanaka–Meyer formula, we have:

h
(
Ŝx,t(1)

)
= h(x) +

∫ 1

t
h′−

(
Ŝx,t(u)

)
dWu +

1

2

∫
R
Lu1µ(du)

where h′− is the left derivative and

µ = h′′(u)du+
∑
i

[h′+(Ki)− h′+(Ki)]δKi ,

imsart-aap ver. 2011/05/20 file: Lepinette-Tran.tex date: April 13, 2012



APPROXIMATE HEDGING IN LOCAL VOLATILITY MODEL WITH FRICTION27

δKi is the Dirac measure. Moreover, (Lus )s∈[t,1] is a continuous and positive
semi-martingale verifying∫

R
g(u)Lusdu =

∫ s

t
g
(
Ŝx,t(u)

)
d〈Ŝx,t〉u, s ∈ [t, 1]

for any positive and bounded measurable function g. It follows that

h
(
Ŝx,t(1)

)
= h(x) +

∫ 1

t
h′−

(
Ŝx,t(u)

)
dWu +

1

2

∑
i

[h′+(Ki)− h′−(Ki)]L
Ki
1

+
1

2

∫ 1

t
h′′
(
Ŝx,t(u)

)
σ̂2
(
Ŝx,t(u)

)
Ŝ2
x,t(u)du.(5.1)

Recall that(
Ŝx,t(u)−K

)+
= (x−K)+ +

∫ u

t
I
Ŝx,t(s)>K

dŜx,t(s) +
1

2
LKu .

Then,
1

2
ELKi1 = Ĉi(t, x)− (x−Ki)

+

where Ĉi(t, x) is the solution of (e) when h(x) = (x − Ki)
+. Taking the

expectations, we deduce from (5.1) that

Ĉt(t, x) =
∑
i

αiĈ
i
t(t, x)− 1

2
E
(
h′′
(
Ŝx,t(1)

)
σ̂2
(
Ŝx,t(1)

)
Ŝ2
x,t(1)

)
(5.2)

where αi = h′+(Ki)−h′+(Ki) ≥ 0. Indeed, to differentiate (5.1) with respect

to t, we note that Ŝx,t(u) = Sx,0(u− t) where Sx,0 verifies

dSx,0(v) = σ̂
(
Sx,0(v)

)
Sx,0(v)dWv, v ∈ [0, 1− t]

and we use the change of variable v = u− t. Since h′′ ≥ 0 and

Ĉt(t, x) = −1

2
σ̂2(t, x)x2Ĉxx(t, x),

it is then sufficient to show the lemma for h(x) = (x −K)+. To do so, we
define:

hn(x) := 0 x ∈ [0,K − 1/n]

:= n (x−K + 1/n)2 /4 x ∈ [K − 1/n,K + 1/n]

:= x x ∈ [K + 1/n,∞[.
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The function hn is a continuous and convex function which satisfies the
inequalities

0 ≤ hn(x)− h(x) ≤ 1

4n
,

|h′n(x)− h′(x)| ≤ I[K−1/n,K+1/n](x).

It follows that Ĉnx (t, x) → Ĉx(t, x) where Ĉn, Ĉ are the solutions of (e)
respectively when the terminal conditions are given by hn and h(x) = (x−
K)+. Since hn is a C1-function, the coefficients αi = 0 and we deduce from
(5.2) that Ĉnxx(t, x) ≥ 0 and x → Ĉnx is increasing. Then, x → Ĉx is also
increasing and finally Ĉxx ≥ 0. �
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