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Theoreticalconsiderationsupon the MK model for limit strains
prediction: the plane strain case, strain-rate effects, yield surface

influence, and material heterogeneity

Stefan C. Soarea

aTechnical University of Cluj-Napoca, C. Daicoviciu 15, 400020 Cluj-Napoca, Romania

Abstract

The paperpresents a study of the Marciniak and Kuczynski (MK for short) model for the pre-
diction of limit strains of orthotropic sheet metal under in-plane proportional biaxial stretching.
In two particular cases analytical results can be obtained if the groove of the MK model is ori-
ented along one of the in-plane symmetry axes. The first case is the plane strain loading mode.
Necessary and sufficient conditions are derived for the MK-predicted plane strain limit strain to
match exactly the experimentally measured limit strain. An example of material, the AA5182-O
aluminum alloy, that does not satisfy these conditions is discussed. It is shown then that if a
power-law strain rate sensitivity is included in the hardening law then the MK-model can match
exactly any target plane strain limit strain. The second case is the non-hardening case for positive
strain ratios. This case allows for an insight into the way the MK-predicted limit strains depend
upon the yield function. Based on the theory developed for the plane strain case, material het-
erogeneity as a possible cause for unstable plastic flow is further discussed. It is shown that such
heterogeneities can be modeled by perturbing the rate of deformation with an eigenstrain. This
allows for an extension of the MK-model to sheets of uniform thickness.

Keywords: Marciniak-Kuczynski Model, Forming Limit Diagram, Sheet Metal

1. Intr oduction

As is well known, the constitutive equations of classical plasticity, convex yield surface coupled
with the normality flow rule, lead to the paradoxical result that one can stretch indefinitely a
metal sheet, without breaking it. In more precise terms, if one assumes a homogeneous contin-
uum under homogeneous boundary conditions, the deformation field predicted by the mentioned
classical theory is homogeneous. On the other hand, these equations are hyperbolic in the rigid-
plastic approximation, Hill (1950), and hence they allow, at least in principle, for the propagation
of velocity discontinuities as required by neck formation during biaxial stretching of metal sheets.
However, since the characteristics are constant for proportional loading, this theory does not al-
low for a progressive development of instability: in Hill’s theory, necking is instantaneous and
takes place along zero extension directions. Hence the phenomenology of necking developed by
Hill (1952, 2001) describes the bifurcation point along the loading history.
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A more successful, from a practical point of view, model for sheet failure was proposed later by
Marciniak and Kuczynski (1967) (although the initial focus was on positive strain ratios only,
the model was later extended by the Brown school of the 1970’s to negative strain ratios by
allowing oblique grooves, see next). While retaining the homogeneous continuum assumption,
and the classical rigid-plastic constitutive framework, the cited work introduces a geometrical
heterogeneity in order to simulate neck formation: the sheet is assumed to have a thickness
imperfection in the form of a groove across its width, Fig. 1, groove that under external in-plane
loads will develop ultimately into a neck (a direction of zero extension, see next). Remarkable,
the neck now develops gradually: the groove is nothing but a new characteristic direction etched
at the outset onto the material, direction along which discontinuities can propagate. It will be
shown here that Hill’s failure criterion is nothing but the MK’s failure criterion for the material
in the groove (neck). This explains why Hill’s criterion always overestimates the limit strains for
negative strain ratios.
Most current calculations of forming limit diagrams (FLD, for short) are based on the MK model.
Two features of this model explain its popularity: it is capable of predicting the entire FLD (that
is, for positive and negative strain ratios along a proportional strain path), and the initial depth
of the groove can serve as a parameter of the model to adjust its predictions with measured data.
With few exceptions, e.g., Sowerby and Duncan (1971), Hutchinson and Neale (1978 a,b), much
of our current understanding about the MK-model can be safely regarded as empirical (based
on numerical calculations). This approach cannot explain, for example, why for some materials
the parameter of the MK-model cannot be adjusted for an exact prediction of the plane strain
limit strain, see for example Wu et al. (2003). One objective of this work is to report some
new analytical formulas regarding the plane strain strain case and the non-hardening case of the
MK-model.
A critique often brought to the MK model, e.g., Storen and Rice (1975), Barata Da Rocha et al
(1984), is that the initial depth of the groove is usually too big to be correlated with a thickness
imperfection observed in actual metallic sheets. In other words, the groove of the MK model is
far from being an explanation or a real model for the initiation of unstable plastic flow. One can
say that something else triggered the instability and then the MK model takes over the description
from a later stage when a groove of a certain depth has already developed. The second main
objective of this report is to show that the MK-model can indeed be extended to sheets of uniform
thickness.

2. The MK-model

Before proceeding with the announced program, let us first describe briefly the MK-model and
the constitutive framework we shall adopt here. Detailed presentations, in a more general consti-
tutive framework, can be found in Kuroda and Tvergaard (2000), Wu et al. (2003), Aretz (2007a).
In what follows, the sheet is assumed orthotropic and the orthogonal coordinate systemxyz is
always oriented along the symmetry axes:x along the rolling direction,y along the transverse
direction andz is the normal to the plane of the sheet direction. The material of the sheet is
assumed homogeneous, incompressible and rigid-plastic, the yield surface being also flow po-
tential (normality rule). The yield surface is assumed first order positive homogeneous. A dot
over a variable/function will always denote material derivative with respect to time.
Two spatial areas are distinguished: one is the groove, which will be denoted from now on as
zone B, the other is the bulk of the sheet. The values taken by a variable in zone B will be
distinguished by a right superscriptB attached to them. The sheet is loaded in its plane by a
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Figure1: Geometry of the MK-model: the shaded area represents the initial groove, the zone where the thickness of the
sheet is assumed to be smaller than the thickness of the rest of the sheet.

system of forces collinear with the symmetry axes of the sheet, Fig. 1. Since the boundary
conditions are assumed (spatially) uniform and the sheet is homogeneous, we can safely assume
the stress-strain fields in the bulk of the sheet as being uniform. The loading process is viewed
as a monotonic succession of equilibrium states through infinitesimal increments. The strain
increment tensor will be denoteddε. The loading conditions are such that the strain path is
proportional:

dεy
dεx

=: ρ = constant (1)

From incompressibility it follows that the strain increment tensor is

dε = dεx



1 0 0

0 ρ 0

0 0 −(1 + ρ)


(2)

whereas from the orthotropic symmetry of the sheet it follows that the shear stress components
are zero and hence, with the plane stress assumption, the stress state in the bulk of the sheet is

σ = σx



1 0 0

0 t 0

0 0 0


(3)

Above we have denotedt := σy/σx the constant stress ratio in the bulk of the sheet. Given a
strain ratioρ, t is determined using the flow rule, the first order homogeneity of the yield function,
and eq. (1):

∂ f
∂σy

(1, t) = ρ
∂ f
∂σx

(1, t) (4)

Conversely, for a given stress ratiot, the above relation becomes an equation determining ex-
plicitly the strain ratioρ. Due to the symmetry of the sheet and of the loads, only stress ratios
t ∈ [0,1] will be considered, that is, the range between uniaxial and balanced-biaxial stressing
whereσx is the dominant stress component. In this text,f = f (σ) = f (σx, σy, σxy) will always
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denotethe yield surface. Above, the third argument of the yield function, the shear component
σxy, has been omitted. The equivalent stressσ of a certain stress stateσ is defined as the value of
the yield function on that stress state:σ := f (σ). The equivalent strain increment, which in our
case is also equal to the equivalent plastic strain increment, is defined as the plastic multiplier of
the corresponding stress state:

dε = dλ, where dε = dλ
∂ f
∂σ

(σ) (5)

Using the first order homogeneity of the yield function, the flow rule and the above definitions,
we have then the following work-equivalence relationship:

σ · dε = f (σ)dε (6)

With eqs. (2) and (3) one obtains a differential equation forε(εx) which integrated with the initial
condition ε|εx=0 = 0 leads to

f (1, t)dε = (1 + tρ)dεx =⇒ ε =
1 + tρ
f (1, t)

εx (7)

In what follows we shall assume the hardening properties of the material isotropic and hence
there exists a universal loading curveσ = H(ε) (strain rate sensitivity will be also included
later). For the monotonic loading paths considered in this work this assumption is in general
satisfactory. Then, from the yielding condition the stress is determined as

f (σx, σy) = H(ε) =⇒ σx =
H(ε)
f (1, t)

, σy = tσx (8)

Formulas (7) and (8) determine the stress in the bulk of the sheet for a given loading path and
strain level.
Next, we turn our attention to zone B of the sheet. This is characterized relative to the bulk of
the sheet by the following imperfection ratio:

fh :=
hB

h
⇐⇒ ln fh = ln(hB/hB

0 ) + ln(hB
0/h0) − ln(h/h0) ⇐⇒ fh = f0 exp

(
εB

z − εz
)

(9)

with hB denoting the current (uniform) thickness of zone B, andh the current (uniform) thickness
of the sheet outside zone B, while a subscript pertains to the initial values of the two thicknesses,
and f0 is the initial imperfection ratio. According to the phenomenology of necking, the width
of zone B can be considered small, of magnitude comparable with the thickness of the sheet,
throughout the loading process. Then we shall assume the stress-strain state in zone B as being
spatially uniform. This consideration also allows us to take the spatial rigid motion of zone B
identical with that of a material line in the bulk of the sheet of the same inclination with zone B.
With reference to Fig. 1, witht = (− sinψ, cosψ) andn = (cosψ, sinψ) we denote the tangential
and normal to the groove directions, respectively. Then the orientation of zone B is described by
the formula:

tanψ = exp
[
(1− ρ)εx

]
tanψ0 (10)

Since a material element along the boundary between the two zones must experience a unique
state of strain, the following compatibility equation must hold

dεB
t = dεt ⇐⇒ dεB

[
∂ f
∂σ

(
σB

)
: t

]
· t = dε

[
∂ f
∂σ

(σ) : t
]
· t (11)

4



 

At the boundary between the two zones one must also have force equilibrium. Since in both
areas of the sheet the stress state is uniform, this condition amounts to:

hB
(
σB : n

)
= h (σ : n) ⇐⇒


σB

n = σn/ fh

σB
nt = σnt/ fh

(12)

With further use of the yielding condition in zone B, eqs. (9-12) determine the stress-strain
state in zone B (the groove) at any moment during the loading process. The resulting system
of equations is highly nonlinear and hence, in the general case, it is solved numerically. Also
numerical is the failure criterion: strain increments are performed upon the bulk of the sheet until
the following inequality holds true:

dεB/dε > Nf (13)

with Nf a big enough number. The failure strains are the (logarithmic) strains accumulated in
the bulk of the sheet up to the failure moment. To the author’s knowledge, there is no proof in
the literature that the above ratio will always grow unbounded.

3. The Plane Strain Case

This case is usually employed to determine the MK-parameter, the initial thickness imperfection
ratio f0, so that the MK-FLD prediction best fits the experimentally determined plane strain limit
strain. It is possible in this case to integrate the MK evolution equations into an explicit system
of equations determining the failure strains, if one assumes the groove along one of the in-plane
symmetry axes. Most materials attain theirρ = 0 MK-limit-strain when zone B is oriented along
one of the symmetry axes. For the few exceptions known to the author the deviation of the
MK-groove from a symmetry axis is small, and hence the case studied here is relevant even for
these materials. Since in this study the major strain (or stress component) is along thex-axis, we
assume the groove parallel to they-axis. According to eq.(10), it will remain so during the entire
loading process. Furthermore, the numerical failure criterion (13) is restated as:

dεB

dε
= +∞ (14)

We have then the following result:

Theorem 1. Let ρ = 0, tPS denote the corresponding stress ratio,k := f (1, tPS), and zone B
oriented along they-axis. For a material described with a hardening law in the formσ = H(ε),
with the functionH strictly concave, the MK-limit strain isεx = kεF with the equivalent strain at
failure εF determinedby the following system of equations:

H ′ (εB
F

)
− kH

(
εB

F

)
= 0 (15)

f0H
(
εB

F

)
exp

(
−kεB

F

)
− H (εF) exp(−kεF) = 0 (16)

Proof. Let us first note that the stress ratio in zone B,tB = σB
y /σ

B
x , is constant and equal to the

one in the bulk of the sheet. Indeed, this follows from the flow rule and compatibility eq. (11):

dεy = 0 = dεB
y =⇒ ∂ f

∂σy
(1, t) = 0 =

∂ f
∂σy

(1, tB) =⇒ t = tB = tPS (17)
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Above we have assumed that the plane strain point is unique on the yield surface (in the positive
octant of the (σx, σy) plane between theσy = 0 andσx = σy axes). Furthermore, using Euler’s
identity for first order homogeneous functions we get

σB · ∂ f
∂σ

(σB) = f (σB) =⇒ ∂ f
∂σx

(1, t) = f (1, t) = k (18)

Thenfrom incompressibility and flow rule we haveεB
z = −kεB andεz = −kε, and hence eq. (9)

becomes in this case
fh = f0 exp

[
−k

(
εB − ε

)]
(19)

Next, from the yielding conditions in the two zones of the sheet and equilibrium eq. (12) we
obtain

f

(
σx

fh
,
σx

fh
t

)
= H

(
εB

)
⇐⇒ σx f (1, t) = fhH

(
εB

)
⇐⇒ H (ε) = fhH

(
εB

)
(20)

Substitutingabove formula (19) leads to eq. (16). This relationship allows us to solve forεB

onceε is known, as long as solutions exits. We can therefore speak of a one-to-one relationship
εB

= εB(ε). Then differentiating in (16) with respect toε leadsto:

1
f0

H ′(ε) − kH(ε)
exp(kε)

=
H ′(εB) − kH(εB)

exp(kεB)

dεB

dε
(21)

Now, the following sequence of inequalities holds true:

k <
k
f0
≤

1
f0

exp
[
k
(
εB − ε

)]
− 1

εB − ε (22)

andwe also have, using the concavity ofH in eq. (16):

1
f0

exp
[
k
(
εB − ε

)]
=

H
(
εB

)

H (ε)
≤ 1 +

H ′ (ε)
H (ε)

(
εB − ε

)
(23)

Thetwo inequalities (22) and (23) imply that for allε for which eq. (16) has solutions there holds
the inequality:

H ′(ε) − kH(ε) > 0 (24)

SinceεB(0) = 0 and the functions involved in eq. (16) are continuous, the same inequality
will hold true for all εB in somemaximalinterval I B := [0, εB

F), with εB
F > 0. This interval is

bounded, for inequality (23) holds true only for a bounded set of values ofεB. Hence we also
haveεB < +∞. Using the above in eq. (21) it follows that

dεB

dε
(ε) > 0, (∀) εB ∈ [0, εF) (25)

whereεF is the equivalent strain in the bulk of the sheet corresponding toεB
F . Hence the function

εB(ε) is monotonically strictly increasing. According to our definition of the intervalI B, for εB
F

theremust hold eq. (15). Finally, sinceεF < εB
F , the left-hand member in eq. (21) is strictly

positive forεF , and then
dεB

dε
(εF) = +∞ (26)
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ThusεF is the equivalent failure strain in the bulk of the sheet.¤

As a first remark, in the above proof we have also shown that eq. (14) is indeed a failure criterion:
the nature of the failure point on the graphεB

= εB(ε) is cuspidal.
A second remark is in order here: the failure strain in zone B does not depend on the initial im-
perfection ratiof0. It is an intrinsic property of the material. We have then the following result:

Corollary 1.1 In the conditions of Theorem 1, given a (target) valueεT
x , there existsf0 < 1 such

that for the predicted MK-strainεx we haveεx = εT
x , if and only if the failure strain in zone B

satisfiesεB
x > ε

T
x .

Proof. For a givenεB
F satisfyingeq. (15), the functionε −→ φ(ε) = H(ε) exp(−kε) is strictly

increasing on the interval [0,εB
F ] and strictly decreasing on [εB

F ,+∞). For an exact match of the
target strain we must havef0 = φ

(
εT

x /k
)
/φ

(
εB

F

)
< 1, that is,εT

x < kεB
x = εB

x .¤

Most materials encountered in practice satisfy the condition of the above Corollary. As a first
example, let us consider the useful power law for which the calculation is explicit.

Corollary 1.2 In the conditions of Theorem 1, for a hardening law in the formH (ε) = K (ε0 + ε)n,
thereexists an initial imperfection ratiof0 < 1 such that MK-predicted plane strain limit strain
matches the target strainεT

x if and only if the following inequality holds true:

εT
x < n− kε0 (27)

Proof. The solution of eq. (15) is in this caseεB
F = n/k− ε0.¤

We remark that the influence of the yield function, through the parameterk, is very small, since
ε0 is usually close to zero. For example, for the AISI 304 steel described in Campos et al. (2006)
the hardening law was given in the form required by Corollary 1.2, withn = 0.47 andε0 = 0.01
(a complete strain rate dependent form is discussed later). The experimentally measured plane
strain limit strain, the target strain, wasεT

x = 0.32; after identifying the yield surface from
directional and biaxial data, the parameterk is identified ask = 0.9; the MK failure strain in zone
B is in this caseεB

x = n− kε0 = 0.4610 and hence satisfies eq. (27). The initial imperfection ratio
can then be determined as (withφ defined in Corollary 1.1)f0 = φ

(
εT

x /k
)
/φ

(
εB

F

)
= 0.9737

As a second example, we consider the aluminum alloy AA3104-H19 described in Wu et al.
(2003). For this alloy the cited work employs a power hardening law withn = 0.07 andε0 = 0.
The target strain is in this caseεT

x = 0.042< εB
x = n. The MK model can then match exactly

its prediction with the target strainεT
x for an initial imperfectionf0 =

(
εT

x /n
)n

exp
(
n− εT

x

)
=

0.9923, precisely the value identified in the cited work through a trial and error procedure (0.992).
Noteworthy, the estimationεB

x = n has also been obtained in Hutchinson and Neale (1978a) based
on a combined perturbation MK-analysis.
However, not every material satisfies the condition of Corollary 1.1. The aluminum alloy AA5182-
O is described in Wu et al. (2003) by the following hardening law in incremental form:

dσ = (1− σ/K1)n dε (28)

After integration it takes the form:

σ = H(ε) = K1

{
1−

[
(1− σ0/K1)1−n + K2(n− 1)ε/K1

]1/(1−n)
}

(29)
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with σ0 = H(0). The functionH is identified as usual by matching it to the results of a uniaxial
traction test along the rolling direction, and thenσ0 is the initial yield stress in this direction. To
compute the failure strain in zone B we solve eq. (15) which in this case reduces to

g(a) := an + Kk(a− 1) = 0 (30)

where we have denotedK := K1/K2, anda1−n := (1− σ0/K1)1−n + K2(n− 1)ε/K1. The function
g above is strictly increasing and convex. Additionally,g(0) = −K < 0 andg(1) = 1 > 0, and
hence the above equation has a unique solutiona ∈ (0,1). It can be found numerically with the
Newton algorithm. Forσ0 = 120.0 MPa,K1 = 385.0 MPa,K2 = 4100.0 MPa,n = 1.2 and
k = 0.9383, one obtainsa = 0.1189, value which substituted into

εB
x = kεB

=
[
a1−n − (1− σ0/K1)1−n

] Kk
(n− 1)

(31)

leadsto the result:εB
x = 0.1998. The target strain reported in Wu et al. (2003) isεT

x = 0.22.
This explains why in the cited work it was not possible in the case of the AA5182-O alloy to
fit the MK-prediction to the measured data: according to Corollary 1.1, there exits nof0 < 1 to
allow this exact match. Although no explicit formulas are available for the pure tension case, it
can be shown, by using the classical trial and error procedure, that a similar phenomenon takes
place if one tries to fit the MK-predicted limit strain in pure tension (stress ratiot = 0) to the
experimentally measured value: the later is greater than the MK-prediction for anyf0 < 1. Hence
differences in hardening properties between pure tension and plane strain cannot offer a complete
explanation either. Recent calculations, Signorelli et al. (2009), suggest that consideration of
anisotropic hardening, by incorporating texture effects into the constitutive model, may lead to
a better MK-prediction of the FLD of the AA5182-O alloy. While texture effects have been
shown to influence considerably the MK-prediction of the FLD, e.g., Wu et al. (1997), these
effects alone cannot explain entirely the mechanism by which a sheet metal fails since hardening
is a material property whose basic features are decided at crystal level. In particular, it is well
known that the hardening behavior of AA5182-O is strongly influenced by a particular form of
interaction between dislocations and solute atoms, Picu et al. (2005), phenomenon reflected at
macroscale by the serrated aspect of the hardening curve. This serrated aspect is featured by the
experimentally measured hardening curves reported in Wu et al. (2003) and Picu et al. (2005).
It seems then appropriate to include here a discussion on strain rate sensitivity for the plane
strain case of the MK model. While closed form equations for the failure strains seem no longer
possible, even for the simplest case considered here, it will be shown that including strain rate
dependence in the hardening law of AA5182-O solves the above problem of the predictability of
the plane strain limit strain (although not in a coherent manner). The discussion here parallels
that in Hutchinson and Neale (1978b), where similar conclusions are drawn.
We shall account for strain rate dependence by extending the hardening law to:

σ = H(ε)ε̇
m

(32)

By a similar argument that lead to eq. (16) one obtains:

dεB

dε
=


G(ε)

f0 G
(
εB

)

1/m

, with G(x) :=
H(x)

exp(kx)
(33)
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Figure2: εB = εB(ε) graphs for the AISI304 and AA5182-O alloys in the rate-dependent case. The dashed line represents
theεB = ε line.

with m > 0. We requireH(0) , 0. We have now an ordinary differential equation describing
uniquely the evolution ofεB

= εB(ε), given the additional initial conditionεB(0) = 0 (for in-
creased precision one could also consider a strictly positive initial value forεB(0), since zone B
is thinner and hence yields earlier than the rest of the sheet; however, this correction has neg-
ligible effects upon the overall results). With this new constitutive model, there appears now a
remarkable difference in comparison with the rate independent case: the failure criterion (14) is
fulfilled for an infinite equivalent strain in zone B, or equivalently, the equivalent strain at failure
εF in the zone outside the groove is a vertical asymptote for the solutionεB

= εB(ε). This can be
shown by employing the equation for the inverse functionε = ε

(
εB

)
, with the initial condition

ε(0) = 0. Then, by repeated use of the Cauchy-Lipschitz theorem of existence and uniqueness
and the concavity ofH, the solutionε = ε

(
εB

)
canbe extended to the maximal interval [0,+∞).

Sinceε = ε
(
εB

)
is strictly increasing andε ′ (+∞) = 0, it has an upper horizontal asymptote

εF < +∞.
Next, since [0, εF) is the maximal interval on which the solutionεB

= εB(ε) can be extended,
there is a one to one relationship between the parameterf0 andεF . Hence given a target strain
εT

x it uniquely determines the parameterf0 that matches it through the MK-prediction. Since for
f0 = 1 the solution of eq. (33) withεB(0) = 0 is εB(ε) = ε, defined over the interval [0,+∞), by
the continuity of the solution of (33) with respect to the parameterf0, for a sequence (f (k)

0 )k −→ 1

there exists a corresponding sequence of maximal intervals [0,ε(k)
F ) such thatε(k)

F −→ +∞. We
conclude that in the rate-dependent case for every target strainεT

x > 0 there exists an initial
imperfectionf0 such that the MK-prediction of the plane strain limit strain isεT

x .
In the conditions imposed by the shape of the hardening curve (strictly concave) andf0 < 1, the
behavior of the solution of eq. (33) determined byεB(0) = 0 is quite typical: strictly increasing
convex function with explosive growth near the right-endεF . We illustrate it for two materials.
The first is the AISI304 steel for which the complete description in Campos et al. (2006) was
in the form of eq. (32) withH the power law with material parameters detailed earlier and
m = 0.012. Then, with a trial end error procedure (and with a numerical Runge-Kutta o.d.e.
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integrator) we find that forf0 = 0.950 the MK-prediction equals the target strainεT
x = 0.32,

close to the value off0 = 0.955 employed in the cited work. The graph of theεB
= εB(ε)

functionis shown in Fig. 2.
The second application is for AA5182-O. Following data reported in Fig. 2 of Picu et al. (2005),
the strain rate exponent for this material is approximatelym = −0.0075. While a negativem
is perfectly legit in eq.(32), the differential equation (33) is no longer applicable in this case
since it becomes identical with the equation for the inverse functionε = ε

(
εB

)
, for which the

ε(0) = 0 solution can be extended ad infinitum. Furthermore, the constitutive formula (32) may
be satisfactory for constant strain rate loading histories but it becomes inadequate for loading
histories with variable strain rates: the strain rate in zone B is strictly increasing and then eq.(32)
predicts a decrease of the yield stress in zone B, form < 0, leading further to the loss of force
equilibrium between zone B and the rest of the sheet. This remark applies equally well for
positivem-exponents also, since in this case eq.(32) may predict a too stiffstress-strain response.
In absence of relevant experimental data we refrain from further considerations. Then, just for
the purpose of illustration of eq.(33), we shall proceed against experimental evidence and take
m = 0.0075 (Signorelli et al. (2009) usedm = 0.02). Readjusting the material parameters to fit
the same hardening curve as in Wu et al. (2003) but in the strain rate dependent form of eq. (32)
with H given by eq.(29) anḋε = 0.001/swe get:σ0 = 126.4 MPa,K1 = 398.5 MPa,K2 = 4100
MPa,n = 1.1. Illustrated in Fig. 2 is theεB

= εB(ε) evolution which for f0 = 0.998 fits exactly
the target strainεT

x = 0.22. However, besides the constitutive inconsistency signaled here, there
is another troubling consequence of eq. (33): the thickness strain in zone B is infinite at failure.
The sheet fails when the thickness in zone B has become zero, and hence eq. (14) is in this case
equivalent to a fracture criterion.

4. About the relationship between the Hill-Swift and MK failure criteria and a simple ap-
proximation for negative strain ratios

Eq. (15) is nothing but Hill, or Swift criterion whenρ = 0, Hill (1952), Swift (1952). Thus in
this case Hill’s failure criterion is equivalent with the MK failure criterion. It is then natural to
inquire further about the relationship between these criteria for the whole range of strain ratios.
First, let us make a simple remark about the structure of the stress tensor in zone B. According to
the equilibrium equation (12) its componentsσB

n andσB
nt are proportional with the corresponding

components of the stress tensorσ in the bulk of the sheet. To discern completely the contribution
of the stress state in the bulk of the sheet to that in zone B we write theσB

t component in the form
σB

t =
(
σA

t + q
)
/ fh, whereq is the supplementary stress component in thet− direction. Then with

respect to thexycoordinates we have:

[
σB

]
xy

=
1
fh

[σ]xy + q


n2

2 −n1n2

−n1n2 n2
1


 =

1
fh

(σ + qT) (34)

with an obvious definition for the matrixT.
We state next a generalization of Theorem 1 that will be needed in what follows. Its proof follows
similar ideas and therefore we defer it to an Appendix.

Theorem 1.b. Assuming a strain rate independent hardening law, then for every stress ratio
t ∈ [0,1] and every initial orientation of zone B the equivalent strain at failure in zone B, defined
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by eq. (14), is finite:εB
F < +∞.

Returningto the investigation of this section, we have:
Theorem 2. For a strain rate independent hardening law, in zone B the following implication
holds true

dεB

dε
= +∞ =⇒ dσB

n

dεB
n

= σB
n ,

dσB
nt

dεB
n

= σB
nt,

dσB
t

dεB
n
− σB

t =
1
fh

dq
dεB

n
(35)

Proof. Let us consider zone B oriented at an arbitrary angle as in Fig. 1. Differentiating the first
of the equilibrium equations in (12) with respect toεB, the flow ”time” within the groove, and
since, according to Theorem 1.b, the failure strains in zone B are finite, the following equality
must hold at the failure moment:

dσB
n

dε
dε

dεB
=

d

dεB

(
fhσ

B
n

)
=⇒

[
d

dεB

(
fhσ

B
n

)]

εB=εB
F

= 0 (36)

Differentiating eq. (9):
d fh
dεB

= fh
d

dεB

(
εB

z − εz
)

(37)

Fromincompressibility and compatibility, eq. (11), we have:

dεB
z − dεz = −

(
dεB

n + dεB
t

)
+ (dεn + dεt) = −dεB

n + dεn (38)

and hence [
d

dεB

(
εB

z − εz
)]

εB=εB
F

= −
[
dεB

n

dεB

]

εB=εB
F

(39)

whereabove we have used the flow rule and the MK failure criterion:

dεA
n

dε
=

(
n2

1 + ρn2
2

) ∂ f
∂σx

(1, t) < +∞ =⇒
[

dεn

dεB

]

εB=εB
F

= 0 (40)

Returning then to eq.(36), after performing the limitεB −→ εB
F (to legitimate the use of the chain

rule for derivatives), we have:

fh

(
−dεB

n

dεB
σB

n +
dσB

n

dεB

)

εB=εB
F

= 0 ⇐⇒ fh

(
−σB

n +
dσB

n

dεB
n

)

εB=εB
F

= 0 (41)

Simplifying above with fh (which is nonzero since the failure strainεB is finite) gets the first
implication in (35). The second is obtained similarly by using the second equilibrium equation
in (12) while the third by using eq.(34).¤

The first of the implications in eq. (35) becomes a Swift type criterion if the groove is oriented
along the transverse axis:dσB

x/dε
B
x = σB

x . However, this failure criterion holds for the stress-
strain state in zone B. Applying it requires knowledge of the entire stress-strain history, as in
the MK model, and as remarked in the early work of Swift (1952). Instead, the current practice
features Swift criterion in combination with the approximation of the stress-strain state in the
neck with the one outside it. To recover a Hill type of failure criterion we need the following:
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Corollary 2.1 For a strain rate independent hardening law, the following implication holds true

dεB

dε
= +∞ =⇒ dσB

n

dεB
z

= −σB
n (42)

Proof. From Theorem 1.b we know that the failure moment is cuspidal. Hence it can be ap-
proached only with a decreasing to zero sequence of incrementsdε. Since every corresponding
dεB incrementis always finite, from the compatibility equation (11) it follows that at failure there
holds:dεB

t = 0. Then from incompressibility we also havedεB
z = −dεB

n . The conclusion follows
from Theorem 2.¤

Equation (42) is Hill’s failure criterion written for the stress-strain state in zone B. If one makes
the approximationσB = σ, then withσn = (1 + t tan2ψ)σx/n2

1, and since the neck angle is
stationary at the failure instant, one obtains the more familiar formdσx/dεz = −σx. In what
follows we shall weaken this assumption to obtain a better approximation for the MK-predicted
limit strains in the range of negative strain ratios. We assume:

σB =
1
fh
σ (43)

As a consequence, we havetB = t: the stress ratio in zone B is equal to the one in the bulk of the
sheet. For negative strain ratios this assumption is close to the actual stress path predicted by the
MK model. For example, for the previously described AISI 304 sheet in pure tension,t = 0, the
MK model predicts at failuretB = (σy + qn2

1)/(σx + qn2
2) ≈ 0.08, while for most of the loading

process it satisfies:tB < 0.04. One also neglects the shear componentσB
xy. For example, for

the same pure tension experiment with AISI 304, the MK model predictsσB
xy/σ

A
x < 0.06 for the

whole loading process.
Since the stress ratio is the same and constant in both areas of the sheet we have

dεz = −(dεx + dεy) = −(1 + ρ)dεx =
−(1 + ρ) f (1, t)

1 + tρ
ε (44)

with a similar formula fordεB
z . Hence assumption (43) has also the consequence that the thinning

rate in both areas is the same. The initial conditions are different: for zone B we havef0 < 1,
determined from the plane strain case discussed earlier, while outside zone B we havef0 = 1.
Then with a reasoning similar to the one followed in the proof of Theorem 1, from (43) the
equations for the failure strains are now

H ′ (εB
F

)
− kH

(
εB

F

)
= 0, with: k :=

1 + ρ

1 + tρ
f (1, t) (45)

T exp(kεF) − H(εF) = 0, with: T := f0H
(
εB

F

)
exp

(
−kεB

F

)
(46)

εx =
f (1, t)
1 + tρ

εF , εy = ρεx (47)

As illustrated in the next section, the above equations improve considerably the Hill approxima-
tion to the failure strains for negative strain ratios, coinciding with the MK prediction forρ = 0.
Therefore we shall refer to the above formulas as the HMK approximation. Unfortunately, such
simple formulas are no longer applicable for positive strain ratios, since in this case the stress
ratio in zone B varies considerably during the loading process and hence assumption (43) is
no longer valid. However, as shown next, for positive strain ratios there is another approach
available, if simple approximations are desirable, based on another explicit formula.
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5. The non-hardening case (positive strain ratios)

The complicated nature of the general equations of the MK model makes almost impossible their
explicit integration. Explicit solutions, even in particular cases, are of great help in discerning the
role of each constitutive ingredient and the degree to which it influences the MK-predicted limit
strains. The non-hardening case is amenable to explicit integration and its solution brings further
support for the importance of accurate modeling of the biaxial yield curve when predicting limit
strains with the MK model, Bassani et al. (1979), Barlat (1987), Lian et al (1989). This case was
first analyzed in qualitative terms by Sowerby and Duncan (1971). Here we make more precise
statements. We have:

Theorem 3. Let us assume zone B oriented along the transverse symmetry axis, and positive
strain ratios. Then for a perfectly rigid-plastic material, and a givenf0 < 1, there existsρ∗ > 0
such that for strain ratiosρ ∈ [0, ρ∗] the material fails at the beginning of the loading process.
Forρ > ρ∗ the limit strains are:

εx =

∫ tB
0

tPS

[
fy(1, τ)

]2
dτ

f (1, τ)
[
ρ fx(1, τ) − fy(1, τ)

] , εy = ρεx (48)

where fx and fy denote the partial derivatives∂ f /∂σx and∂ f /∂σy, respectively,tPS is the stress
ratio corresponding toρ = 0, andtB

0 > tPS is the initial stress ratio in zone B, determined from
the conditionf (1, tB

0 ) = f0 f (1, tρ), with tρ the stress ratio in the bulk of the sheet.
Proof. If the constant yielding limit is denotedH0, yielding of the entire sheet requires that

σx

fh
f (1, tB) = H0 = σx f (1, tρ) =⇒ f0 exp(εB

z − εz) =
f (1, tB)
f (1, tρ)

(49)

Theabove equality cannot be satisfied for any strain ratioρ ≥ 0. For example, forρ = 0 the left
hand member is strictly less than one, while the right hand member is equal to one. There exists
then a maximal interval [0, ρ∗] of strain ratios for which the sheet necks as soon as the loading
begins.ρ∗ corresponds to the stress ratiot∗ defined by

f0 =
f (1, tPS)
f (1, t∗)

(
andthenρ∗ =

fy
fx

(t∗)
)

(50)

As before, we assume that yielding is simultaneous in both areas of the sheet and hence neglect
the strains accumulated in zone B while the bulk of the sheet was rigid.
Next, we assumeρ > ρ∗. The compatibility equation enforces the constraint:

dεB
y = dεy ⇐⇒ fy(1, t

B)dεB
= fy(1, t)dε (51)

Adding the incompressibility condition we get

εB
z − εz = −

∫ εB

0

[
fx(1, t

B) − 1
ρ

fy(1, t
B)

]
de (52)

whereεB is the current accumulated plastic strain in zone B andtB = tB(e) is the evolution of the
stress ratio in the groove fore ∈ [0, εB]. Substituting the above formula into eq. (49) we obtain
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thefollowing integral equation for the function [0,εB] 3 e−→ tB(e) for any accumulated plastic
strainεB: ∫ εB

0

[
fx(1, t

B) − 1
ρ

fy(1, t
B)

]
de = ln

[
f0 f (1, tρ)

f (1, tB(εB))

]
(53)

Differentiatingabove with respect toεB yieldsthe following differential equation with separated
variables:

dtB

dεB
= f (1, tB)

[
1
ρ
− fx

fy
(1, tB)

]
⇐⇒ dεB

dtB
=

ρ fy(1, tB)

f (1, tB)
[
fy(1, tB) − ρ fx(1, tB)

] (54)

which now defines the functionεB
= εB(τ), for τ ∈ [tB, tB

0 ], with tB
0 the initial stress ratio in

zone B. It is computed from the yielding condition at the beginning of the loading process:
f (1, tB

0 ) = f0 f (1, tρ). With the initial condition satisfyingtB
0 < tρ, it follows that the solution

tB(εB) of the first equation above is strictly decreasing (an information already contained in the
compatibility equation, as remarked in the analysis of Sowerby and Duncan (1971)). Its maximal
range is [tPS, tB

0 ], where tPS is the stress ratio in zone B at the failure moment. We denote
εB

F := εB(tPS).
We are now in a position that allows us calculate the limit strains in the bulk of the sheet:

dεB
z − dεz = −dεB

x + dεx =⇒ εx = εB
x

∣∣∣
ε=εB

F
+ (εB

z − εz)
∣∣∣
ε=εB

F
(55)

With the change of variable (54) we have:

εB
x

∣∣∣
ε=εB

F
=

∫ εB
F

0
fx(1, t

B)dεB
=

∫ tB
0

tPS

ρ fx(1, τ) fy(1, τ)dτ

f (1, τ)
[
ρ fx(1, τ) − fy(1, τ)

] (56)

(εB
z − εz)

∣∣∣
ε=εB

F
= −

∫ εB
F

0

[
fx(1, t

B) − 1
ρ

fy(1, t
B)

]
dεB

= −
∫ tB

0

tPS

fy(1, τ)

f (1, τ)
dτ (57)

Substituting the last two formulas into eq. (55) leads to the result in (48).¤

To test formula (48) against actual experimental data we incorporate hardening by making the
following approximation of the limit strains whenρ ≥ 0:

εx = εPS
x , εy = ρεx, for ρ ∈ [0, ρ∗] (58)

εx = εPS
x +

∫ tB
0

tPS

[
fy(1, τ)

]2
dτ

f (1, τ)
[
ρ fx(1, τ) − fy(1, τ)

] , εy = ρεx, for ρ > ρ∗ (59)

whereεPS
x is the plane strain limit strain as predicted with the HMK formulas (45-47). The same

HMK approximation is used forρ < 0.

Besides the hardening law, the above formulas require only the description of the biaxial curve
in the first quadrant (σx, σy). We shall use an in-plane isotropic sixth order polynomial (since
only half of that quadrant is actually needed):

[
f (σx, σy)

]6
= a1

(
σ6

x + σ6
y

)
+ a2

(
σ5

xσy + σxσ
5
y

)
+ a3

(
σ4

xσ
2
y + σ2

xσ
4
y

)
+ a4σ

3
xσ

3
y (60)
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Figure3: Influence of the shape parameterP upon the biaxial yield curve of AISI 304.

A detailed description of the identification procedure for the four parametersai can be found
in Soare and Banabic (2009). Four data points are required: the yielding stress and the r-value
along the rolling direction,σ0 andr0, the balanced biaxial yield stress,σb, and another yielding
stress along a constant stress ratio path. For the purpose of illustration we replace the fourth data
point with a shape parameterP and illustrate the effect of its variation upon the biaxial curve in
the case of the AISI 304 steel, Fig. 3, whereσ0 = σb, andr0 = 0.92, data from Campos et al.
(2006). The shape parameterP is similar to the parameterP = σPS/σb introduced by Barlat
(1987), and it can be used to control the shape of the biaxial yield curve.

Figure4: Approximations of the MK-predictions: HMK on the left (ρ ≤ 0) and formulas (58-59) on the right (ρ > 0).
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Figure5: Predictions of the MK model in the case of AISI 304.

The results of the HMK and non-hardening approximations for the MK-predictions in the case
of AISI 304 are featured in Fig. 4. For this material the plateaus defined by eq. (58) are quite
large: forP = 0.928 we haveρ∗ = 0.36, forP = 0.900 we haveρ∗ = 0.28, and forP = 0.875
we haveρ∗ = 0.3. This is caused by the large initial imperfection (i.e.,f0 small) required by this
steel. For aluminum alloysρ∗ is much closer to zero, sincef0 is much closer to 1.0. Besides
this restriction in applicability, formula (59) captures very well the sensitivity of the MK model
to the shape of the yield surface. For comparison, the actual MK-predictions are shown in Fig.
5. The AISI 304 steel turns out to be a tough test for these approximations. For smaller initial
imperfections and shorter hardening times they are much closer to the MK-predictions.

6. An MK-variant: material heterogeneity

The explanations for the diverse failure mechanisms of metals must ultimately rely on their
physical structure. At crystal level: motion of dislocations, their interaction with inclusions, the
penetration of dislocations through grain boundaries; at polycrystal level: the spatial orientation
and rotation of the grains (the texture), and also the effect of the apparition and evolution of
additional substructures like voids. One has to recognize that these complex features manifest
at continuum level not only through constitutive behavior but also through heterogeneity. In a
work on strain localization in single crystals Asaro and Rice (1977) refer to the work of Price
and Kelly (1964) where the following interesting behavior is observed. If after stretching a
single crystal strip just enough to generate step bands (which if strained further will develop into
necking bands), one unloads and polishes away these bands and then reloads the strip, then new
bands will form after enough straining but never at the previous locations. Continued straining
will eventually result in failure of the material at these new locations. Although in Asaro and
Rice (1977) necessary conditions for localization are sought only at constitutive level, the above
experiment can be clearly interpreted as a manifestation of spatial heterogeneity of the material.
At one scale step above, an interesting study showing how a non-uniform deformation regime
appears naturally in textured polycrystals can be found in the paper of Harren and Asaro (1989).
Admitting then that the material (plastic) properties may feature spatial variations across the
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Figure6: In Zone B the material properties feature small deviations from those in the rest of the sheet, zone A.

sheet, we ask further what is the amplitude of this variation so that it be a plausible candidate
for explaining sheet failure. In other words, can we estimate/explain the limit strains observed in
practice based on an assumption of material heterogeneity ?
Let us consider a thin sheet of uniform thickness modeled as a rigid-plastic material with a
hardening law in the formHA(ε) = H(ε) = K (ε0 + ε)n. Next, let us assume there exists a
variation in the parameters of this hardening law along a narrow band of material spread across
the sheet as illustrated in Fig. 6. This variation is assumed in the form

HB(ε) = K
(
εB

0 + ε
)n+δ

, with εB
0 = (ε0)n/(n+δ) (61)

in zone B, the band. A similar variation was considered in Aretz (2007b). Next, for simplicity
we consider here only the plane strain strain case: the sheet is monotonically bi-axially loaded
along its symmetry axesx andy such thatdεA

y /dε
A
x = 0. The superscript identifies the zone of

the sheet where a variable/function is evaluated. Above,εB
0 was chosen so thatHB(0) = HA(0).

Then assuming the yield surface is the same at all material points, plastic loading is simultaneous
everywhere in the sheet. Furthermore, at the boundary between the two zones the compatibility of
deformation requiresdεB

y = dεA
y and hence, from the constitutive law, the stress ratiot := σy/σx

is the same in both zones:t = tPS, with tPS the plane strain stress ratio. Hence the yielding
condition in the two zones reads:σB

x f (1, t) = HB(εB) andσA
x f (1, t) = HA(εA). Since the two

zones of the sheet work-harden at (slightly) different rates, a thickness heterogeneity will develop
in zone B (assuming the material here more ductile) and as in the MK model we define the
thickness ratiofh:

fh(t) =
hB(t)
hA(t)

=⇒ ḟh = fh(ε̇B
z − ε̇A

z ) =⇒ fh = exp(εB
z − εA

z ) (62)

Note that initiallyhB = h = hA and hencefh(0) = f0 = 1. Finally, equilibrium at the interface
between the two zones requires that we haveσB

x = σA
x/ fh. From this relationship, the yielding

condition in the two zones, and eq. (62) we can write:

HA(εA) exp(−kεA) = HB(εB) exp(−kεB) (63)

where we denotedk := f (1, tPS). This relationship holds true all along the loading process.
Differentiating, the failure criteriondεB/dεA

= +∞ requires that at failure the following relation
holds true: (

HB
)′

(εB
F) − kHB(εB

F) = 0 (64)

with the subscriptF indicating the failure moment. Equations (63) and (64) determine the equiv-
alent plastic strains in the two zones at failure. The failure strain is thenεA

x = kεA
F .
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Figure7: The hardening curve(s) of AA5182-O in uniaxial traction along RD.

The AISI 304 steel sheet fails in plane strain atεx = 0.32. Withε0 = 0.001,n = 0.47 we find that
a variation in the hardening exponent ofδ ≈ 0.054 leads to failure at the mentioned target strain.
The aluminum alloy AA3104-H19 sheet failed atεx = 0.04. Withε0 = 0 andn = 0.07, a variation
of δ ≈ 0.003 leads to failure at the target strain. The reasoning can be repeated for the AA5182-O
alloy, although here we will not vary the hardening exponent. With the hardening law described
by formula (29), the parametersσ0 = 120 MPa,K1 = 385 MPa,K2 = 4100 MPa,n = 1.2 are
assumed for the bulk of the sheet, and the following variations,σ0 = 120 MPa,K1 = 395 MPa,
K2 = 3703 MPa,n = 1.2, for zone B. In these conditions the sheet will fail precisely at the target
valueεT

x = 0.22. In Fig. 7 are shown the two hardening curves for AA5182-O. Also shown is
the set of experimental data points, digitized from Wu et al. (2003). The hardening curve in zone
B is within the area covered by the experimental data set. Based on the above idealized analysis,
we can then conclude that small variations in the plastic properties across the sheet, undetectable
by macroscopic experimental techniques in the case of AA5182-O, can trigger unstable plastic
flow and ultimately lead to failure at strain levels comparable to those observed in practice.

7. An extension of the MK-model to sheets of uniform thickness

The analysis in the previous section reveals an alternative to the thickness heterogeneity of the
classical MK model: one can induce discontinuities in the thickness strain rate, and hence in-
homogeneous plastic flow, by assuming a material heterogeneity. We aim next at extending the
MK model so that unstable plastic flow is no longer initiated by a thickness imperfection but by
a material heterogeneity. However, unlike in the previous section, and for more generality, at
constitutive level we shall still work with a homogeneous material. The presence of the spatial
material heterogeneity will be modeled by introducing an additional term to the global rate of
deformation, aneigenstrain-rate(in the sense defined in Mura (1982)).
Let us consider a thin metallic sheet under in-plane biaxial stretching. As before, the strain path is
assumed proportional (however, the following arguments are general and can be easily extended
to nonlinear loading paths). At a certain point during the loading history a neck will develop
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acrossthe sheet. We assume its geometry the same as in the MK model, that is, a gradual devel-
oping narrow groove in the thickness of the sheet, Fig. 1, oriented at the momentt at some angle
ψ(t) with respect to the symmetry axes. The groove itself will be identified as zone B. Then, if
we denoteh(t) andhB(t) the current thicknesses outside zone B and in zone B, respectively, we
can define the thickness imperfection factor:

fh(t) =
hB(t)
h(t)

(65)

We assume that until the moment of groove initiation, call itt0, the thickness of the sheet was
uniform. In particular, we havef0 = fh(t0) = 1. After groove initiation (which in this initial stage
has the features of a diffuse neck, as opposed to the sharp neck characteristic of the final stages of
failure) zone B is characterized by a faster thinning rate than the rest of the sheet. Differentiating
above we have:

ḟh = fh

(
ḣB

hB
− ḣ

h

)
= fh

(
DB

z − Dz

)
(66)

whereDB andD denotethe rate of deformation tensors in zone B and outside it, respectively (as
in the classical MK model, the strains are assumed spatially uniform in both areas of the sheet).
According to our assumption, at the momentt0 we havehB = h; however, groove initiation at
the momentt0 requires that the ratėfh(t0) be nonzero, and more precisely, it must be strictly
negative. Thus we shall assume that there exists a strictly positive constantp such that:

DB
z (t0) − Dz(t0) = −p (67)

Since the material of the sheet is incompressible, it follows that there must be a strain rate jump
in the in-plane strains also. Since the tangential strainεt along the groove is constrained by
the boundary sharing with the bulk of the sheet, it follows that the in-plane strain rate jump is
restricted to the normal strain componentεn. Finally, assuming the jumpp propagates during the
entire loading history after thet0 moment, the strain rate in the groove has the form:

DB = p (n⊗ n− ez ⊗ ez) + D̂B (68)

whereez is the unit vector in the normal to the sheet direction, andD̂B is the usual rate of
deformation tensor in zone B generated by the stressing at the boundary of zone B, and hence
determined by the constitutive law and compatibility at the boundary, to be discussed next.
Depending on the phenomenology of the failure event to be modeled, a more sophisticated theory
may take into account only a local effect, in time, or a more complex time-evolution of the
perturbationp. However, our assumption that the constant jumpp propagates during the entire
loading history is consistent with the presence of a material heterogeneity. Then the initiation
moment can be safely considered at the starting moment of the loading process:t0 = 0. Then
returning to eq. (66), we have for the imperfection ratio:

ḟh = fh
(
−p + D̂B

z − Dz

)
=⇒ fh(t) = exp

(
−pt + ε̂B

z − εz
)

(69)

Having established conditions that generate inhomogeneous plastic flow across the sheet, we can
next proceed along the same lines as in the classical MK model to establish equations for the
evolution of the stress-strain state in the two areas of the sheet. The only addition to the general
theory in Section 2 is the consideration of the strain rate into the hardening law.
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Thedescription is now incremental, with emphasis on the numerical solution of the equations of
the model. Thus, in the bulk of the sheet constant strain incrementsdεx are successively added,
at a constant strain rateDx = ε̇x, with the time incrementdt = dεx/ε̇x. As for the classical MK
model, accuracy demands very small strain increments:dεx ≤ 10−4. From work equivalence, for
a given strain ratioρ the equivalent plastic strain rate in the bulk of the sheet is

ε̇ =
1 + tρρ

f (1, tρ)
ε̇x (70)

whereabovetρ denotes the stress ratio in the bulk of the sheet. Next, from equilibrium and
compatibility at the boundary between the two zones, from the yielding condition in the two
zones, and making use of the representation (34) for the stress tensor in zone B, the following

system of equations determines the accumulated plastic strain stateε̇
B

andthe stress stateσB =

(σ + qT)/ fh, in zone B, for the current strain increment in the bulk of the sheet:

f (σ + qT) = fhH
(
εB

+ ε̇
B
dt, ε̇

B
)

(71)

[
T :

∂ f
∂σ

(σ + qT)

]
ε̇

B
=

(
n2

2 + ρn2
1

) ∂ f
∂σx

(1, tρ)ε̇ (72)

Therotation of zone B follows the same law (10) as for the original MK model. The above system

is solved for the unknownsq andε̇
B

with the Newton-Raphson algorithm. At each increment, as
starter point (initial guess) one can take the solutions at the previous iteration. For the very first

increment the starter point can be (q, ε̇
B
) = (0, ε̇). To ease the computational burden, one can use

in the above system the imperfectionfh at the previous increment (withfh = exp(−pdt) for the
very first increment). Note, however, that for very small values of the strain rate jumpp, as in
the example featured next, the variation offh during one increment is no longer negligible and
one has to either enhance the Newton-Raphson algorithm with a line search or to work with the
full Jacobian of the above system.
The loading process ends when the following (numerical) failure criterion is met:

ε̇
B

ε̇
≥ Nf (73)

with Nf abig enough number (depending on the magnitude of the strain increment in the bulk of
the sheet; for 10−4 ≤ dεx ≤ 10−5, Nf = 10 allows a satisfactory closeness to the failure strains).
The calculations are repeated for all possible initial orientations of zone B,ψ0 ∈ [0o,90o] (based
on information from the previous failure angles, this range can be considerably reduced), and
then define the limit strain for a given strain ratioρ as the smallest limit strain:

εx(ρ) = Min { εx(ψ0, ρ)|ψ0 ∈ [0o,90o]} , εy(ρ) = ρεx(ρ) (74)

Instead of the thickness imperfection parameter of the classical MK model, the parameter of the
present model, which we shall term the pMK model, is the strain rate jumpp. This parameter is
determined to fit an experimentally measured limit strain. Similarly to the MK model, we take
here the plane strain limit strain as data point. Assuming in this case, for simplicity, zone B along
the transverse direction, with arguments similar to those in Section 3, it can be shown that eqs.
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Figure8: Predictions of the pMK and MK models in the case of AA5182-O.

(71-72) reduce to the following ordinary differential equation:

ε̇
B

= ε̇

exp(pt)
G(ε)

G
(
εB

)

1/m

, with G(x) :=
H(x)

exp(kx)
(75)

where above, and in what follows, we assume a hardening law in the form (32),k := f (1, tPS),
and the constanṫε is defined by eq. (70) aṡε = ε̇x/k. With a trial and error approach, the
parameterp can be tuned so that the failure timetF , when the criterion (73) is met, determines
a corresponding strain in the bulk of the sheet,εx = ε̇xtF , equal or close to the experimentally
measured plane strain limit strainεT

x .
We first illustrate the pMK model for the AA5182-O sheet. Applying the above fitting procedure
for the p parameter with ˙εx = 10−3/s, gets usp = 1.5× 10−5/s (with an exact match of the target
strain 0.22; the hardening parameters:σ0 = 126.4 MPa,K1 = 398.5 MPa,K2 = 4100 MPa,
n = 1.1, m = 0.0075). The pMK-predictions for the entire range of strain ratios are shown in
Fig. 8. For comparison, the predictions of the classical MK model are also shown there. Since
no initial imperfectionf0 < 1 can fit the target plane strain limit strain, we usedf0 = 0.9995,
a value also used in Wu et al. (2003). For both pMK and MK models the yield surface of the
AA5182-O was described with the following plane stress sixth order polynomial function

σ6
= a1σ

6
x + a2σ

5
xσy + ... +

(
a8σ

4
x + ...

)
σ2

xy +
(
a13σ

2
x + ...

)
σ4

xy + a16σ
6
xy (76)

with the coefficientsai listed in Table 1, obtained through optimization by using the directional
and biaxial data reported in Wu et al. (2003). The difference between the predictions of the two
models is due to the strain rate sensitivity of the hardening law used in the pMK model (while
with the MK model the rate independent formula (29) was used).
The second application is for AISI 304. Its yield surface is described with the same Poly6
function, restricted to an in-plane isotropic approximation, with the polynomial coefficients listed
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Figure9: Predictions of the pMK and MK models in the case of AISI 304.

in Table 1 (thea1, ..., a7 coefficients define theP = 0.900 biaxial curve in the (σx, σy) plane used
in Section 5). As for AA5182-O, in the bulk of the sheet we use the low (quasistatic) strain
rate ε̇x = 0.001/s. With the hardening lawH(ε) = K (ε0 + ε)n

(
ε̇
)m

andhardening parameters
K = 1527 MPa,ε0 = 0.01,n = 0.47,m = 0.012 the target plane strain limit straineT

x = 0.32
is matched forp = 1.7× 10−4. The pMK predictions for the whole range of strain ratios are
shown in Fig. 9, together with the predictions of the corresponding rate-independent MK model,
H(ε) = K (ε0 + ε)n, with the same hardening parameters as above. The differences between
the two predictions suggest that the strain rate sensitivity of AISI 304, at the low strain rate
considered here, may not be as high as reported in Campos et al. (2006). Indeed, taking a smaller
strain-rate sensitivity,m = 0.001, and retaining the same values for the rest of the hardening
parameters, the plane strain limit strain is matched forp = 9.0× 10−5; the pMK predictions in
this case are closer to the experimental data, Fig. 9. However, as discussed earlier, since the strain
rate in zone B is variable, and abruptly increasing near the failure point, the simple hardening law
employed here can be regarded only as a rough approximation to the actual hardening behavior

Table 1: Poly6 coefficients, eq. (76), for the AA5182-O and AISI 304 yield surfaces.

a1 a2 a3 a4 a5 a6 a7 a8

1.0000 -2.5109 8.0490 -12.360 8.8226 -2.996 1.0960 9.2518
AA5182-O a9 a10 a11 a12 a13 a14 a15 a16

-21.726 34.567 -23.923 9.8762 31.809 -23.714 33.169 26.411

a1 a2 a3 a4 a5 a6 a7 a8

1.0000 -2.8750 7.1906 -9.6311 7.1906 -2.8750 1.000 8.8750
AISI 304 a9 a10 a11 a12 a13 a14 a15 a16

-19.881 37.774 -19.881 8.8750 27.691 -39.906 27.691 31.672
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of the material, and hence the above predictions should be judged accordingly.

8. Conclusions

The present analysis of the MK model considers several features of this model that were not
previously addressed on a sound theoretical basis. For the rate-independent constitutive model it
was shown that the strains at failure in the groove are finite (and hence also finite in the rest of the
sheet) and that eq. (14) holds true. The nature of the failure point (when the evolutionεB

= εB (ε)
is considered) is in this casecuspidal. This is not true in the case of rate-dependent materials,
if rate-dependence is introduced with the simple power law (32). In this case, the nature of the
failure point is asymptotic: the failure strain in the bulk of the sheet is finite while the strain in
the groove is infinite. This was first proved in Hutchinson and Neale (1978b).
The equations of the MK model have been integrated explicitly in the plane strain case, when
the groove is along one of the symmetry axes. This allows for a simple procedure for an apriori
estimation of the MK parameter, the initial thickness ratio, if the plane strain limit strain is used
as calibration data point. Furthermore, the analysis of the plane strain case reveals that the Hill-
Swift failure criterion holds true in the MK-groove at the failure moment. This was generalized
to any groove orientation: in the MK-groove Hill’s criterion holds true once eq. (14) is satisfied.
The equations of the MK model can also be integrated in the case of a non-hardening material.
The corresponding solution provides a useful insight into the way the yield surface influences the
MK-predictions of the FLD. As a byproduct of these analyses, a simple approximate analytical
solution for the MK-predictions, in the case of proportional loading along the symmetry axes and
isotropic hardening, termed here HMK, was then developed.
The plane strain solution obtained here has then been used to make a preliminary (and also
elementary) phenomenological analysis of material heterogeneity as a possible cause for inho-
mogeneous plastic flow. Based on the conclusions drawn from this analysis, the MK model was
then extended to sheets of uniform thickness by introducing a local eigenstrain-rate. Compar-
isons between the predictions of the extended model, the pMK model, and the classical MK
model for two materials, AA5182-O and AISI304 steel, point to an equivalence between the two
models, when the magnitudep of the eigenstrain-rate is constant (hence modeling the presence
of a material heterogeneity). However, more refined evolution laws for thep parameter may
account for different failure mechanisms.

Appendix A. Proof of Theorem 1.b in Section 4

We assume first that zone B is oriented along the transverse direction.
From the yielding condition in zone B and stress equilibrium at its boundary we have:

σx f (1, tB) = f0 exp(εB
z − εz)H

(
εB

)
(A.1)

wherewe denotedtB := σB
y /σ

B
x . Using now the yielding condition in the bulk of the sheet we

get further:

H(ε)
f (1, t)

=
f0H

(
εB

)
exp

(
εB

z − εz
)

f
(
1, tB

) (A.2)
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wheret is the stress ratio in the bulk of the sheet that corresponds to the strain ratioρ. From
incompressibility, flow rule and compatibility we have:

εB
z − εz = −

∫ εB

0
fx(1, t

B) de+
f (1, t)
1 + tρ

ε (A.3)

with fx denotingthe partial derivative with respect toσx. Eq. (A.2) holds true during the entire
loading process. Then differentiating with respect toε andusing eq. (A.3) we obtain that the
following equality must also hold true during the loading process:

H′(ε) − KH(ε)
f (1, t) exp(Kε)

= f0

H′(εB) −
[

1
f (1, tB)

d

dεB
f (1, tB) + fx(1, t

B)

]
H(εB)

f (1, tB) exp(−εBz )
dεB

dε
(A.4)

wherefor simplicity we denotedK := f (1, t)/(1 + tρ).
Next we assume thatρ , 0 (whenρ = 0 the result follows from Theorem 1). Then, since
fy(1, t) , 0, the compatibility equation can be reformulated as an ordinary differential equation
for the functionε = ε(εB):

dε

dεB
=

fy(1, tB)

fy(1, t)
(A.5)

with tB = tB(εB) a function defined by, say, eq. (A.2). We assume as initial conditionε |εB=0 = 0.
Theneq. (A.2) defines the initial value oftB as f (1, tB) = f0 f (1, t). With f0 < 1 it follows:
fy(1, tB) < fy(1, t). Hence

dε

dεB
(0) < 1 (A.6)

By continuity, the above inequality holds true for a (positive) maximal neighborhood of zero,
say [0,E). Then it follows that the functionf (1, tB) is strictly decreasing on this neighborhood.
Indeed, forε1 < ε2, and the correspondingεB

1 < εB
2 (sinceε = ε(εB) is increasing), withε1 < εB

1
andε2 < ε

B
2 , we have using eqs. (A.2) and (A.3):

f (1, tB
2 )

f (1, tB
1 )

=
H(ε1)
H(ε2)

H(εB
2 )

H(εB
1 )

exp

K(ε2 − ε1) −
∫ εB

2

εB
1

fx(1, t
B)dεB

 (A.7)

In the present constitutive context, the function [0,1] 3 τ −→ f (1, τ) has positive range, is
convex, and has a global unique minimum atτ = tPS ∈ (0,1), the plane strain stress ratio. Also,
fx(1, τ) has positive range and is strictly decreasing, whilefy(1, τ) is strictly increasing. Then
fx(1, tB) > K, since f (1, tB) < f (1, t) and fx(1, t) = K. Then we have the inequality:

f (1, tB
2 )

f (1, tB
1 )

<
H(ε1)
H(ε2)

H(εB
2 )

H(εB
1 )

exp
{
−K

[
(εB

2 − ε2) − (εB
1 − ε1)

]}
(A.8)

with the entity between the square brackets being positive. By takingε1 closeto ε2, the product
of the twoH-ratios is close to one. Due to the concavity ofH, for the same distanceε2 − ε1 the
decreaseof the exponential term is faster, and hencef (1, tB

2 ) < f (1, tB
1 ).

Then, by continuity,f (1, tB(E)) < f (1, t) and thendε/dεB(E) < 1. The above reasoning can be
repeated and hence the solution of eq. (A.5) can be again extended. The maximal interval [0,EB)
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ontowhich the solution can be extended has the property:fy(1, tB) = 0, that is,tB = tPS. With
this solution we return now to eq. (A.4). Let us denote [0,EB

F) the maximal interval on which
the numerator multiplyingdεB/dε is strictly positive. SincedεB/dε > 0, it follows that we also
have that the numerator of the left-hand member of eq. (A.4) is strictly positive. Note however,
that due to the concavity ofH the interval on whichH′(ε) − KH(ε) > 0 is finite (see the proof of
Theorem 1). Let us assumeEB

F = ∞. ThenEB
F = EB. As we approachEB, dεB/dε −→ ∞, while

H′(ε) − KH(ε) < ∞. From eq. (A.4), it then follows:

lim
εB−→∞

{
H′(εB) −

[
1

f (1, tB)
d

dεB
f (1, tB) + fx(1, t

B)

]
H(εB)

}
= 0 (A.9)

SinceH is concave, we haveH′(εB)/H(εB) −→ 0 asεB −→ ∞ and then:

0 = lim
εB−→∞

[
1

f (1, tB)
d

dεB
f (1, tB) + fx(1, t

B)

]
= fx(1, tPS) > K > 0 (A.10)

a contradiction. HenceεB
F = EB

F = EB < ∞.
The case when the groove is oblique has similar features with the case of vertical groove. We
only give here the new forms of the relevant equations. The stress state in zone B has the form
in eq. (34). To condense the notation, we shall denote in what follows:r := q/σx, TA + rT :=(
1 + rn2

2, t + rn2
1,−rn1n2

)
, whereTA := (1, t). Eq. (A.2) takes now the form:

H(ε)
f (1, t)

=
f0H

(
εB

)
exp

(
εB

z − εz
)

f
(
TA + rT

) (A.11)

whereas eq. (A.3) becomes:

εB
z − εz =

∫ εB

0

∂ f
∂σ

(TA + rT) · T′ de+ R(ε) (A.12)

where we denoted

T′ := n⊗ n = I − T =


n2

1 n1n2

n1n2 n2
2

 , R(ε) := K
∫ ε

0
(n2

1 + ρn2
2)de (A.13)

with the constantK defined above. With eq. (10) the functionR can be integrated explicitly but
the only information aboutRneeded here is that it is bounded:

R(ε) < Kε (A.14)

Thecounterpart of eq. (A.4) is now:

H′(ε) − R′(ε)H(ε)
f (1, t) exp[R(ε)]

=

= f0

H ′(εB) −
[

1
f (TA + rT)

d

dεB
f (TA + rT) +

∂ f
∂σ

(TA + rT) · T′
]
H(εB)

f (TA + rT) exp(−εB
z )

dεB

dε

(A.15)
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As in the case with vertical groove, due to (A.14), the left-hand term of the above equality is
strictly positive only over a finite interval. Finally, the counterpart of eq. (A.5), the compatibility
equation, is:

dε

dεB
=

∂ f
∂σ

(TA + rT) · T
n2

2 fx(1, t) + n2
1 fy(1, t)

(A.16)

Thereasoning can now proceed along the same lines as for the case with vertical groove.¤
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