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A one-dimensional dynamic analysis of strain-gradient

viscoplasticity

An Danh Nguyen, Marcus Stoffel, and Dieter Weichert

Institute of General Mechanics, Templergraben 64, 52056 Aachen, Germany

Abstract Based on the static theory of strain-gradient viscoplasticity proposed by Anand et al.

(2005), a one-dimensional dynamic analysis is derived for finite element computation of isotropic

hardening materials. The kinetic energy is assumed to be composed of the conventional and inter-

nal kinetic energy. The internal energy is described phenomenologically in terms of the equivalent

plastic strain in order to capture the heterogeneity of plastic flow. Herein the microscopic density

is assumed to be related to the macroscopic one through a microscopic-inertia parameter. The

macroscopic-force balance and microscopic-force balance including inertia effects are derived. The

performance of the proposed formulation is illustrated through the numerical simulation of a one-

dimensional dynamic problem. A parameter study to find the microscopic-inertia parameter is

carried out. At last, suitable microscopic boundary conditions and dynamic effects are discussed

through comparison with the conventional plasticity.

1 Introduction

It is well-known that the continuum formulation of strain localization in materials by using

the conventional plasticity theory leads to the ill-posedness of the boundary value prob-

lem (BVP) and, consequently, mesh-dependence, incorrect size effect, and excessive damage

localization. The ill-posedness of BVP is characterized by the loss of ellipticity in statics

and of hyperbolicity in dynamics when materials soften. In dynamics, the differential equa-

tions of motion become ill-posed as the wave velocity becomes imaginary (Luzio(2005)).

A possibility to overcome such the mathematical difficulty is to introduce the gradient of

plastic strain or the damage parameter fields in order to penalize possible sharp localization

Q.S. Nguyen (2005). The use of gradients in the localization of deformation and fracture

allows to obtain the thickness of shear band and to simulate the effect of surface tension

forces (Aifantis (1992)). An additional advantage of this treament is that the heterogeneity

of plastic flow in microscopic scales can be captured. For this reason, the strain-gradient

theory is used in the presented dynamical analysis.

In the last years much research has been devoted to strain gradient plasticity theories

and different strain gradient plasticity models have been proposed by many authors such

as e.g. Aifantis (1984,1987), Mühlhaus and Aifantis (1991), Fleck (1993) and Hutchinson

(2001), Fleck et al. (1994), de Borst et al. (1992, 1996, 1999), Zbib (1989). We can also find

the development of the Cosserat strain gradient theory proposed by Forest et al. (2003). In

most of these models, the yield stress is assumed to depend on gradients of plastic strain.
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Constitutive equations by incorporating high-order gradients are used to describe length

scale effects. Consequently, additional boundary conditions must be presented. Numerical

strategies for the treatment of gradient plasticity at small strains were investigated by

Sluys (1995), de Borst and Mühlhaus (1992) and Pamin (1994). Similarly, gradient damage

theories for isotropic and anisotropic damage can be found in literature, i.e. Peerlings (1998),

Voyiadjis (2004). Gudmundson (2004) reported the unified treatment which is able to cover a

large range of strain gradient plasticity effects in isotropic materials (Gudmundson (2004)).

Both incremental plasticity and viscoplasticity models are presented in his work. Gurtin

(2000, 2002) developed large deformation strain gradient viscoplasticity in single crystals.

The theory is based on classical crystalline kinematics; microscopic forces for each slip

system consistent with a microscopic force balance; a mechanical version of the second law

of thermodynamics that includes, via the microscopic forces, work performed during slip; a

rate-independent constitutive theory including gradient of plastic strains and plastic strain

rates. With such the constitutive theory, the free energy depends on the gradient of plastic

strains and strain hardening depends on the plastic strain and a scalar measure to the

accumulation of geometrically necessary dislocation as well as a dissipative part of a vector

microstress to depend on the gradient of the plastic strain rate. Based on Gurtin’s work,

Anand et al. (2005), Lele and Anand (2008a, 2008b, 2009) developed the strain gradient

theory for isotropic viscoplastic materials for small and large deformations.

In dynamic analysis, a good insight into strain localization can be gained from the

analysis of wave propagation by using strain gradient or nonlocal theories. Sluys et al.

(1992,1995) and de Borst et al. (1995) investigated wave propagation and dispersion for

a gradient plasticity model. Peerlings et al. (1996) have shown that in a one-dimensional

setting the hyperbolicity of the governing equations is preserved in the softening regime for

strain gradient models. The regularisation techniques of nonlocal or by gradient approaches

for damage models were developed by many authors, i.e. Peerlings et al. (1996, 1998, 2001),

Askes et al.(2000, 2002a, 2002b), Luzio and Bazant (2005). An analytical solution of dy-

namic behaviour for a micro beam is reported in Kong et al. (2009).

Among the strain-gradient theories mentioned above, the static approaches developed

by Gurtin (2000, 2002, 2003), Anand (2005) and Lele (2008a, 2008b, 2009) are particu-

larly interesting for our study since they can be extended easily to dynamic analysis with

integrating strain-gradient viscoplasticity law. Therefore, as the first attempt, this paper

presents a one-dimensional dynamic analysis based on the static theory of strain-gradient

plasticity proposed by Anand et al. (2005), Lele (2008a). We will establish the equation of

motion and variational formulation for finite element computation of isotropic hardening

materials. Although the presented analysis can be applied for softening materials, it should

be noted that such effects are not investigated numerically in this paper. The performance

of the proposed formulation is then illustrated through several numerical examples. Dy-

namic effects such as microscopic inertia effects, artificial damping are discussed. Besides,

we investigated the effects of hard boundary conditions proposed by Anand (2005) for the
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dynamic cases to find out more suitable boundary conditions such that the obtained results

without length scales are close to that of the conventional plasticity.

In this study, the kinetic energy is assumed to be composed of the conventional energy

and micro-kinetic one. The latter one is assumed to be a function of the plastic shear strain

to take into account the effects of micro-inertia in zones of strain localzation. The micro-

scopic density is assumed to be related to the macroscopic density through a microscopic-

inertia parameter. In this paper, first, the macroscopic-force balance and microscopic-force

balance including inertia effects are derived. Then, a finite element formulation for the

one-dimensional dynamic analysis is presented. Next, numerical results are presented and

compared to the results of classical dynamic problems obtained by ABAQUS. Finally, a

parameter study to find the microscopic-inertia parameter is carried out.

2 Governing equations

We consider a strip B of finite width (0 ≤ y ≤ h) dynamically loaded by a dynamic

simple shear with shear stress τ . Based on the static theory of strain-gradient viscoplas-

ticity proposed by Anand (2005) and Lele (2008a)’s work, in this section, first we derive

a variational formulation for the dynamic analysis. Then, the principle of virtual power is

introduced taking into account inertia and body forces in order to obtain the macroscopic-

and microsopic-force balances.

A one-dimentional model in Figure 1 is used to simulate the strip. We consider P =

[y1, y2] as a part of B = [0, h], and recall the following notation for a field Φ as written by

Anand (2005) and Lele (2008a)∫
P

Φdy =

∫ y2

y1

Φdy, [Φ]∂P = Φ (y2)− Φ (y1)

B

P

O
y

1y y2
h

t

Figure1. A one-dimensional model

In the sequel, a superimposed dot denotes time derivative, a lower-index derivative

with respect to the coordinate following a comma. Adopting the standard kinematical
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assumption of the shear strain γ(y, t) = ∂u(y,t)
∂y

, and a decomposition of shear strain into

the elastic strain γe and the plastic strain γp, i.e. γ(y, t) = γe(y, t) + γp(y, t), the uniaxial

velocity of a material point u̇, the elastic strain rate γ̇e and the plastic strain rate γ̇p are

expressed by

u̇,y = γ̇e + γ̇p (1)

To capture the heterogeneity of plastic flow in the static case, Mülhaus (1991) and

Aifantis (1992) modified the classical theory of rate-independent plasticity by incorporating

higher-order gradients of the equivalent plastic strain γp into the yield condition. A complete

balance for the yield stress, which is assumed to depend on the equivalent plastic strain γp

alone, contains a diffusive-like term in the evolution of the back stress. It is pointed out that

the second time derivatives of the back stress or of the equivalent plastic strain can appear

in the evolution law. Using the strain-gradient theory proposed by Anand et al. (Anand

(2005) and Lele (2008a)), the BVP for the dynamical problem now can be introduced as

follows

τ,y + b− κu̇ = ρü (2)

kp,y − τ p + τ − κpγ̇p = ρpγ̈p (3)

with regarding the boundary conditions as in Lele’s work, which are recalled here

• macroscopic boundary conditions: τ(0, t) = τ(h, t) = τ ∗(t); u(0, t) = 0, u(h, t) = u∗(t)

• microscopic boundary conditions, which are restricted to microscopically hard boundary-

conditions: γ̇p(0, t) = γ̇p(h, t) = 0 and null initial-condition γp(y, 0) = 0

Here τ p, kp, b, ρ, ρp, κ, and κp denote respectively microscopic stress, gradient of microscopic

stress, body force, mass density, plastic inertia density, damping factor, plastic damping fac-

tor. Due to the appearance of γp as an additional degree of freedom, its boundary condition

has to be introduced.

The dynamical terms ρpγ̈p, κpγ̇p are assumed to measure the microscopic inertia and

dissipation respectively. For the microscopic inertia, the inertia term ρp is assumed to be

related to the macroscopic one by

ρp = Iρρ (4)

where Iρ is a microscopic inertia factor with the dimension of mass per length.

Similarly, for microscopic damping, κp is assumed in the form

κp = Iκκ (5)

where Iκ is a microscopic damping factor with the dimension of force multiplied by time.
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For two arbitrary fields ũ and γ̃p, the weak form of equilibrium of macroscopic and micro-

scopic forces is defined by ∫
P

(τ,y + b− κu̇− ρü) ũ dy = 0 (6)∫
P

(
kp,y − τ p + τ − κpγ̇p − ρpγ̈p

)
γ̃p dy = 0 (7)

With the use of the integration by parts and divergence theorem, the first term in (6) reads∫
P

τ,yũdy = −
∫
P

τ ũ,ydy + [τ̂ ũ]∂P (8)

with τ = τ̂ on the boundary of P , denoted as ∂P , where τ̂ denotes macroscopic traction.

Similarly, the first term of the integral (7) becomes∫
P

kp,yγ̃
pdy = −

∫
P

γ̃p,yk
pdy +

[
k̂pγ̃p

]
∂P

(9)

with kp = k̂p on the boundary ∂P , where k̂p denotes microscopic traction.

Substitution of (8) and (9) into (6), (7) respectively, yields

−
∫
P

τ ũ,ydy + [τ̂ ũ]∂P +

∫
P

bũdy −
∫
P

κu̇ũdy −
∫
P

ρüũdy = 0 (10)

−
∫
P

γ̃p,yk
pdy +

[
k̂pγ̃p

]
∂P
−
∫
P

τ pγ̃pdy +

∫
P

τ γ̃pdy −
∫
P

κpγ̇pγ̃
pdy −

∫
P

ρpγ̈pγ̃pdy = 0

(11)

The integral identities (10) and (11) express the respective field equations in the global

(integral) form and provide the variational basis for the finite element formulations of the

problem.

By summing up (10) with (11) and taking into account (1), the principle of virtual

power can be obtained

−Wint +Wkin +Wext = 0 (12)

where Wext, Wint and Wkin denote the external, internal, and kinetic virtual power, which

are defined by

Wext =
[
τ̂ ũ+ k̂pγ̃p

]
∂P

+

∫
P

bũdy (13)

Wint =

∫
P

(
τ γ̃e + τ pγ̃p + kpγ̃p,y

)
dy +

∫
P

κu̇ũdy +

∫
P

κpγ̇pγ̃
pdy (14)

Wkin =

∫
P

ρüũ dy +

∫
P

ρpγ̈pγ̃pdy (15)

where ũ, γ̃e, and γ̃p denote virtual velocities of displacement, elastic shear strain, and plastic

shear strain respectively.
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3 Finite element formulation

The macroscopic and microscopic virtual power relations (10) and (11) are rewritten here∫
P

ρüũ dy +

∫
P

κu̇ũdy +

∫
P

τ ũ,ydy −
∫
P

bũdy − [τ̂ ũ]∂P = 0 (16)∫
P

ρpγ̈pγ̃pdy +

∫
P

κpγ̇pγ̃
pdy +

∫
P

{
(τ p − τ) γ̃p + γ̃p,yk

p
}
dy −

[
k̂pγ̃p

]
∂P

= 0 (17)

with the boundary conditions as mentioned above.

The constitutive laws proposed by Anand (2005), which take into account viscoplastic

behavior and characterize internal hardening or softening, are adopted. The constitutive

theory depends on gradients of both plastic shear strain γp,y and plastic shear strain rate

γ̇p,y. Microscopic stress τ p takes a similar form of the conventional plasticity, while gradient

kp of the microscopic stress admits a decomposition into energetic and dissipative parts,

which are adjusted by length scale parameters L, l. The effective flow rate dp is generalized

to include a dependence on
∣∣γ̇p,y∣∣. A summary of the constitutive laws is given below.

τ = µ (u,y − γp) (18)

τ p = S

(
dp

d0

)m
γ̇p

dp
(19)

kp = S0L
2γp,y + S0l

2

(
dp

d0

)m γ̇p,y
dp

(20)

Ṡ = H (S) dp, S (y, 0) = S0 > 0 (21)

dp =

√
|γ̇p|2 + l2 |γ̇p,y|2 (22)

where dp, L, l denote respectively equivalent plastic strain rate, energetic length scale and

dissipative length scale; S, S0, H(S), d0, dp and m denote respectively the current resistance

to plastic flow, shear yield strength, hardening (or softening) function, reference flow rate,

effective flow rate, rate-sensitive parameter.

Let us denote U = [u, γp]T , U̇ =
[
u̇, γ̇p

]T
, Ü =

[
ü, γ̈p

]T
. After discretization, the

above governing equations (16-17) can be written in matrix form as

MÜ + I − P = 0 (23)

where the consistent mass matrix M reads

M =

[∫
B
ρNTNdy 0

0
∫
B
ρpNTNdy

]
(24)

The internal force vector I is defined by

I = KU +CU̇ (25)

where K is a global stiffness which is formed by assembly of element stiffness matrix, which

is described in details in Anand (2005) and Lele (2008a)’s work

Ke =

[
Ke

uu K
e
uγp

Ke
γpu K

e
γpγp

]
(26)
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and damping matrix reads

C =

[∫
B
κNTNdy 0

0
∫
B
κpNTNdy

]
(27)

With the absence of the macroscopic and microscopic tractions in this study, the external

force vector P is determined by

P =

[∫
B
fbodyN

Tdy

0

]
(28)

The initial value problem for (23) consists of finding a function U = U(t), t ∈ [0, T ], T > 0,

satisfying the initial conditions

U 0 = Ū (29)

U̇ 0 = ˙̄U (30)

Hilber-Hughes-Taylor’s time integration scheme (ABAQUS, Hilber (1977), Hilber(1978)) is

used to obtain the approximate solutions by one step difference method (see Appendix).

4 Numerical examples and discussions

The presented finite element formulation for dynamic analysis using the strain-gradient

viscoplasticity is implemented in the user element subroutine compiled with ABAQUS.

One-dimensional simulations are carried out to investigate the dynamic response. For these

simulations, a rod in Figure 2 depicts schematically the strip B with a unity width and is

discretized with a mesh of 15 elements in finite element computation. The following material

parameters are used to produce the numerical results shown below

• Elastic shear modulus µ = 100× 109Pa;

• Initial yield limit S0 = 100× 106Pa;

• Reference strain-rate d0 = 0.1;

• Strain-rate sensitive parameter m = 0.02.

u

10 m

Figure2. Scheme of a rod subjected to prescribed displacement

Further, the material behaviour is assumed to be linear isotropic hardening, i.e.

H(S) = H0 = constant (31)

Most of the numerical results are compared with that of quasi-static loading and are pre-

sented in the following sections. The obtained results coincide with the quasi-static one.
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4.1 Case 1: Perfectly plasticity (L = 0.0m; l = 0.0m) - Triangular loading

First, we investigated the structure subjected to the triangular loading of prescribed dis-

placements as shown in Figure 3 with material behavior assumed to be perfectly plastic for

verification purpose. Neither energetic-gradient nor dissipative-gradient hardening is taken

into account in this case. The following input material parameters are used ρ = 7800kg/m3;

b = 78000kg/m3 × m/s2; κ = 0.0Ns/m. Figures 4 and 5 show average strain and stress

curves Γ − τ and history of plastic strain γp at the Gaussian point of the coordinate of

y = 9.925m for cases of Iρ = 10.0, 1.0, 0.5, 0.1kg
m

. Here, the average strain Γ is defined by

the ratio between displacement u and the whole length h of the rod, i.e. Γ =
u

h
.

0.5

1.0

u (m)

u

0

0.5

1.0

u (m)

t (s)1.0
0

-1.0

t (s)1.0

Figure3. Prescribed displacements as triangular impulse loading

It is observed that as expected the presented results match well the result with using the

conventional plasticity theory in ABAQUS Standard module. There is a small gap between

two distributions of shear stresses due the microscopically hard boundary conditions of the

plastic strain rates γ̇p = 0 at both ends of the rod. The vibrations, which appear at the

beginning and over the peak of loading, are dissipated quickly. This may be explained by

microscopic inertia effects, which are described by Iρ factor and plastic shear strain γp, and

by expense of a loss of accuracy due to the numerical time integration scheme. The expense

of the loss of accuracy introduced artificial damping in dynamic effects and a difference of

Γ in comparison with quasi-static case. The fast decrease of vibration is observed and in

case of Iρ = 0.5 the response is close to that obtained by the conventional theory.

In despite of the two different forms of partial derivative equations with different bound-

ary conditions, the two models can be comparable because the strain-gradient plasticity is

a generalization of conventional plasticity. Therefore, it is reasonable to calibrate the mi-

croscopic inertia factor Iρ based on the conventional plastic model such that the unique

physical phenomena can be simulated, especially in cases without length scales and micro-

scopic inertia factor Iρ.
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P
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Dynamic response − ρ=7800 kg/m3

 

 

Strain gradient (Imp.) − Iρ=10.0
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Strain gradient (Imp.) − Iρ=1.0

Strain gradient (Imp.) − Iρ=0.5

ABAQUS (Imp.)

Strain gradient: Quasi−static

Figure4. Case 1 - Dynamic response Γ − τ at y = 9.925m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

8

10

12

14
x 10

−3

Time (s)

γp

Plastic strain − ρ=7800 kg/m3

 

 

Strain gradient (Imp.) − mρ=10.0

Strain gradient (Imp.) − mρ=0.01

Strain gradient (Imp.) − mρ=0.1

Strain gradient (Imp.) − mρ=0.5

Strain gradient (Imp.) − mρ=1.0

Figure5. Case 1 - Shear plastic strains γp at y = 9.925m

4.2 Case 2: Perfect plasticity (L = 0.0m; l = 0.0m) - Sinusoidal loading

The previous example is solved again for the case of sinusoidal loading as shown in Figure

6. From parameter study of the microsopic inertia factor, the best value of Iρ is found to
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be 0.25. The presented results shown in Figures 7, 8 match well that of the conventional

theory obtained by ABAQUS Standard module. The observations of dynamic effects are

similar to that of the above example except that the expense of a loss of accuracy due to

the numerical time integration scheme decreases.0.5

1.0

u (m)

u

0

0.5

1.0

u (m)

t (s)1.0
0

-1.0

t (s)1.0

Figure6. Sinusoid loading of displacements

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−2

−1

0

1

2

3

4
x 10

8

Γ

τ 
(
P
a
)

Dynamic response − ρ=7800 kg/m3

 

 

Strain gradient (Imp.) − Iρ=10.0

Strain gradient (Imp.) − Iρ=1.0

Strain gradient (Imp.) − Iρ=0.10

Strain gradient (Imp.) − Iρ=0.50

Strain gradient (Imp.) − Iρ=0.25

ABAQUS (Imp.)

Strain gradient: Quasi−static

Figure7. Case 2 - Dynamic response Γ − τ at y = 9.925m



 

A one-dimensional dynamic analysis of strain-gradient viscoplasticity 11

The distributions of shear plastic strain γp along the length of the rod are shown in

Figure 8. Here, it should be noted that due to the microscopically hard boundary conditions

the rates of plastic strain γ̇p = 0 at both ends of the rod are equal to zero. The distribution

of γp is not a monotonic distribution as we obtained by using the conventional theory. An

investigation of mesh sensitivity is given in Figure 10. Except the regions near both ends

of the rod, the distributions of plastic strain are nearly unchanged.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time (s)

γp

Dynamic response − ρ=7800 kg/m3

 

 
Strain gradient (Imp.) − Iρ=10.0

Strain gradient (Imp.) − Iρ=1.0

Strain gradient (Imp.) − Iρ=0.1

Strain gradient (Imp.) − Iρ=0.50

Strain gradient (Imp.) − Iρ=0.25

Figure8. Case 2 - Shear plastic strains γp at y = 9.925m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

y/h

γp

Plastic strain distributions

 

 

t=0.25s

t=0.50s

t=0.75s

t=1.00s

Figure9. Case 2 - Distribution of shear plastic strain γp, Iρ = 0.25kgm
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.05

0

0.05

0.1

0.15

y/h

γp

Plastic strain distributions

 

 
15 elem.
25 elem.
45 elem.

Figure10. Case 2 - Mesh sensitivity on distribution of shear plastic strain γp, Iρ = 0.25kgm , t = 1.0s

4.3 Case 3: Isotropic hardening without length scales (L = 0.0m; l = 0.0m) -

Sinusoidal loading

The problem is also investigated with assumption of isotropic hardening behavior of material

without length scale effects (L = 0.0m; l = 0.0m). The presented numerical results shown

in Figures 11, 12 are compared with the case that the material is assumed to be linear

isotropic hardening in the conventional plasticity theory. Here, we assume
dp

d0
≈ 1 to find the

hardening parameters for the mechanical computation using the conventional theory. The

best value of Iρ is found to be 0.25kg
m

. The response Γ − τ obtained in the case Iρ = 0.25kg
m

is close to that of ABAQUS result. The distributions of shear plastic strain γp along the

length of the rod are depicted in Figures 13, 14 for the case using the presented gradient

theory with Iρ = 0.25kg
m

and the one using the conventional plasticity theory, respectively.

Again we can observe the effect of the microscopic boundary condition on the presented

distribution of τ as well as γp.

4.4 Case 4: Energetic-gradient hardening - Sinusoidal loading

We also investigated the case of energetic-gradient hardening with the length scale param-

eters of L = 10.0m and l = 0.0m. The presented dynamic effects are depicted in Figures

15, 16. The best value of Iρ is also 0.25kg
m

for this case. The strain-hardening rate and

Bauschinger-effect give arise as the energetic-gradient hardening L is different to zero. Un-

like in case 3, the distribution of γp shown in Figure 17 is smooth and has the maximum

value at the midddle of the rod.



 

A one-dimensional dynamic analysis of strain-gradient viscoplasticity 13

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−4

−3

−2

−1

0

1

2

3

4

5
x 10

8

Γ

τ 
(
P
a
)

Dynamic response − ρ=7800 kg/m3

 

 

Strain gradient (Imp.) − Iρ=10.0

Strain gradient (Imp.) − Iρ=0.1

Strain gradient (Imp.) − Iρ=1.0

Strain gradient (Imp.) − Iρ=0.5

Strain gradient (Imp.) − Iρ=0.25

ABAQUS (Imp.)

Strain gradient: Quasi−static

Figure11. Case 3 - Dynamic response Γ − τ at y = 9.925m
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Figure12. Case 3 - Shear plastic strain γp at y = 9.925m

4.5 Case 5: Null initial-conditions of equivalent plastic strains γp(0, 0) = 0

and γp(h, 0) = 0

The case 3 is solved again to investigate an effect of boundary conditions on the dynamic

reponse. The microscopic boundary conditions in section 2 is modified such that no internal
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Figure13. Case 3 - Distribution of shear plastic strain γp, Iρ = 0.25kgm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

y/h

γp

Plastic strain distributions

 

 
t=0.25s
t=0.50s
t=0.75s
t=0.98s

Figure14. Case 3 - Distributions of shear plastic strain γp (x, t)

(Conventional plasticity theory)

expenditure of power exists at the initial instant of loading. This has the consequence that

the equivalent plastic strain at the free ends of the rod are null, i.e. γp(0, 0) = 0 and

γp(h, 0) = 0. The best value Iρ of 0.25kg
m

is used for this investigation. In Figure 18, the

obtained dynamical response Γ − τ is close to that of ABAQUS result. The distributions
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Figure15. Case 4 - Dynamic response Γ − τ at y = 9.925m
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Figure16. Case 4 - Shear plastic strains γp at y = 9.925m

of shear plastic strain γp along the length of the rod, which are depicted in Figure 19, are

nearly uniform as we expected for the case using the conventional plasticity theory.
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Figure17. Case 4 - Distribution of shear plastic strain γp, Iρ = 0.25kgm
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Figure18. Case 5 - Dynamic response Γ − τ at y = 9.925m

5 Conclusion

A one-dimensional dynamic analysis with the theory of strain-gradient viscoplasticity has

been carried out. Several examples are presented and show how to simulate the dynamic

effects of structures with viscoplastic material behavior. The plastic shear strain is chosen

as indicator of microscopic defects in materials through length scale parameters in order
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Figure19. Case 5 - Distribution of shear plastic strain γp, Iρ = 0.25kgm

to take into account the microscopic inertia effects. A parameter study of the microscopic

inertia factor gives that the best value of microscopic-inertia parameter is 0.25
kg

m
being

able to cover the conventional plasticity theory. For numerical aspects, first it is noted here

that due to the extra requirements of boundary conditions on plastic strain rates at the

free ends of the strip the distribution of plastic strain along the strip is not same as that

obtained from conventional plasticity. Then, due to the expense of the loss of accuracy,

small artificial damping occurs and introduces dynamic effects.

Appendix: Hilber-Hughes-Taylor’s time integration scheme

Hilber-Hughes-Taylor’s time integration scheme (ABAQUS, Hilber (1977), Hilber(1978)),

which is used to obtain the approximate solutions by one step difference method, is briefly

summarized here.

−MÜ + (1 + α)Gt+∆t − αGt = 0 (32)

U t+∆t = U t +∆t U̇ t +∆t2
[(

1

2
− β

)
Ü t + βÜ t+∆t

]
(33)

U̇ t+∆t = U̇ t +∆t
[
(1− γ) Ü t + γÜ t+∆t

]
(34)

U 0 = Ū (35)

U̇ 0 = ˙̄U (36)

Ü 0 =M−1 (F 0 −KU 0) (37)
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where β, γ are Newmark parameters (Newmark(1959)) of the integration scheme are defined

by

β =
1

4
(1− α)2 , γ =

1

2
− α and − 1

3
≤ α ≤ 0 (38)

The “static” force vector G is defined by

Gt+∆t = P t+∆t − I t+∆t (39)

Gt = P t − I t (40)

The residual force vector F is determined by

F = −MÜ + (1 + α)Gt+∆t − αGt (41)

The Jacobian matrix has the form

A = − (1 + α)
∂F

∂U
− (1 + α)

∂F

∂U̇

(
dU̇

dU

)
t+∆t

− ∂F

∂Ü

(
dÜ

dU

)
t+∆t

(42)

=K + (1 + α)C

(
dU̇

dU

)
t+∆t

+ (1 + α)M

(
dÜ

dU

)
t+∆t

(43)

where (
dU̇

dU

)
t+∆t

=
γ

β∆t
(44)(

dÜ

dU

)
t+∆t

=
1

β∆t2
(45)

For an accuracy of the solution and an approximate adjustment of the time step, half step

residual is also needed

F = −MÜ t+∆t/2 + (1 + α)Gt+∆t/2 − α
(
Gt +Gt−

)
(46)
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