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coupled damage-plasticity model
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Abstract

Modeling the fracture of a material can take two different approaches. A first solution consists in using models which
preserve a continuous description of the material throughout the fracture process. These models are often regularized
in order to deal with the softening part of the material’s behavior properly. Another solution consists in introducing
discontinuity surfaces into the structure along with the possibility of taking into account cohesive forces between the two
sides of the discontinuity. Many works have been devoted to the establishment of a relation between these two families
of models. The present work is based on the equivalent crack concept, which states that a localized damage zone can be
replaced by a crack as long as the energy dissipated by the structure is preserved when switching models. In a first paper,
we introduced a method of construction of a cohesive law based on an elastic-damageable reference model. For a given
test case, the cohesive model was built incrementally from the known solution given by the continuous reference model.
There was no prerequisite assumption on the form of the cohesive law. In that work, the presence of plastic strains in the
structure had not been taken into account, which limited the range of applicability of the method to elastic-damageable
models. The objective of this paper is to eliminate this limitation by extending the method to the more general class of
elastic-plastic damageable models.

Key words: equivalent crack concept, cohesive law, enhanced continuum, damage, plasticity

1. Introduction

The modeling of the hardening part of a material’s trac-
tion curve is well-known. Depending on the material, one
can assume that the internal transformations lead to the
occurrence of plastic strains (elastic-plastic models) or to a
drop in the material’s stiffness (damage models). The ac-
tual behavior of materials is often closer to that of elastic-
plastic damageable models combining damage and plastic-
ity. All these models fall within a thermodynamic frame-
work defined in Lemaitre and Chaboche (1988). A study
of wave propagation in the materials reveals that if the
slope of the material’s traction curve tends to zero the dis-
sipative phenomena concentrate in a zone of zero thickness
(Bažant and Belytschko, 1985). This shows that classical
damage and plasticity models are incapable of modeling
the behavior of a material up to rupture realistically. Fur-
thermore, the observation of fracture shows that microc-
racks or cavities occur progressively within the material,
which makes the definition of stresses and strains less rig-
orous. This leads to the question of whether it is relevant
to use a stress-strain curve when softening begins to occur.
This question can have several answers, which explains the
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large number of models available to deal with a material’s
fracture.

First, some models retain a continuous description of the
material throughout the fracture process. In this case, the
use of a localization-limiting scheme enables one to pre-
scribe a lower limit to the width of the damage zone. This
family includes, among others, nonlocal models (Pijaudier-
Cabot and Bažant, 1987), of which second-gradient mod-
els (Aifantis, 1984) can be considered to be a subclass
(Peerlings et al., 2001), and delay-effect models (Ladevèze,
1992). One can also consider that fracture is due to the
initiation and propagation of discontinuity surfaces within
the structure. In the first such model, introduced by Grif-
fith (1920), the cracks’ faces are assumed to be free from
external loads when writing the equilibrium equations,
while an energy criterion states whether a crack propa-
gates or not. Cohesive models were introduced later by
Barenblatt (1962) and Dugdale (1960) in order to achieve
more realistic stress and strain fields at the cracks’ tips.
In these models, a law expressing the stress vector as a
function of the displacement jump at a point of the dis-
continuity is applied. These models have been success-
fully extended to quasi-brittle materials (Hillerborg et al.,
1976), in which case they give a relatively coarse represen-
tation of the physical phenomena involved in the fracture
process.

The choice of one model over another is often based on
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practical criteria, such as the ease with which the material
parameters can be identified or the numerical implemen-
tation carried out. Continuous models seem to provide a
more precise description of the material’s behavior because
the dissipative phenomena can be spread over a volume,
whereas in cohesive models they are assumed to be con-
densed onto a surface. The numerical implementation of
regularized continuous models can be time consuming be-
cause of the regularisation step (non-local model) or the
inversion of non-symetric matrices (as often for gradient-
models). The results are satisfactory only if the mesh is
sufficiently refined so that several elements run across the
damage zone, which may require the use of remeshing tech-
niques. (See, e.g., Rodŕıguez-Ferran and Huerta (2000);
Patzák and Jirásek (2004)). On the other hand, numerical
implementation of discontinous models is efficient thanks
to the numerous research efforts which have been devoted
to them. For exemple, the X-FEM method allow great
flexibility in the crack’s path and can be used with rather
coarse meshes. They were first applied to Griffith’s theory
(Belytschko and Black, 1999; Moës et al., 1999) and then
extended to cohesive zone models (Wells and Sluys, 2001;
Moës and Belytschko, 2002; Mariani and Perego, 2003).

Sevel papers have been devoted to the use of both a con-
tinuous and a discontinuous model in calculations. A first
solution is to introduce a discontinuity into the structure
wherever the damage is equal to 1 (de Borst and Abellan,
2002; Simone et al., 2003; Mediavilla et al., 2006). This
is particularly interessing for non-local models because it
prevents the nonlocal coupling of points located on both
sides of the discontinuity. The strong discontinuity for-
malism (Simo et al., 1993; Oliver, 1996) allows continuous
models and discontinuous models similar to cohesive zones
to be used alongside one another in order to treat the
material’s behavior in its hardening and softening parts
separately. The weak discontinuity concept can also be
used to perform a progressive transition from a continu-
ous description to a discontinuous description if the width
of the weak discontinuity varies and tends toward zero at
the end of the fracture process. This method was used in
Oliver et al. (2002) with a numerical implementation of
the embedded-discontinuity type, and in Benvenuti et al.
(2008) in the framework of the X-FEM. With those meth-
odes continuous and discontinuous models are juxtaposed
next to one another.

There is another family of methods in which the contin-
uous and discontinuous models are superimposed, the dis-
continuous model being built from the continuous model
in order to represent the same phenomena. In this family,
a first model substitution method was introduced specif-
ically for nonlocal models of the integral type in Planas
et al. (1993). The idea was to use the regularizing prop-
erties of nonlocal integration to go from a discontinuous
field to a continuous field. A variation of this method en-
ables one to determine, a posteriori, the opening of a crack
corresponding to a nonlocal damage state (Legrain et al.,
2007; Dufour et al., 2008). Another means of obtaining

a cracking model which is equivalent to a damage model
consists in requiring the conservation of the dissipated en-
ergy during the model substitution. This idea inspired the
equivalent crack concept, introduced in Mazars (1984) and
Mazars and Pijaudier-Cabot (1996), which can be used to
calculate a Griffith model equivalent to a reference dam-
age model. In Bažant and Oh (1983), a dissipated energy
equivalence was also used to calculate the parameters of
a crack-band model, based on a given cohesive model, as
functions of the desired bandwidth. In this case, the re-
verse process is applied as it is the continuous model which
is calculated from the discontinuous model.

The equivalent crack concept was used to build cohesive
models from damage models under certain assumptions
concerning the form of the cohesive law. In order to do
that, one would use the property that the area under the
cohesive law is equal to the dissipated energy per unit area
when the faces of the cracks are completely disconnected.
The discontinuity can be introduced into the damaged ma-
terial when some localization criterion is verified (Areias
and Belytschko, 2005) or when the mesh is no longer re-
fined enough to describe the damage profile appropriately
(Comi et al., 2002, 2007). In this case, the cohesive zone
receives the amount of energy which remains to be dissi-
pated by the continuous material until its fracture. One
should note that these works combine the juxtaposition
and superposition of continuous and discontinuous mod-
els.

The equivalent crack concept was used in a previous
paper (Cazes et al., 2009) to build a cohesive law from
a given, regularized elastic-damageable model. A study
of the domains of validity of the models being considered
leads to the definition of an equivalent problem in which
the nonlocal regularization of the reference problem is re-
placed by the occurrence of a cohesive zone in the structure
(Figure 1).

Continuous damage

Diffuse damage Localized damage

Cohesive zoneContinuous damage

    + RegularizationReference 
model

Equivalent 
model

Figure 1: The reference model and the equivalent model

Then, a model substitution criterion is defined in order
for the energy dissipated in the softening part of the ma-
terial’s behavior to be transferred to the cohesive zone of
the equivalent model as represented in Figure 2.
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Gradient-enhanced continuum

Reference problem

So�ening criterion met

'Local' continuum Cohesive zone

Equivalent problem

Transfert of 
dissipated energy 

Juxtaposition

Superposition

Figure 2: The proposed model substitution method

The first step consists in determining a solution of the
regularized reference problem. This resolution involves the
calculation of the increments of dissipated energy between
two time steps. At the same time, one carries out a calcula-
tion with the equivalent model. The path of the equivalent
crack is assumed to be known beforehand but the cohesive
law is an unknown of the problem. The solution at time
t+ dt is obtained from the solution at time t and the pre-
scribed increment of dissipated energy between t and t+dt.
Before this calculation, the cohesive model is completely
unknown and no assumption is made about the form of
the cohesive law. Under certain assumptions, it is possible
to show that all the terms involved in the energy balance
of the structure are preserved when switching models.

The objective of this paper is to extend this method to
models combining plasticity and damage. First, we will
modify the thermodynamic description of the discontinu-
ity in order to account for the presence of a plastic dis-
placement jump between the two faces of the crack. Next,
the model substitution criterion based on the dissipated
energy will be modified in order to enforce the energies
dissipated through plasticity and damage independently.
Then, this new model substitution criterion along with
some additional assumptions will be used to restore the
conservation of the energy balance terms of the reference
model. In the last part, the method will be applied to
the construction of the cohesive law starting from a one-
dimensional implicit second-gradient model.

2. Study of the thermodynamics of the cohesive
zone

Let us consider a continuous domain Ω bounded by Γ
and traversed by a discontinuity surface Γs. The orienta-
tion of the crack is given by a unit vector n perpendicular
to the discontinuity surface (Figure 3). This vector en-
ables one to identify the upper and lower faces, denoted
Γ+
s and Γ−s respectively. The displacement jump [[u]] is

equal to the difference between the displacements u+ and
u− observed over Γ+

s and Γ−s :

[[u]] = u+ − u−, over Γs. (1)

n
u[[ [[

Γs+

Γs

Γs u+

u

Figure 3: Orientation of the cracks and notations

With a stress vector σs defined over Γs, the equilibrium
equations at the discontinuity are

σs = σ+ n = σ− n, over Γs. (2)

The heat flow jump is defined by

[[q]] = (q+− q−)n, over Γs. (3)

A thermodynamic framework similar to that defined for
continuous media (Lemaitre and Chaboche, 1988) is used
for the discontinuity. From Gurtin (1979), the local expres-
sions of the first and second principles of thermodynamics
are

des
dt

= σs
d[[u]]
dt

+ [[q]]n, (4)

dss
dt

=
[[q]]n
T

+
d(si)s
dt

. (5)

where t is the time, T the temperature, and es, ss, (si)s
are the surface densities of internal energy, entropy and
internal entropy respectively. By definition, the surface
energy dissipated by the cohesive zone is

dφs = T d(si)s. (6)

Using 4, 5 and the following definition of the free surface
energy:

ψs = es − T ss, (7)

one gets the expression of a time increment of dissipated
energy:

dφs = σs d[[u]]− dψs − ss dT. (8)

Costanzo and Allen (1995) define the cohesive zone in the
context of standard generalized materials and introduce
irreversible cohesive stresses. In this work, the use of a
plastic displacement jump [[u]]p was preferred because of
the analogy which can be made with the plastic strain εp.
Thus, the displacement jump [[u]] is divided into

[[u]] = [[u]]e + [[u]]p. (9)

This constitutes the first difference from Cazes et al.
(2009), in which the plastic displacement was assumed
to be zero in order to be consistent with the elastic-
damageable reference model. Let vk denote the internal
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variables defined at the discontinuity. Starting from the
general form of the free surface energy

ψs = ψs([[u]]
e
, T, vk), (10)

classical energy reasoning (such as Lemaitre and Chaboche
(1988)) enables one to show that

σs =
∂ψs
∂[[u]]e

, and ss = − ∂ψs
∂T

. (11)

3. The models being considered

3.1. The continuous reference model
The reference model we use, which is similar to a model

presented in de Borst et al. (1999), is a second-gradient
implicit model in which damage is coupled with plasticity.
The specific free potential energy ψ is assumed to be of
the form

ρψ =
1
2

(1−D) εe : K : εe, (12)

where D is the scalar damage variable, εe the elastic part
of the linearized strain tensor and K the Hooke’s tensor
of the virgin material. With this form of the potential,
the temperature has no effect on the material’s behavior.
No free energy is stored in the material’s microstructure
because if the elastic strain becomes zero at a point, so
does the specific free energy. The form of the potential
leads to the following expression of the stress σ:

σ = ρ
∂ψ

∂εe
= (1−D) K : εe . (13)

The evolution of plasticity is governed by the effective
stress, defined by

σ̃ = K : εe, (14)

which corresponds to the stress that would exist in the ma-
terial with the same strain state in the absence of damage.
The only internal variable of the model is the accumulated
plastic strain p defined incrementally by

dp =

√
2
3

∥∥dεp∥∥ , (15)

where ‖.‖ is a norm such that
∥∥a∥∥ = √a : a. The elastic

domain is described by the threshold function f such that
any stress state verifies

f(σ̃ , p) ≤ 0. (16)

The plasticity evolution laws are defined such that the
model shows hardening behavior in the absence of dam-
age. The damage variable is expressed as a function of the
memory variable κ calculated from a regularized variable
z̄ such that

z̄ − c∇2z̄ = z. (17)

where ∇2 denotes Laplace’s operator, z a variable to be
regularized, and c a characteristic quantity, homogeneous
to the square of a distance, which sets the minimum size
of the damage zone. The memory variable κ is equal to
the maximum value of z̄ over the loading history:

κ = max
t

(z̄). (18)

In order for the model to be defined completely, we still
need the expressions of

- the threshold function f ,

- the damage D as a function of κ,

- the variable z.

An increment of dissipated volume energy is equal to

dφ = σ : dεp − Y dD, (19)

where Y is the elastic energy recovery rate which verifies

Y =
∂ψ

∂D
= −1

2
εe : K : εe. (20)

This incremental energy can be divided into a plastic con-
tribution which, here, is equal to a plastic work increment,
and an elastic contribution due to the damage:

dφ = dφp + dφe, (21)

with

dφp = σ : dεp and dφe = −Y dD. (22)

Note: The dissipated energy dφe caused by the damage
can also be calculated through the formula

dφe =
1
2
(
σ : dεe − εe : dσ

)
. (23)

3.2. The equivalent model with a cohesive zone
For the continuous part of the equivalent model, the

constitutive relations are the same as those of the reference
model, the only difference being that the memory variable
κ is calculated directly from the equivalent strain z without
going through the regularization stage:

κ = max
t

(z). (24)

As long as one remains within the hardening part of the
material’s behavior, one can consider the regularized and
unregularized models to be identical because the damage
remains diffuse and the term ∇2z̄ of Equation 17 is negli-
gible.

When one enters the softening part of the material’s be-
havior, the regularization of the equivalent strain of the
reference model is replaced by the occurrence of a discon-
tinuity in the equivalent model. The free potential energy
of the discontinuous model is assumed to depend on the

4
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elastic part of the displacement jump [[u]]e and on internal
variables denoted vk:

ψs = ψs([[u]]
e
, vk). (25)

The threshold function fs is defined such that any material
state satisfies

fs(σ̃s , vk) ≤ 0. (26)

In order to be consistent with the damageable elastic-
plastic reference model, the stress σs must be a linear
function of the elastic displacement jump within the elas-
tic domain. Therefore, we assume that there exists a sym-
metrical operator k, which is a function of the internal
variables vk alone, such that

σs = k(vk) [[u]]e. (27)

This stress value can be retrieved from Equation 11 by
choosing a free surface potential energy ψs of the form

ψs =
1
2

[[u]]e k(vk) [[u]]e. (28)

According to the reference model, no energy is stored in
the material’s microstructure because if [[u]]e is zero, then
ψs is also zero. Replacing σs in 28 by its value given in
27, we get

ψs =
1
2
σs [[u]]e. (29)

This expression of ψs has the particularity of being inde-
pendent of vk as in 28. Introducing this expression into
8, we get the following expression of an increment of dis-
sipated energy:

dφs = σs d[[u]]p +
1
2
(
σs d[[u]]e − [[u]]e dσs

)
. (30)

In this expression, one can distinguish the contribution of
the evolution of the plastic displacement jump [[u]]p and of
the elastic displacement jump [[u]]e, denoted dφps and dφes
respecively:

dφs = dφps + dφes, (31)

with,

dφps = σs d[[u]]p, (32)

dφes =
1
2
(
σs d[[u]]e − [[u]]e dσs

)
. (33)

This decomposition of the increments of dissipated energy
is shown in Figure 4 for a one-dimensional model.

σ

u[[ [[u[[ [[d p u[[ [d e

t
dσ

t + dt

[

s

s

dφs
p

dφs
e

Figure 4: Increments of plastic and elastic dissipated energy

4. The method for model substitution

The previous two sections enabled us to define the ref-
erence model and the equivalent model in a similar ther-
modynamic framework, which eases the transfer of infor-
mation between these two models. The models were also
constructed in such a way that they verify the same as-
sumptions:

- no energy is stored in the material’s microstructure,

- the behavior over the loading surface is linear.

Now, we must define criteria for the construction of the
cohesive law of the equivalent model from the solution of
the reference problem.

4.1. The model substitution criterion
Let us define the plastic and elastic dissipated energies

Φp and Φe integrated over the whole domain as

Φp =
∫

Ω

φp dV +
∫

Γs

φps dS , (34)

Φe =
∫

Ω

φe dV +
∫

Γs

φes dS . (35)

For the reference model, the contribution of the integrals
over Γs is zero because this model has no discontinuities.
According to 21 and 31, the total dissipated energy Φ ver-
ifies

Φ = Φp + Φe. (36)

Let (̆.) denote the dissipated energies of the reference
model and (̂.) the dissipated energies of the equivalent
model. The model substitution criterion must be defined
in such a way that at any time[
dΦ̂p

dΦ̂e

]
=
[
dΦ̆p

dΦ̆e

]
. (37)

One introduces a localized damage indicator Iloc which
is initially zero and takes the value 1 as soon as softening
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behavior occurs at a point of the structure. This can be
characterized by the strict loss of positivity of the product
dσloc : dε, where dσloc is the stress increment which would
occur in the absence of a localization limiter. Thus, one
has

Iloc = Arg
(
dσloc : dε < 0

)
. (38)

The verification of this criterion means that material sta-
bility would be lost in the absence of the localization lim-
iter. In the case of diffuse damage, the (nonlocal) refer-
ence model and the (local) equivalent model are assumed
to lead to the same result, and no energy needs to be trans-
ferred into the cohesive zone. Therefore, if Φ̂es and Φ̂ps de-
note respectively the elastic and plastic energies dissipated
over the discontinuity surface of the equivalent model, the
model substitution criterion being used is[
dΦ̂ps
dΦ̂es

]
= Iloc

[
dΦ̆p

dΦ̆e

]
. (39)

4.2. Definition of a fictitious transformation and rewriting
of the model substitution criterion

In this section, we redefine the model substitution crite-
rion using a fictitious transformation defined between the
consecutive times t and t+dt. The state of the material at
time t is assumed to be the same for the actual transfor-
mation and the fictitious transformation. Between t and
t + dt, the fictitious transformation is identical to the ac-
tual transformation from a mechanical standpoint, but it
occurs with no change of state of the unloaded structure,
i.e. with no change of the variables εp and [[u]]p associ-
ated with plasticity. The increments of volume and surface
energy dissipated by the fictitious transformation are des-
ignated by dφf and dφfs . The other quantities associated
with that transformation are denoted (̄.) and verify, for
the continuous part of the model

dε̄ = dε, (40)

dσ̄ = dσ, (41)

dε̄p = 0 . (42)

The increment of fictitious dissipated energy dφf can be
calculated from the increments of the fictitious transfor-
mation using 21, 22 and 23:

dφf = σ : dε̄p +
1
2
(
σ : dε̄e − εe : dσ̄

)
. (43)

Using 40, 41 and 42, one can calculate the fictitious dissi-
pated energy from the variables of the actual transforma-
tion:

dφf =
1
2
(
σ : dε − εe : dσ

)
. (44)

One can bring out in this equation the expressions of dφp

and dφe given by 22 and 23. This leads to

dφf =
1
2
dφp + dφe. (45)

In the case where the domain includes a discontinuity
(equivalent problem), one also has

d[[ū]] = d[[u]], (46)
dσ̄s = dσs, (47)

d[[ū]]p = 0 . (48)

The dissipated energy dφfs is calculated using 30 with the
fictitious transformation increments:

dφfs = σs d[[ū]]p +
1
2
(
σs d[[ū]]e− [[u]]e dσ̄s

)
. (49)

Using Equations 46, 47 and 48, one can express dφfs with
the variables of the actual transformation:

dφfs =
1
2
(
σs d[[u]]− [[u]]e dσs

)
. (50)

This equation can be rewritten using the expressions of
dφps and dφes given in 32 and 33:

dφfs =
1
2
dφps + dφes. (51)

Equations 45 and 51, after integration over the domain,
lead to the relation between the increment of energy dΦf

dissipated by the fictitious transformation and the incre-
ments of elastic and plastic dissipated energy:

dΦf =
1
2
dΦp + dΦe. (52)

Starting from the fictitious transformation, the model sub-
stitution criterion can be redefined as follows:[
dΦ̂ps
dΦ̂fs

]
= Iloc

[
dΦ̆p

dΦ̆f

]
. (53)

Using 52, one can show that this criterion, which will be
used during the numerical implementation of the method
and to justify the validity of the method, is equivalent to
the first criterion proposed in 39.

5. Validity of the model substitution

The model substitution criterion defined previously re-
quires the equivalent model to dissipate the same amount
of energy as the reference model. The ratio between plastic
and elastic dissipated energy must also be preserved when
switching models. The conservation of the dissipated en-
ergy is necessary for the model substitution to be valid,
but in order to achieve strict energy equivalence the other
terms of the energy balance must also be preserved. This
energy balance, obtained in Cazes et al. (2009), can be
expressed as

E = Ψ−Wext + Φ. (54)

where E is the total energy of the structure (which, by def-
inition, is constant with time), Ψ is the free energy of the
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structure and Wext is the work of the external loads. In
the case of elastic-damageable models, under the assump-
tion of proportional, prescribed-displacement loading, the
model substitution method preserves not only the energy
dissipated by the structure, but also the free energy and
the work of the external loads (Cazes et al., 2009). The
purpose of this section is to obtain a similar result in the
case of elastic-plastic damageable models, with the model
substitution criterion defined previously and under the fol-
lowing assumptions:

1) the boundary conditions are prescribed loads at the
boundary Γ of the domain,

2) the loading is proportional,
3) the material does not become plastic again during un-

loading.

5.1. Expressions of the free and dissipated energies

Let the fields associated with the fully unloaded state be
denoted (.)r, where r means residual. This state is defined
by

σ
r
n = 0, over Γ. (55)

Under Assumptions 1, 2 and 3, one can show that the free
energy is

Ψ = Ψa + Ψr, (56)

where Ψr is the remaining free energy in the unloaded state
and Ψa is the energy defined by

Ψa =
1
2

∫
Γ

F (u− ur) dS. (57)

One can then show that an increment of dissipated energy
is equal to

dΦ =
1
2

∫
Γ

(
F du− u dF + F dur + ur dF

)
dS

− dΨr . (58)

The details of the calculations leading to these expressions
of Ψ and dΦ are presented in the annex. For the ficti-
tious transformation, dΨr and dur are zero because the
unloaded state remains unchanged. Thus, dΦf is equal to

dΦf =
1
2

∫
Γ

(
F du− u dF + ur dF

)
dS. (59)

From Equations 36, 52, 58 and 59, the increment of plastic
dissipated energy is equal to

dΦp =
∫

Γ

F dur dS − 2 dΨr. (60)

5.2. Conservation of the terms of the energy balance
Using 56, the energy balance 54 can be written in the

following form:

E = Ψa + Ψr −Wext + Φ. (61)

We assume that the model substitution criterion is veri-
fied. Therefore, at any time, the plastic, elastic and fic-
titious energies of the two models are equal. The total
energies, which do not vary with time and are defined to
within a constant, can be considered to be equal for the
two models. Finally, we assume that the free residual en-
ergies of the two models are equal. This is a strong, but
necessary assumption in order to get to the desired result.
Thus, the following equality of the energies of the equiva-
lent model, denoted (̂.), and the energies of the reference
model, denoted (̆.), holds:(
Ê , Φ̂f , Φ̂p, Ψ̂r

)
=
(
Ĕ , Φ̆f , Φ̆p, Ψ̆r

)
, ∀ t. (62)

In order to show that the other terms of the energy balance
are also preserved, one proceeds by induction between a
time t and the immediately subsequent time t + dt. The
recurrence relation is assumed to be verified at time t:(
Ψ̂t
a, Ŵ

t
ext

)
=
(
Ψ̆t
a, W̆

t
ext

)
. (63)

From Assumption 1, the boundary conditions are applied
as prescribed loads at the boundary of the structure, and
from Assumption 2 the applied load F can be defined using
a reference loading F 0 and a loading coefficient λ. Since
both models are subjected to the same boundary condi-
tions,

F̂ = F̆ = F = λF 0, over Γ, (64)

and the loading increment verifies

dF̂ = dF̆ = dF = dλF 0, over Γ. (65)

The model substitution criterion being verified, the incre-
ments of plastic and fictitious dissipated energy are the
same for both models. Therefore, Equations 59 and 60
lead to∫

Γ

(
F t dû− (ût− ûtr) dF

)
dS =∫

Γ

(
F t dŭ− (ŭt− ŭtr) dF

)
dS, (66)

∫
Γ

(
F t dûr

)
dS =

∫
Γ

(
F t dŭr

)
dS. (67)

Using 64 and 65:∫
Γ

F 0

(
λt dû− (ût− ûtr) dλ

)
dS =∫

Γ

F 0

(
λt dŭ− (ŭt− ŭtr) dλ

)
dS, (68)
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∫

Γ

F 0

(
λt dûr

)
dS =

∫
Γ

F 0

(
λt dŭr

)
dS. (69)

The recurrence relation at time t yields Ψ̂t
a = Ψ̆t

a. There-
fore,∫

Γ

λt F 0

(
ût− ûtr

)
dS =

∫
Γ

λt F 0

(
ŭt− ŭtr

)
dS. (70)

Using Equation 70, the system consisting of Equations 68
and 69 enables one to write∫

Γ

F 0 dû dS =
∫

Γ

F 0 dŭ dS, (71)∫
Γ

F 0 dûr dS =
∫

Γ

F 0 dŭr dS. (72)

Indeed, we have∫
Γ

F 0

(
dû− dûr

)
dS =

∫
Γ

F 0

(
dŭ− dŭr

)
dS, (73)

which, using 70, leads to∫
Γ

F t+dt
(
ût+dt− ût+dtr

)
dS =∫

Γ

F t+dt
(
ŭt+dt− ŭt+dtr

)
dS. (74)

Thus, indeed, Ψa is preserved when switching models at
time t+ dt:

Ψ̂t+dt
a = Ψ̆t+dt

a . (75)

The use of Expression 61 of the energy balance enables
one to establish the recurrence relation at t+ dt:

(Ψ̂t+dt
a , Ŵ t+dt

ext ) = (Ψ̆t+dt
a , W̆ t+dt

ext ). (76)

The initialization of the recurrence relation is verified be-
cause the two models are identical at the beginning of the
loading and remain so as long as one remains within the
loading surface of the material.

6. Numerical implementation for a one-
dimensional problem

The model substitution method can be used in order to
obtain the cohesive law analytically if the cohesive model
is simple enough (Cazes et al., 2009). In the present pa-
per, we used the finite element method for the analysis of
a one-dimensional beam of length L= 100 mm and cross-
sectional area S = 10 mm2 solicited in traction. The ex-
pression of the plasticity threshold function used, which is
the same for the two models, is

f(σ̃, p) = |σ̃| − R(p), (77)

with

R(p) = E
(
ε0 +

k

1− k
p), (78)

where k and ε0 are parameters of the material. The cal-
culation of the damage variable was carried out according
to the decreasing exponential law:

D = 0, ifκ ≤ κ0, (79)

D = e−A (κ−κ0), ifκ > κ0. (80)

where A and κ0 are material constants. The variable z
was chosen to be equal to the accumulated plastic strain
(z = p). For the reference model, κ is obtained from Rela-
tions 17 and 18, whereas for the equivalent model Equation
24 suffices. The calculations were performed using the fol-
lowing material parameters: E = 200 000 MPa , ε0 = 0.02,
k = 0.2, A = 50, κ0 = 0.04 and c = 16 mm2. Figure
5 shows the material’s traction curve for a monotonically
increasing loading.
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Figure 5: The traction curve of the continuous material

Three stages can be identified on this curve:

1) the elastic stage,
2) the hardening plastic stage,
3) and the softening plastic-damageable stage.

6.1. The reference problem

In order to set the position of the localized damage zone,
a reduced-section zone of length L0 = 20 mm was defined
at the center of the beam. The cross section of this beam
segment was determined by the coefficient α = 0.99 such
that the section is equal to (1−α)S. The beam was fixed
at the left end (u0 = 0) and subjected to a load F at the
other end. The geometry of the beam is shown in Figure
6.

0 LL0 xa)

uL
b)

F

S

xu0 = 0 

α S

Figure 6: Geometry and loading (a) before deformation and (b) after
deformation
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Figure 7: The load-displacement curve

The problem was discretized through the finite element
method into 81 quadratic elements. The tangent matri-
ces of the problem were calculated according to de Borst
et al. (1999). The resolution required the use of a control
scheme because of the snap-back phenomenon which can
be observed on the load-displacement curve of Figure 7.
This control can be achieved with a method specific to dis-
sipative problems: see, e.g., Gutiérrez (2004); Lorentz and
Badel (2004). For this one-dimensional example, it was
obtained by enforcing the strain of the central element of
the beam. The numerical increments of plastic and ficti-
tious dissipated energy, respectively ∆Φ̆p and ∆Φ̆f , were
saved in order to be reused during the resolution of the
equivalent problem.

Figures 8, 9, and 10 show the evolutions obtained over
the length of the beam for the regularized strain z̄, the
accumulated plastic strain p and the damage D.
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Figure 8: Regularized strain z̄
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Figure 9: Accumulated plastic strain p
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Figure 10: Damage D

6.2. The equivalent problem

For the equivalent problem, the beam was not given a re-
duced cross section in order for each point of the volume to
be facing a point of the discontinuity and for the cohesive
law obtained to be independent of the coefficient α used
for the resolution of the reference problem. An equivalent
cross-section Ŝ was calculated such that the strain energy
would be the same for both models in the initial linear
elastic stage. The resolution of the equivalent problem re-
quired a specific implementation because the cohesive law
was built incrementally from the model substitution crite-
rion defined by Equation 53. The only information being
carried from the reference model to the equivalent model
consisted of the increments of dissipated energy ∆Φ̆p and
∆Φ̆f and the load steps from the resolution of the refer-
ence problem. The discontinuity was assumed to occur in
the middle of the beam, at the point of abscissa x0 = L

2 .
The beam geometry of the equivalent problem is shown in
Figure 11.
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Figure 11: Geometry of the beam and loading (a) before deformation
and (b) after deformation

Let G be the set such that G = [0, x0[ ∪ ]x0, L] and let
us consider the space C of the continuous, kinematically
admissible scalar fields over G. The resolution is based on
the following weak formulation of the problem :

A(du∗) + B(dσs∗) = 0, ∀ (du∗, dσs∗)∈(C,R), (81)

where A and B verify

A(du∗) = −S
∫
G

dεC dε∗ dx− S dσsd[[u]]∗+ dF du∗L,

(82)

B(dσs∗) = 2
dσs∗

σs
(
Iloc dΦ̆f− dΦ̂f

)
, (83)

with

ε =
∂u

∂x
, (84)

[[u]] = u+(x0)− u−(x0), (85)
uL = u(L), (86)

and C the tangent operator :

dσ = C dε. (87)

According to 53, the model substitution criterion requires
that

dΦ̂fs = Iloc dΦ̆f , (88)

and, according to 50,

dΦ̂fs =
S

2
(
σs d[[u]]− ([[u]]−[[u]]p) dσs

)
. (89)

If Variables m and dv are defined by

m = S
[[u]]−[[u]]p

σs
, (90)

dv =
Iloc dΦ̆f

σs
, (91)

83 can be rewritten as

B(dσs∗) = dσs∗
(
2 dv − S d[[u]] +mdσs

)
. (92)

Operators AL, B and T, which connect the kinematic vari-
ables to the vector of the nodal displacements U, are de-
fined by

uL = AL U, ε = B U, [[u]] = T U. (93)

The discretization of Equations 82 and 92 from these op-
erators leads to the following system:

(
K S TT

S T −m

) (
dU
dσs

)
=
(

AT
L dF
2 dv

)
, (94)

with

K = S

∫
G

BT C B dx. (95)

In order for the scale change criterion 53 to be verified, the
conservation of the dissipated plastic energy must also be
enforced:

dΦ̂ps = Iloc dΦ̆p. (96)

Equations 32 lead to the following expression of d[[u]]p:

d[[u]]p =
dΦ̆p

S σs
. (97)

Then, System 94 is discretized in time and solved using a
Newton-Raphson algorithm. The value of [[u]]p is calcu-
lated from Equation 97, discretized in time according to
an explicit Euler scheme. The value of [[u]]p obtained is
necessary in order to calculate m in the next time step
(Equation 91).

This resolution enabled us to determine the cohesive law
represented in Figure 12. Figure 13 represents the ener-
gies dissipated by the two models. The good correspon-
dence between the two curves shows that the scale change
criterion was indeed verified. Figure 14 compares the free
energies of the two models as functions of time. This time,
the good correspondence between the two curves confirms
that the other terms of the energy balance were preserved
when switching models (5.2).
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Figure 12: Traction curve of the cohesive model
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Figure 13: Dissipated energies of the two models
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Figure 14: Free energies of the two models

7. Discussion

In this section, we take a new look at the assumptions
made during the construction of the method and discuss in
detail the conditions of its extension to multidimensional
test cases.

One of the first assumptions made is that no energy is
stored within the microstructure of the material. Thus,
one gets a simplified expression of the increment of dis-
sipated plastic energy, which reduces to an increment of
plastic work (Equations 22 and 32). In fact, one often in-
troduces a coefficient which represents the proportion of
the plastic work dissipated as heat during the fracture. If
one were to use the method taking into account thermal
effects, this coefficient should be used to calculate the in-
crease in the material’s temperature correctly. A temper-
ature jump across the discontinuity could also be allowed,
as in Fagerström and Larsson (2008).

A second important assumption made is that the resid-
ual free energies of the two models must be equal in or-
der for the terms of the energy balance to be preserved
when switching models. This energy is due to the presence
of residual stresses in the material after unloading. Even
though this is a strong assumption, it was perfectly ver-
ified in the one-dimensional test case we studied because

the residual stress field was zero over the entire length of
the beam and the residual free energy was also zero.

For the reference model chosen, the effect of the regular-
ization begins only with the occurrence of damage, which
also corresponds to the beginning of the softening part of
the material’s behavior. The use of this type of model is
to be preferred for the calculation of the cohesive law be-
cause the reference model and the equivalent model are
identical throughout the hardening part of the material’s
behavior. This is justified both physically, because there
is no reason to regularize the solution as long as there is
no risk of localization, and numerically, because the tan-
gent matrices remain symmetrical for as long as hardening
behavior lasts.

The initial stiffness of the cohesive model obtained
through the model substitution remains infinite until the
threshold stress is reached. Therefore, this model belongs
to the family of extrinsic models as opposed to intrinsic
models which have finite initial stiffness. This result is
consistent because during the whole hardening phase no
dissipated energy is transferred to the cohesive zone and
the multiplier µ achieves the contact between the corre-
sponding nodes on both sides of the discontinuity. The
extrinsic character of the law can lead to numerical im-
plementation problems because of some terms of the stiff-
ness matrix which should be infinite prior to the initiation
of the cohesive zone. This problem vanishes with meth-
ods in which the cohesive law is embedded in an element,
and can be worked around using mixed interface elements
(Lorentz, 2008) or a truly-mixed formulation (Bruggi and
Venini, 2007). Some care must be taken when using these
formulations because the discretisation must satisfy the
inf-sup condition for the calculation to be stable. The nu-
merical implementation of intrinsic laws can also present
difficulties because of oscillations of the stress field, de-
pending on the numerical integration scheme being used
(J.C.J. Schellekens, 1993).

If the localized damage indicator Iloc is not used and the
whole dissipated energy of the reference model is trans-
ferred to the cohesive model, the resulting cohesive law
contains an increasing part before it starts decreasing.
This type of law is not advisable for usual applications
of cohesive zones because it creates a diffuse cracking zone
around the main crack: see, e.g., Planas et al. (2003)).

This method can be generalized to multidimensional
problems in mode I by replacing the global scale change
criterion with a local criterion to be verified at each point
of the discontinuity. The dissipated surface energy to be
introduced into the cohesive model is calculated by inte-
grating the dissipated volume energy over a segment which
is perpendicular to the discontinuity surface at the point
being considered. This leads to the following criterion,
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which is illustrated by Figures 15 and 16:

φ̂ps =
∫ l

−l

(
φ̆p − φ̂p

)
dl, (98)

φ̂es =
∫ l

−l

(
φ̆e − φ̂e

)
dl, (99)

where the length 2 l of the integration segment is deter-
mined so that it runs across the localized damage zone
surrounding the crack. If hardening behavior exists in
the zone surrounding the discontinuity, it is assumed that
dφ̆p = dφ̂p and dφ̆e = dφ̂e. In the case of softening be-
havior, the zone surrounding the discontinuity is unloaded
because of the opening of the crack, and dφ̂p = dφ̂e = 0.
This enables one to introduce a local localization indicator
iloc defined at each point of the discontinuity. Then, the
model substitution criterion becomes

dφ̂ps = iloc

∫ l

−l
dφ̆p dl, (100)

dφ̂es = iloc

∫ l

−l
dφ̆e dl. (101)

Γs

       :  nonlocal damage model

Reproduction of the discontinuity of the equivalent crack

φ, φe p

l

Figure 15: Dissipated energies of the reference model

Γs

Discontinuity surface of the equivalent crack 

: cohesive 
  zone model
           

   :  local damage modelφ, φe p

sφ , φe p
s

Figure 16: Dissipated energies of the equivalent model

8. Conclusion

The vast number of works which combine continuous
models and discontinuous models is an indication of the
complementarity of the two approaches. These works can
be categorized into two groups:

1) the works which tend to use a continuous model and
a discontinuous model side-by-side to treat the two
phases of the fracture separately and, thus, achieve a
more refined modeling of the material’s behavior or a
more robust numerical implementation,

2) the works which attempt to superimpose a discontinu-
ous model and a continuous model in order to get two
equivalent and interchangeable models.

The works reported in the present paper belong to both
Group 1, because the model obtained combines a ’local’
continuous model and a cohesive model, and Group 2, be-
cause the cohesive law is built from the regularized refer-
ence model. The method, which had been presented in a
previous paper for damage models, was extended in the
present paper to materials which can experience plastic
strains. This required

- the introduction of a plastic displacement jump which
must be taken into account in the thermodynamic de-
scription of the cohesive zone,

- the decomposition of the dissipated energy into a plas-
tic part and an elastic part, along with the develop-
ment of a model substitution criterion which enforces
the preservation of these two energies during the con-
struction of the cohesive law,

- and a specific numerical implementation of the equiv-
alent problem enabling the solution to be calculated
from the model substitution criterion with no a priori
knowledge of the form of the cohesive law.

The method can be used for the determination of the pa-
rameters of a model combining the continuous and dis-
continuous descriptions of the material. This would en-
able one to avoid having to solve an inverse problem for
a material whose continuous, regularized constitutive be-
havior is already known. This constitutive behavior can
be identified more easily because, then, the model contains
only a continuous description and the resolution of the in-
verse problem can be based on local quantities, such as
the width of the damage zone. This method, once imple-
mented for multidimensional models, could also help one
understand some poorly known aspects of cohesive models
(described in detail in, e.g., Bažant (2002)). In particular,
it could be interesting to study the relation between the
traction behavior and the shear behavior of the cohesive
zone, or the influence of triaxiality on the form of the cohe-
sive law. This evolution seems to be possible provided that
the global energy criterion is replaced by a local criterion
defined at each point of the discontinuity.
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A. Annex - Calculation of the free energy and dis-
sipated energy

This annex describes how expressions of the free energy
and of an increment of dissipated energy for the struc-
ture can be derived from data defined at the boundary
of Domain Γ. We are considering the most general case
in which the damageable elastic-plastic domain contains
a discontinuity Γs. The continuous part of the model is
elastic-plastic damageable, and the discontinuity is de-
scribed through a cohesive model similar to that of 3.2.
The solution of the problem is assumed to be known at
time t, and the fields associated with this solution are de-
noted (.)t. At time t, the threshold functions verify:

f(σ̃
t
, pt) ≤ 0, over Ω, (102)

fs(σst, v
k
t ) ≤ 0, over Γs. (103)

If, starting from this solution, the structure is completely
unloaded until a free boundary is achieved over Γ, one
obtains the residual state. The fields associated with this
state are denoted (.)r. The transformation which leads
from the known state at t to the residual state is described
through the evolution of a loading factor λ which varies
from 0 to 1 so that:

F (λ) = (1−λ)F t, over Γ. (104)

During this transformation, the variables are expressed as
functions of the parameter λ. According to Assumption 3,
the unloaded state is included in the elastic domain of the
material prior to the unloading: thus,

f(σ̃
r
, pt) ≤ 0, over Ω, (105)

fs(σsr, v
k
t ) ≤ 0. over Γs. (106)

The following displacement fields and displacement
jumps are proposed as the solutions of the unloading prob-
lem:

u(λ) = (1−λ)ut + λur , (107)
[[u]](λ) = (1−λ) [[u]]t + λ [[u]]r . (108)

The fields associated with plasticity and damage are as-
sumed to remain constant during the transformation:

εp(λ) = εp
t
, (109)

[[u]]p(λ) = [[u]]pt , (110)
D(λ) = Dt . (111)

In order to verify that the proposed solution is indeed the
solution of the problem, one must test, for all values of λ

between 0 and 1, the static admissibility equations, i.e.:

div
(
σ(λ)

)
= 0, over Ω, (112)

σ(λ) n = F (λ), over Γ, (113)

σs(λ) = σ+(λ)n = σ−(λ)n, over Γs. (114)

From Equation 107, the strain field is equal to:

ε(λ) = (1−λ) ε
t

+ λ ε
r
. (115)

Since the plastic strain field is assumed to remain constant
during the the transformation, one also has:

εe(λ) = (1−λ) εe
t

+ λ εe
r
. (116)

From Equation 111, the damage remains constant during
the transformation. Therefore, the stresses are equal to:

σ(λ) = (1−λ)σ
t

+ λσ
r
. (117)

Equation 112 is verified for Fields σ
t

and σ
r
, which are

statically admissible. Therefore, Equation 112 is also ver-
ified for σ(λ). Expression 117 leads to the following ex-
pression of σ(λ) n over Γ:

σ(λ) n = (1−λ)σ
t
n + λσ

r
n. (118)

Besides, over Γ, one has:

σ
t
n = F t, (119)

σ
r
n = 0. (120)

Therefore:

σ(λ)n = (1−λ)F t = F (λ) over Γ, (121)

which shows that Equation 113 is, indeed, verified for all
values of λ. Equation 117 also shows that over Γs one has:

σ+(λ)n = (1−λ)σ+
t
n + λσ+

r
n, (122)

σ−(λ)n = (1−λ)σ−
t
n + λσ−

r
n. (123)

Besides, from 108 and 110,

[[u]]e(λ) = (1−λ) [[u]]et + λ [[u]]er. (124)

Then, the linear behavior of the cohesive zone during the
unloading leads to:

σs(λ) = (1−λ)σst + λσsr. (125)

Therefore, the equations of 114 are verified throughout the
unloading. All we have left to do is verify that the trans-
formation was indeed performed within the initial loading
surface. The threshold functions f and fs must be convex
in order to ensure that the dissipated energy is positive.
Thus:

f
(
λ σ̃

r
+ (1−λ) σ̃

t
, pt
)
≤

λ f(σ̃
r
, pt) + (1−λ) f(σ̃

t
, pt), (126)

14



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

fs
(
λσsr + (1−λ)σst, v

k
t

)
≤

λ fs(σsr, v
k
t ) + (1−λ) fs(σst, v

k
t ). (127)

Therefore, from Equations 102, 105, and 103, 106:

f
(
σ̃(λ), pt

)
≤ 0, over Ω, (128)

fs
(
σs(λ), vkt

)
≤ 0, over Γs, (129)

which shows that the transformation takes place inside the
initial loading surface throughout the process, and Equa-
tions 109, 110, 111 are indeed verified.

The solution of the unloading problem can be used to
get an expression of the free energy Ψ. Since the transfor-
mation is non-dissipative, the energy balance leads to:

∆Ψ = ∆Wext. (130)

Therefore, the variation of free energy can be calculated
from the solution of the unloading problem:

∆Ψ =
∫ 1

λ=0

F (λ) du, (131)

∆Ψ =
∫ 1

λ=0

(1−λ)F t (−ut + ur) dλ, (132)

∆Ψ = −1
2
F t (ut − ur). (133)

This energy represents the difference between the residual
free energy Ψr and the free energy at time t, which we will
denote simply Ψ. Thus:

Ψ = Ψa + Ψr, (134)

with

Ψa =
1
2

∫
Γ

F (u− ur). (135)

This justifies the use of Equations 56 and 57 in Section 5.1.
For an arbitrary transformation, the energy balance leads
to the following expression of the increment of dissipated
energy:

dΦ = dWext − dΨ, (136)

Therefore, using 134 and 135, one can recover Expression
58 of an increment of dissipated energy:

dΦ =
1
2

∫
Γ

(
F du− u dF + F dur + ur dF

)
dS

− dΨr. (137)
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