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Abstract

The isothermal theory of binary micropolar solid-fluid mixture is considered
in this paper. For the dynamical problem, a Galerkin type representation
of the solution is established. Then, a fundamental solution is given for
the three dimensional partial differential system which describes the steady
vibrations. Also, some basic properties of the fundamental solution and a
direct application to the point load problem are presented.

Keywords: microstructure, solid–fluid interaction, steady state vibrations,
fundamental solution

1. Introduction

A microcontinuum media, roughly speaking, is a continuum media whose
properties and behaviour are affected by the local motions and deformations
of the primitive elements. A special case of microcontinuum media is that
of micropolar continua. In the micropolar continuum theory, the rotational
degrees of freedom play a central role. Thus, we have six degrees of freedom,
instead of three degrees of freedom considered in classical elasticity and fluid
mechanics. The number of published works in these fields presently exceeds
several hundred papers. A modern presentation, the state-of-art and the
intended applications of these theories can be found in the books (Eringen,
1999, 2001). The higher-order or higher-grade continuum theories are nec-
essary to capture size effects in small length scales, where the fundamental
assumption of the classical continuum theory is that the (physical, chemical,
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mechanical, etc.) properties of a material are uniformly distributed through-
out its volume fails (Tekoglu & Onck, 2008). We remind that the theory of
micropolar elastic materials has many applications concerning cellular solids
(Lakes, 1983, 1986; Mora & Wass, 2000).

On the other hand, many natural or synthetic materials are not pure ma-
terials. They are mixtures of two or more co-existence constituents. Some-
times the presence of a constituent can be ignored, if there is a preponder-
ant constituent, but in many situations the local mechanical effects of each
ingredient of the mixture cannot be ignored. In classical continuum theory
(Rajagopal & Tao, 1995), a mixture is idealized by assuming that every point
in the mixture is occupied simultaneously by each constituent. A mixture is
thereby envisioned as a superposition of several continuous media.

Taking into account the microstructural motions Twiss & Eringen (1971,
1972) introduce the mixture theory of materials with microstructure. In the
last years many papers (Eringen, 2003; Ieşan, 2007, 2009; Chiriţă & Galeş,
2008) got back in discussion the study of mixtures with microstructure. Erin-
gen (2003) has developed a continuum theory for a mixture of a micropolar
elastic solid and a micropolar viscous fluid. This theory can be successfully
applied to the study of engineering materials, as well as soils, rocks, granular
materials, sand and underground water mixtures. Consolidation problems
in the building industry, earthquake problems, oil exploration problems and
cellular solids can be studied with the help of the mixture theories (de Boer,
2005; Elangovan et al., 2008).

In the framework of the theory developed by Eringen (2003), the exis-
tence, uniqueness, continuous data dependence of the solution of the initial-
boundary value problem, the asymptotic partition of the energy and the
stability problem have been studied by Ghiba (2006, 2007, 2008, 2009).

In various boundary-value problems from continuum mechanics it is im-
portant to give a representation of the general solution of the field equations
in term of elementary (harmonic, biharmonic etc.) functions and to find the
fundamental solution. In the micropolar elasticity, this type of results have
been established by Ieşan (1971), Şandru (1966, 1975), Dragoş (1980, 1983).
Ramkissoon & Majundar (1976 a,b) obtained the fundamental solution for
slow, steady motion of micropolar fluids, in planar and three dimensional
space. Olmstead & Majumdar (1983) gave the fundamental solution for a
Oseen flow in the two dimensional case. These results have been completed
by the study by Shu & Lee (2008).

In the present paper we consider the isothermal theory of a binary homo-
geneous mixture of an isotropic micropolar elastic solid with an incompress-
ible micropolar viscous fluid. In the second section the basic equations of
this theory are presented. In the third section, using the method introduced
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by Moisil (1952), we establish a representation of Galerkin type for the dy-
namical problem. In the next section we use some Galerkin representations
in order to determine the fundamental solutions for the three–dimensional
problem governing the motion of a micropolar solid-fluid mixture in the case
of steady state vibrations. A direct application to the point load problem is
presented in the last section of the paper.

The representations of the solution and the fundamental solutions for mi-
cropolar mixtures have not been studied yet. The equations of the theory
developed by Eringen (2003) combine the usual linearized system of equa-
tions for isotropic micropolar elastic solids with those for incompressible mi-
cropolar viscous fluid and become a complex system of partial differential
equations. We outline that the fundamental solutions of the static problems
and of the steady oscillations problem for other types of mixtures are con-
structed in (Svanadze, 1993, 1996; Ciarletta, 1995; Ieşan, 1996; de Boer &
Svanadze, 2004; Galeş, 2004 a,b; Svanadze & de Boer, 2005). We also note
that in the theories of pure materials with microstructure the proposed prob-
lems have been studied by Ieşan & Pompei (1995); Ieşan & Nappa (2001),
Svanadze et al. (2007), Nappa (2008) and Cialetta et al. (2009).

2. Basic equations

The space under consideration is the Euclidean three–dimensional space.
We refer the motion of a continuum to a fixed system of rectangular Cartesian
axes Oxk (k = 1, 2, 3). The Latin subscripts, unless otherwise specified, are
understood to range over the integers 1, 2, 3, the Greek subscripts are confined
to the range 1, 2 and superscripts σ = s, f denote the micropolar elastic
solid and the incompressible micropolar fluid, respectively. Summation over
repeated subscripts and other typical conventions for differential operations
are implied such as comma followed by a subscript to denote the partial
derivative with respect to the corresponding cartesian coordinate.

We suppose that the mixture is chemical inert, and the fluid is incom-
pressible.

In this paper we use the following notations:

• ρσ− the density of the σth constituent;

• πf− the dynamic pressure in the fluid species;

• uσ
r− the displacement of the σth constituent;

• φσ
r− the microrotation vector of the σth constituent;

• vσr− the velocity of the σth constituent;
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• νσ
r − the microrotation rate of the σth constituent;

• λs, µs, ks, αs, βs, γs− the micropolar elastic constants for micropolar
elastic solid;

• µf , kf , αf , βf , γf− the micropolar fluid viscosities;

• ξ− the momentum generation coefficient due to the velocity difference;

• ̟− the momentum generation coefficient due to the difference in gy-
ration;

• F σ
r − the body force;

• Lσ
r− the body couple;

• jσ− the microinertia density.

The field equations of the linear theory of isothermal micropolar solid–fluid
mixtures are (Eringen, 2003)

(λs + µs)us
j,rj + (µs + ks)us

r,jj + ksεrjkφ
s
k,j−

−ξ(
∂

∂t
us
r − vfr ) + F s

r = ρs
∂2

∂t2
us
r,

(αs + βs)φs
j,rj + γsφs

r,jj + ks(εrjku
s
k,j − 2φs

r)−

−̟(
∂

∂t
φs
r − νf

r ) + Ls
r = ρsjs

∂2

∂t2
φs
r,

−πf
,r + (µf + kf )vfr,jj + kfεrjkν

f
k,j + ξ(

∂

∂t
us
r − vfr ) + F f

r = ρf
∂

∂t
vfr ,

(αf + βf)νf
j,rj + γfν

f
r,jj + kf(εrjkv

f
k,j − 2νf

r )+

+̟(
∂

∂t
φs
r − νf

r ) + Lf
r = ρfjf

∂

∂t
νf
r ,

vfr,r = 0

(2.1)

where εrjk is the permutation symbol. It is easy to see that if we ignore
the microstructure then the above equations will describe the behaviour of
mixtures which have as constituents an isotropic elastic solid and a classical
fluid with λs, µs and µf the classical Lamé constants.

In this paper we suppose that the dissipation potential and the internal
energy density (Eringen, 2003) are positive definite. This is true if and only
if

3λs + 2µs + ks > 0, 2µσ + kσ > 0, kσ > 0, ̟ > 0, ξ > 0,

3ασ + βσ + γσ > 0, γσ + βσ > 0, γσ − βσ > 0, (σ = s, f).
(2.2)
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3. Complete solutions of the field equations

In this section we establish a Galerkin type representation of the solution
of the field equations.

Let us introduce the differential operators:

Qs
1(∆) = (µs + ks)∆− ξ

∂

∂t
− ρs

∂2

∂t2
, Qs

2(∆) = γs∆− 2ks −̟
∂

∂t
− ρsjs

∂2

∂t2
,

Qs
3(∆) = (λs + µs)∆ +Qs

1, Qs
4(∆) = (αs + βs)∆ +Qs

2,

Qs
5(∆) = (ks)2∆+Qs

1Q
s
2,

Q
f
1(∆) = (µf + kf )∆− ξ − ρf

∂

∂t
, Q

f
2(∆) = γf∆− 2kf −̟ − ρf jf

∂

∂t
,

Q
f
3(∆) = (αf + βf)∆ +Q

f
2 , Q

f
4(∆) = (kf)2∆+Q

f
1Q

f
2 ,

P1(∆) = ̟2 ∂

∂t
−Q

f
2Q

s
2, P2(∆) = ξ2

∂

∂t
−Q

f
1Q

s
1, (3.1)

where ∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

is the Laplace operator.

In the above quantities and in the following, if Qn, n = 1, 2, ..., m are
differential operators and G is, for example, a C∞(R) function, we use the
notation

Q1Q2...QmG ≡ Q1(Q2(...(Qm(G))...)).

With the help of these operators, we also define the following differential
operators:

D1(∆) = −̟2 ∂

∂t
+Q

f
3Q

s
4,

D2(∆) = Qs
5Q

f
4 + 2ξ̟kskf∆

∂

∂t
− (̟2Qs

1Q
f
1 + ξ2Qs

2Q
f
2)

∂

∂t
+ ξ2̟2 ∂

2

∂t2
,

D3(∆) = D2 − (Qf
4Q

s
2 −

∂

∂t
̟2Q

f
1)Q

s
3, (3.2)

D4(∆) = Q
f
4Q

f
3 [(k

s)2 − (αs + βs)Qs
1] + 2ξ̟kskfQ

f
3

∂

∂t
+

+̟2Qs
1[(k

f)2 − (αf + βf)Qf
1 ]

∂

∂t
+ ξ2(αs + βs)Qf

2Q
f
3

∂

∂t
+ (αf + βf)ξ2̟2 ∂

2

∂t2
,

D5(∆) = Q5̟(kf)2 + ξkskf(̟2 ∂

∂t
+Q

f
3Q

s
4) +̟{[(αs + βs)Qf

2+

+(αf + βf)Qs
2 + (αf + βf)(αs + βs)∆]P2 + (ks)2Qf

1Q
f
2},

D6(∆) = Qs
5Q

s
4[(k

f)2 − (αf + βf)Qf
1 ] + 2ξ̟kskfQs

4

∂

∂t
+

+̟2Q
f
1 [(k

s)2 − (αs + βs)Qs
1]
∂

∂t
+ ξ2(αf + βf)Qs

2Q
s
4

∂

∂t
+ ξ2̟2(αs + βs)

∂2

∂t2
.
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Using the method introduced by Moisil (1952) we construct a represen-
tation of Galerkin type for the solution of the dynamical problem.

Theorem 3.1. Let

us
r = ∆Qs

3D1(−̟2 ∂

∂t
Q

f
1 +Q

f
4Q

s
2)G

s
r +D1D3G

s
j,rj+

+εrjk∆Qs
3D1(k

sQ
f
4 + ξ̟kf

∂

∂t
)Hs

j,k+

+∆Qs
3D1(̟kskf∆+ ξP1)G

f
r −Qs

3D1(̟kskf∆+ ξP1)G
f
j,rj−

−εijk∆Qs
3D1(̟ksQ

f
1 + ξkfQs

2)H
f
j,k − ξP,r,

φs
r = εrjk∆Qs

3D1(k
sQ

f
4 + ξ̟kf

∂

∂t
)Gs

j,k+

+∆Qs
3D1[(k

f )2∆Qs
1 − P2Q

f
2 ]H

s
r +∆Qs

3D4H
s
j,rj−

−εrjkD1∆Qs
3(̟kfQs

1 + ξksQ
f
2)G

f
j,k+

+∆Qs
3D1(ξk

skf∆+̟P2)H
f
r −∆Qs

3D5H
f
j,rj,

(3.3)

vfr =
∂

∂t
∆Qs

3D1(̟kskf∆+ ξP1)G
s
r −

∂

∂t
Qs

3D1(̟kskf∆+ ξP1)G
s
j,rj−

−εrjk
∂

∂t
∆Qs

3D1(̟kfQs
1 + ξksQ

f
2)H

s
j,k+

+∆Qs
3D1(−̟2 ∂

∂t
Qs

1 +Qs
5Q

f
2)G

f
r −Qs

3D1(−̟2 ∂

∂t
Qs

1 +Qs
5Q

f
2)G

f
j,rj+

+εrjk∆Qs
3D1(ξ̟ks ∂

∂t
+ kfQs

5)H
f
j,k +Qs

3P,r,

νf
r = −εrjk∆

∂

∂t
Qs

3D1(̟ksQ
f
1 + ξkfQs

2)G
s
j,k+

+
∂

∂t
∆Qs

3D1(ξk
skf∆+̟P2)H

s
r −

∂

∂t
∆Qs

3D5H
s
j,rj+

+εrjk∆Qs
3D1(ξ̟ks ∂

∂t
+ kfQs

5)G
f
j,k+

+∆Qs
3D1[(k

s)2∆Q
f
1 − P2Q

s
2]H

f
r +∆Qs

3D6H
f
j,rj,

πf = ξ
∂

∂t
D1D2G

s
r,r −Qs

3D1D2G
f
r,r − (ξ2

∂

∂t
−Q

f
1Q

s
3)P,

where Gs
r, G

f
r , H

s
r , F

f
r and P satisfy

∆Qs
3D1D2G

σ
r = −F σ

r , ∆Qs
3D1D2H

σ
r = −Lσ

r , ∆Qs
3P = 0 (σ = s, f). (3.4)

Then us
r, vfr , φs

r, νf
r and πf satisfy the equations ( 2.1).

Proof. It is easy to see that for every A ∈ C3(R3) × C3(R3) × C3(R3) we
have

εrjkAj,ki = 0, εjmnAm,nrj = 0, εrjkAm,kmj = 0, (3.5)
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and
εkrjεkmn = δrmδjn − δrnδjm. (3.6)

To prove that vfr satisfies the incompressibility condition (2.1)5, we use
the relations (3.4), (3.6) and the relations (3.5) for A = Hs and A = Hf .

By a direct substitution of the relations (3.3) in (2.1) and using the rela-
tions (3.4), (3.5), (3.6) and the identities

Qs
3D4 −̟

∂

∂t
D5 = D1{k

s(ksQ
f
4 + ξ̟kf ∂

∂t
)− (αs + βs)[(kf)2∆Qs

1 − P2Q
f
2 ]},

Qs
3D5 −̟D6 = D1[k

s(̟ksQ
f
1 + ξkfQs

2) + (αs + βs)(ξkfks∆+̟P2)],

Q
f
3D5 −̟D4 = D1[(α

f + βf)(ξkfks∆+̟P1) + kf(̟kfQs
1 + ξksQ

f
2)],

Q
f
3D6 −̟

∂

∂t
D5 = D1{k

f(ξ̟ks
∂

∂t
+ kfQs

5)− (αf + βf)[(ks)2∆Q
f
1 − P2Q

s
2]},

εijkP,kj = 0, (3.7)

we have that us
r, vfr , φs

r, ν
f
r and πf are solutions of the basic system of

equations (2.1), and the proof is complete.

4. Fundamental solution for steady state vibrations

In this section we use the representation described in the previous section
in order to determine the fundamental solution of equations of motion for
the case of steady vibrations. We suppose that

F σ
r = Re

[

F ∗σ
r (x)e−iωt

]

, Lσ
r = Re

[

L∗σ
r (x)e−iωt

]

,

uσ
r = Re

[

u∗σ
r (x)e−iωt

]

, φσ
r = Re

[

φ∗σ
r (x)e−iωt

]

,

πf = Re
[

π∗f(x)e−iωt
]

, (σ = s, f),

(4.1)

where i is the imaginary unit and ω > 0 is the frequency of the vibration.
Regarding the propagation of plane harmonic waves in micropolar mate-

rials we have to say that the micropolar effects become important in high-
frequency and short wave-length regions of waves (Eringen, 1999). In the
theory of micropolar mixtures introduced by Eringen (2003) this aspect has
been studied by Singh & Tomar (2006). In the present paper we consider
that the frequency is high enough for the solution for steady state vibrations
to exist.

Let us introduce the differential operators:
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Q∗s
1 (∆)= (µs + ks)∆ + iωξ − ρsω2, Q∗s

2 (∆) = γs∆− 2ks + iω̟ − ρsω2js,

Q∗s
3 (∆)= (λs + µs)∆ +Q∗s

1 , Q∗s
4 (∆) = (αs + βs)∆ +Q∗s

2 ,

Q∗s
5 (∆)= (ks)2∆+Q∗s

1 Q∗s
2 , Q

∗f
1 (∆) = (µf + kf )∆− ξ + iρfω,

Q
∗f
2 (∆)= γf∆− 2kf −̟ + iρfωjf , Q

∗f
3 (∆) = (αf + βf)∆ +Q

∗f
2 ,

Q
∗f
4 (∆)= (kf)2∆+Q

∗f
1 Q

∗f
2 , P ∗

1 (∆) = −iω̟2 −Q
∗f
2 Q∗s

2 ,

P ∗
2 (∆) =−iωξ2 −Q

∗f
1 Q∗s

1 , D∗
1(∆) = iω̟2 +Q

∗f
3 Q∗s

4 ,
(4.2)

D∗
2(∆)=Q∗s

5 Q
∗f
4 − 2iωξ̟kskf∆+ iω(̟2Q∗s

1 Q
∗f
1 + ξ2Q∗s

2 Q
∗f
2 ) + ξ2ω2̟2,

D∗
3(∆)=D∗

2 − (Q∗f
4 Q∗s

2 + iω̟2Q
∗f
1 )Q∗s

3 ,

D∗
4(∆)=Q

∗f
4 Q

∗f
3 [(ks)2 − (αs + βs)Q∗s

1 ]− 2iωξ̟kskfQ
∗f
3 −

−iω̟2Q∗s
1 [(kf)2 − (αf + βf)Q∗f

1 ]− iωξ2(αs + βs)Q∗f
2 Q

∗f
3 + (αf + βf)ξ2ω2̟2,

D∗
5(∆)=Q∗

5̟(kf)2 + ξkskf(−iω̟2 +Q
∗f
3 Q∗s

4 ) +̟{[(αs + βs)Q∗f
2 +

+(αf + βf)Q∗s
2 + (αf + βf)(αs + βs)∆]P ∗

2 + (ks)2Q∗f
1 Q

∗f
2 },

D∗
6(∆)=Q∗s

5 Q∗s
4 [(kf )2 − (αf + βf)Q∗f

1 ]− 2iωξ̟kskfQ∗s
4 −

−iω̟2Q
∗f
1 [(ks)2−(αs + βs)Q∗s

1 ]− iωξ2(αf + βf)Q∗s
2 Q∗s

4 + ω2ξ2̟2(αs + βs).

We introduce the differential matrix operator

D

(

∂

∂x

)

=

∥

∥

∥

∥

Dmn

(

∂

∂x

)
∥

∥

∥

∥

13×13

, (4.3)

where

Drj = Q∗s
1 δrj + (λs + µs)

∂2

∂xr∂xj

,

Dr;3+j = −D3+j;r = ksεrkj
∂

∂xk

,

Dr;j+6 = Dj+6;r = −iωξ,

Dr;j+9 = Dj+9;r=Dr;13=D13;r = Dr+3;j+6 = Dj+6;r+3 = 0,

Dr+3;13 = D13;r+3 = Dr+9;13 = D13;r+9 = D13;13 = 0,

Dr+3;j+3 = Q∗s
2 δrj + (αs + βs)

∂2

∂xr∂xj

,

Dr+3;j+9 = Dj+9;r+3 = −iω̟,

Dr+6;j+6 = −iωQ∗f
1 δrj ,

Dr+6;j+9 = −Dj+9;r+6 = −iωkfεrkj
∂

∂xk

,

Dr+9;j+9 = −iωQ∗f
2 δrj − iω(αf + βf)

∂2

∂xr∂xj

,
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Dr+6;13 = −
1

χ
D13;r+6 = −

∂

∂xr

,

χ = (λs + 2µs + ks)−1
∏

σ=s,f

[(ασ + βσ + γσ)γσ(kσ + µσ)]−1.

If we introduce the thirteen–dimensional vectors U = (u∗s,φ∗s,u∗f ,φ∗f , π∗f)
and F = (F∗s,L∗s,F∗f ,L∗f , 0), it is easy to see that the basic system of
equations which describes the behaviour of the amplitudes U of the steady
vibrations can be written in the form

D

(

∂

∂x

)

U = −F. (4.4)

Definition 4.1. Let be y ∈ E3. A fundamental solution of the system (4.4)
is a matrix Γ(x,y;ω) = ‖Γrj‖13×13 which satisfies the condition (Hörmander,
1964)

D

(

∂

∂x

)

Γ(x,y;ω) = −δ(x− y)I, x ∈ E3, (4.5)

where δ(·) is the Dirac delta and I = ‖δrj‖13×13 is the unit matrix.

According to the general theory of the fundamental solutions of the dif-
ferential operators (Kythe, 1996), we have to say that a fundamental solution
is unique up to a matrix which has as columns solutions of the homogeneous
system

D

(

∂

∂x

)

U = 0. (4.6)

As a consequence of the Theorem 3.1 we obtain the following result:

Theorem 4.1. Let

u∗s
r = ∆Q∗s

3 D∗
1(iω̟

2Q
∗f
1 +Q

∗f
4 Q∗s

2 )G∗s
r +D∗

1D
∗
3G

∗s
j,rj+

+εrjk∆Q∗s
3 D∗

1(k
sQ

∗f
4 − iωξ̟kf)H∗s

j,k+

+∆Q∗s
3 D∗

1(̟kskf∆+ ξP ∗
1 )G

∗f
r −Q∗s

3 D∗
1(̟kskf∆+ ξP ∗

1 )G
∗f
j,rj−

−εrjk∆Q∗s
3 D∗

1(̟ksQ
∗f
1 + ξkfQ∗s

2 )H∗f
j,k − ξP ∗

,r,

φ∗s
r = εrjk∆Q∗s

3 D∗
1(k

sQ
∗f
4 − iωξ̟kf)G∗s

j,k+

+∆Q∗s
3 D∗

1[(k
f)2∆Q∗s

1 − P ∗
2Q

∗f
2 ]H∗s

r +∆Q∗s
3 D∗

4H
∗s
j,rj−

−εrjkD
∗
1∆Q∗s

3 (̟kfQ∗s
1 + ξksQ

∗f
2 )G∗f

j,k+

+∆Q∗s
3 D∗

1(ξk
skf∆+̟P ∗

2 )H
∗f
r −∆Q∗s

3 D∗
5H

∗f
j,rj,
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u∗f
r = ∆Q∗s

3 D∗
1(̟kskf∆+ ξP ∗

1 )G
∗s
r −Q∗s

3 D∗
1(̟kskf∆+ ξP ∗

1 )G
∗s
j,rj−

−εrjk∆Q∗s
3 D∗

1(̟kfQ∗s
1 + ξksQ

∗f
2 )H∗s

j,k+

+
i

ω
∆Q∗s

3 D∗
1(iω̟

2Q∗s
1 +Q∗s

5 Q
∗f
2 )G∗f

r −
i

ω
Q∗s

3 D∗
1(iω̟

2Q∗s
1 +Q∗s

5 Q
∗f
2 )G∗f

j,rj+

+
i

ω
εrjk∆Q∗s

3 D1(−iωξ̟ks + kfQ∗s
5 )H∗f

j,k +
i

ω
Q∗s

3 P ∗
,r,

φ∗f
r = −εrjk∆Q∗s

3 D∗
1(̟ksQ

∗f
1 + ξkfQ∗s

2 )G∗s
j,k+

+∆Q∗s
3 D∗

1(ξk
skf∆+̟P ∗

2 )H
∗s
r −∆Q∗s

3 D∗
5H

∗s
j,rj+

+
i

ω
εrjk∆Q∗s

3 D∗
1(−iωξ̟ks + kfQ∗s

5 )G∗f
j,k+

+
i

ω
∆Q∗s

3 D1[(k
s)2∆Q

∗f
1 − P ∗

2Q
∗s
2 ]H∗f

r +
i

ω
∆Q∗s

3 D∗
6H

∗f
j,rj,

π∗f = −iωξ D∗
1D

∗
2G

∗s
r,r −Q∗s

3 D∗
1D

∗
2G

∗f
r,r + (iξ2ω +Q

∗f
1 Q

∗f
3 )P ∗, (4.7)

where G∗s
r , G∗f

r , H∗s
r , F ∗f

r and P ∗ satisfy

∆Q∗s
3 D∗

1D
∗
2G

∗σ
r = −F ∗σ

r ,∆Q∗s
3 D∗

1D
∗
2H

∗σ
r = −L∗σ

r ,∆Q∗s
3 P ∗ = 0 (σ = s, f).

(4.8)
Then u∗s

r , u∗f
r , φ∗s

r , φ∗f
r and π∗f satisfy the equations ( 4.4).

We denote by k2
n, n = 1, 2 and respectively, by k2

m, m = 3, 4, 5, 6 the
roots of the equations

D∗
1(−k) = 0, D∗

2(−k) = 0. (4.9)

It is convenient to write

Q∗s
3 (∆) = (λs + 2µs + ks)(∆ + k2

7), (4.10)

where k7 is the complex number defined by

k2
7 = −

1

λs + 2µs + ks
(ρsω2 − iωξ). (4.11)

We assume that k2
n 6= k2

m, for n 6= m, n,m = 1, 2, ..., 7, and we choose
the complex number kn such that Im[kn] ≥ 0, for n = 1, 2, ..., 7.

With the help of these quantities, we can rewrite the equations (4.8) in
the following form

∆

7
∏

n=1

(∆ + k2
n)G

∗σ
r = −χF ∗σ

r , ∆

7
∏

n=1

(∆ + k2
n)H

∗σ
r = −χL∗σ

r ,

∆(∆ + k2
7)P

∗ = 0 (σ = s, f).

(4.12)
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Proposition 4.1. Assume that F ∗s
r = δrkδ(x − y), L∗s

r = 0, F ∗f
r = 0 and

L∗f
r = 0. Then, the equations (4.12) have the solution G∗s

r = δrkE(x,y;ω),
H∗s

r = 0, G∗f
r = 0, H∗f

r = 0, P ∗ = 0, where

E(x,y;ω) =
7

∑

n=1

cnEn(x,y;ω), En =
χ

4π̺k2
n

(1− eikn̺),

c−1
n =

7
∏

m=1,m6=n

(k2
n − k2

m) n = 1, 2, ..., 7, ̺2 = (xr − yr)(xr − yr).

(4.13)

Proof. First of all, we remark that

∆(∆ + k2
n)En = −χδ(x− y). (4.14)

Taking into account the relations

7
∑

n=1

cn = 0,
7

∑

n=m

cn

m−1
∏

l=1

(k2
l − k2

n) = 0 for m = 2, 3, ..., 6

(∆ + k2
n)Em = χδ(x− y) + (k2

n − k2
m)Em for n,m = 1, 2, ..., 7,

(4.15)

and the method presented in the paper (Svanadze, 1996), we have

∆
7
∏

n=1

(∆ + k2
n)E(x,y;ω) = −χδ(x− y), (4.16)

and the proof is complete.
We denote by (u

∗s(k)
r , φ

∗s(k)
r , u

∗f(k)
r , φ

∗f(k)
r ) the amplitudes of displace-

ments caused by the concentrated loads F ∗s
r = δrkδ(x−y), L∗s

r = 0, F ∗f
r = 0

and L∗f
r = 0. In view of the relations (4.7) we get

u
∗s(k)
r =∆Q∗s

3 D∗
1(iω̟

2Q
∗f
1 +Q

∗f
4 Q∗s

2 )δrkE +D∗
1D

∗
3E,rk,

φ
∗s(k)
r = εrkl∆Q∗s

3 D∗
1(k

sQ
∗f
4 − iωξ̟kf)E,l,

u
∗f(k)
r =∆Q∗s

3 D∗
1(̟kskf∆+ ξP ∗

1 )δrkE −Q∗s
3 D∗

1(̟kskf∆+ξP ∗
1 )E,rk,

φ
∗f(k)
r =−εrkl∆Q∗s

3 D∗
1(̟ksQ

∗f
1 + ξkfQ∗s

2 )E,l,

π∗f(k) =−iωξ D∗
1D

∗
2E,k.

(4.17)

Corresponding to the concentrated loads, F ∗s
r = 0, L∗s

r = δrkδ(x − y),
F ∗f
r = 0 and L∗f

r = 0, we have the following amplitude of displacement,
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denoted by (u
∗s(3+k)
r , φ

∗s(3+k)
r , u

∗f(3+k)
r , φ

∗f(3+k)
r ),

u
∗s(3+k)
r = εrkl∆Q∗s

3 D∗
1(k

sQ
∗f
4 − iωξ̟kf)E,l,

φ
∗s(3+k)
r =∆Q∗s

3 D∗
1[(k

f)2∆Q∗s
1 − P ∗

2Q
∗f
2 ]δrkE +∆Q∗s

3 D∗
4E,rk,

u
∗f(3+k)
r =−εrkl∆Q∗s

3 D∗
1(̟kfQ∗s

1 + ξksQ
∗f
2 )E,l,

φ
∗f(3+k)
r =∆Q∗s

3 D∗
1(ξk

skf∆+̟P ∗
2 )δrkE −∆Q∗s

3 D∗
5E,rk,

π∗f(3+k)=0.

(4.18)

If F ∗s
r = 0, L∗s

r = 0, F ∗f
r = δrkδ(x−y) and L∗f

r = 0 , then the correspond-

ing displacement vectors denoted by (u
∗s(6+k)
r , φ

∗s(6+k)
r , u

∗f(6+k)
r , φ

∗f(6+k)
r ) are

u
∗s(6+k)
r =∆Q∗s

3 D∗
1(̟kskf∆+ ξP ∗

1 )δrkE −Q∗s
3 D∗

1(̟kskf∆+ ξP ∗
1 )E,rk,

φ
∗s(6+k)
r =−εrklD

∗
1∆Q∗s

3 (̟kfQ∗s
1 + ξksQ

∗f
2 )E,l

u
∗f(6+k)
r =

i

ω
∆Q∗s

3 D∗
1(iω̟

2Q∗s
1 +Q∗s

5 Q
∗f
2 )δrkE−

−
i

ω
Q∗s

3 D∗
1(iω̟

2Q∗s
1 +Q∗s

5 Q
∗f
2 )E,rk,

φ
∗f(6+k)
r =

i

ω
εrkl∆Q∗s

3 D∗
1(−iωξ̟ks + kfQ∗s

5 )E,l,

π∗f(6+k) =−Q∗s
3 D∗

1D
∗
2E,k.

(4.19)
Finally, if F ∗s

r = 0, L∗s
r = 0, F ∗f

r = 0 and L∗f
r = δrkδ(x−y) , then we have for

the displacement vectors (u
∗s(9+k)
r , φ

∗s(9+k)
r , u

∗f(9+k)
r , φ

∗f(9+k)
r ) the expressions

u
∗s(9+k)
r =−εrkl∆Q∗s

3 D∗
1(̟ksQ

∗f
1 + ξkfQ∗s

2 )E,l,

φ
∗s(9+k)
r =∆Q∗s

3 D∗
1(ξk

skf∆+̟P ∗
2 )δrkE −∆Q∗s

3 D∗
5E,rk,

u
∗f(9+k)
r =

i

ω
εrkl∆Q∗s

3 D1(−iωξ̟ks + kfQ∗s
5 )E,l,

(4.20)

φ
∗f(9+k)
r =

i

ω
∆Q∗s

3 D1[(k
s)2∆Q

∗f
1 − P ∗

2Q
∗s
2 ]δrkE +

i

ω
∆Q∗s

3 D∗
6E,rk,

π∗f(9+k) =0.

From the above discussion we can conclude:
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Theorem 4.1. The matrix Γ(x,y;ω) defined by

Γr;k = u
∗s(k)
r ,Γ3+r;k = φ

∗s(k)
r , Γ6+r;k = u

∗f(k)
r , Γ9+r;k = φ

∗f(k)
r ,

Γr;3+k = u
∗s(3+k)
r ,Γ3+r;3+k = φ

∗s(3+k)
r ,Γ6+r;3+k = u

∗f(3+k)
r ,

Γ9+r;3+k = φ
∗f(3+k)
r ,Γr;6+k(x, ω) = u

∗s(6+k)
r ,Γ3+r;6+k = φ

∗s(6+k)
r ,

Γ6+r;6+k = u
∗f(6+k)
r ,Γ9+r;6+k = φ

∗f(6+k)
r ,Γr;9+k(x, ω) = u

∗s(9+k)
r ,

Γ3+r;9+k = φ
∗s(9+k)
r ,Γ6+r;9+k = u

∗f(9+k)
r ,Γ9+r;9+k = φ

∗f(9+k)
r ,

−Γk;13 = Γ13;k = π∗f(k),−Γ6+k;13 = Γ13;6+k = π∗f(6+k),

Γ3+k;13 = Γ13;3+k = Γ9+k;13 = Γ13;9+k = Γ13;13 = 0

(4.21)

is a fundamental solution of the system (4.4).

5. Basic properties of the matrix Γ(x, y;ω)

In this section we point out some basic properties of the fundamental
solution constructed in the previous section. These basic properties of fun-
damental matrix are useful if we want to apply the potential method for the
framework theory.

Let us first note that

Proposition 5.1. The fundamental matrix Γ(x,y;ω) is so that

(i) Γ(x,y;ω) = ΓT (y,x;ω);

(ii) If x 6= y, then each column Γ(m)(x,y;ω), (m = 1, 2, ..., 13) of the matrix
Γ satisfies at x the homogeneous system

D

(

∂

∂x

)

Γ(m)(x,y;ω) = 0. (5.1)

Lemma 5.1. The function E has the following properties:

(i)
∂E

∂xs1
r ∂xs2

l ∂xs3
k

= O(̺) (̺ → 0), for all even s ≤ 11;

(ii)
∂E

∂xs1
r ∂xs2

l ∂xs3
k

= const +O(̺2) (̺ → 0), for all odd s ≤ 11;

(iii)
∂E

∂xs1
r ∂xs2

l ∂xs3
k

= O(̺13−s) (̺ → 0), for all s ≥ 12;

where s1, s2, s3 ∈ N
∗ and s = s1 + s2 + s3.
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Proof. It is easy to see that in the neighbourhood of y, we have

1− eikn̺

k2
n̺

= −
i

kn
+

∞
∑

m=0

(ikn)
m

(m+ 2)!
̺m+1. (5.2)

On the other hand, we can deduce that

7
∑

n=1

cnk
2p
n = 0, for p = 0, 1, ..., 5 and

7
∑

n=1

cnk
12
n = 1. (5.3)

Thus, we obtain

E =
χ

4π

[

−i

7
∑

n=1

cn

kn
+

7
∑

n=1

6
∑

m=1

cn(ikn)
2m−1

(2m+ 1)!
̺2m +

1

14!
̺13 +

7
∑

n=1

∞
∑

m=13

cn(ikn)
m

(m+ 2)!
̺m+1

]

.

(5.4)
Using this relation we obtain the conclusions of lemma.

Let us introduce the matrix Π defined by

Πr;k =
1

4π

(

1

µs + ks
−

1

2as

)

δrk
1

̺
+

1

8πas
xrxk

̺3
,

Π3+r;k = Π6+r;k = Π9+r;k = Π13;k = 0,

Π3+r;3+k =
1

4π

(

1

γs
−

1

2bs

)

δrk
1

̺
+

1

8πbs
xrxk

̺3
,

Πr;3+k = Π6+r;3+k = Π9+r;3+k = Π13;3+k = 0,

Π6+r;6+k =
i

8πω(µf + kf)

(

δrk
1

̺
+

xrxk

̺3

)

,

Πr;6+k = Π3+r;6+k = Π9+r;6+k = 0, Π13;6+k = −Π6+k;13 = −
1

4π

xk

̺3
,

Π9+r;9+k =
i

4πω

(

1

γs
−

1

2bs

)

δrk
1

̺
+

i

8πωbs
xrxk

̺3
,

Πr;9+k = Π3+r;9+k = Π6+r;9+k = Π13;3+k = 0,

Πk;13 = Π3+k;13 = Π9+k;13 = Π13;13 = 0,

(5.5)

where

as =
(µs + ks)(λs + 2µs + ks)

λs + µs

bσ =
γσ(ασ + βσ + γσ)

ασ + βσ

(5.6)

We can observe that

Π(x,y;ω) = Π(y,x;ω), Π(x,y;ω) = ΠT (x,y;ω). (5.7)
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We denote by Π(m)(x,y;ω), (m = 1, 2, ..., 13) the columns of the matrix
Π(x,y;ω).

In view of Lemma 5.1 we have

Proposition 5.2. The differences

G(m)(x,y;ω) = Γ(m)(x,y;ω)−Π(m)(x,y;ω), (5.8)

remain bounded when x = y and the first derivations of these differences
have only a pole of the first order for x = y.

A thirteen–dimensional vector U = (u∗s,φ∗s,u∗f ,φ∗f , π∗f) defined on R
3,

is called regular if u∗s,φ∗s, u∗f ,φ∗f ∈ C2(R3), πf ∈ C1(R3) and u∗s
j,r, φ

∗s
j,r, u

∗f
j,r,

φ
∗f
j,r, π

f ∈ L2(Σ(0, R)) for every R > 0, and satisfies the asymptotic relations
of the type

u∗σ
r = O(̺−1), u∗σ

r,l = o(̺−1), φ∗σ
r = o(̺−1), φ∗σ

r,l = O(̺−1), (5.9)

where Σ(0, R) is the sphere with its center at 0 and radius R.
As in (Galeş, 2004 b), we can prove that the system of equations (4.4)

has a unique solution in the class of regular vectors.
Let remark that in view of the above proprieties and because we choose

the complex numbers kn, n = 1, 2, ..., 7 such that Im[kn] ≥ 0, we can conclude
that all the columns of the matrix Γ(x,y;ω) are regular vectors. Thus, the
matrix Γ(x,y;ω) is the unique fundamental solution, up to a rearrangement
of the columns, for which the columns are regular vectors.

6. Solution for point load problem in cylindrical coordinates

We consider an infinite micropolar solid-fluid mixture and a point y in
the mixture. A concentrated force F∗s(x) = δ(x − y)m is applied to the
mixture, where m is an unit vector. Based on the general solution described
in Section 4, we give the solution of the problem corresponding to this point
force.

We choose a system of the Cartesian axes such that the origin O is in
the point y and the direction of Ox3 is given by the unit vector m. In the
Cartesian coordinates (x1, x2, x3) we have F∗s(x) = δ(x)e3.

Using (6.10) we find that the displacement of the solid is given by

u∗ = ∆Q∗s
3 D∗

1(iω̟
2Q

∗f
1 +Q

∗f
4 Q∗s

2 )Ee3 +D∗
1D

∗
3gradE,3, (6.10)

where grad =
∂

∂xk

ek is the gradient operator and ek are the unit vectors of

the Cartesian axes.
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In the cylindrical coordinates (r, θ, z), because E is independent by θ, the
components of the displacement of the solids are

u∗s
r = D∗

1D
∗
3

zr

̺2

(

∂2E

∂̺2
−

1

̺

∂E

∂̺

)

,

u∗s
θ = 0,

u∗s
z = ∆Q∗s

3 D∗
1(iω̟

2Q
∗f
1 +Q

∗f
4 Q∗s

2 )E +D∗
1D

∗
3

1

̺2

(

∂2E

∂̺2
z2 +

r2

̺

∂E

∂̺

)

,

(6.11)

where we use that ̺2 = r2 + z2.
Similarly, we find

u∗f
r = −Q∗s

3 D∗
1(̟kskf∆+ξP ∗

1 )
zr

̺2

(

∂2E

∂̺2
−

1

̺

∂E

∂̺

)

,

u
∗f
θ = 0,

(6.12)

u∗f
z = ∆Q∗s

3 D∗
1(̟kskf∆+ ξP ∗

1 )E −Q∗s
3 D∗

1(̟kskf∆+ξP ∗
1 )

1

̺2

(

∂2E

∂̺2
z2 +

r2

̺

∂E

∂̺

)

,

and

π∗f = −iωξ D∗
1D

∗
2

∂E

∂z
. (6.13)

On the other hand, the microrotations are

φ∗s = −∆Q∗s
3 D∗

1(k
sQ

∗f
4 − iωξ̟kf)curl(0, 0, E),

φ∗f = ∆Q∗s
3 D∗

1(̟ksQ
∗f
1 + ξkfQ∗s

2 )curl(0, 0, E),
(6.14)

and thus, we have
φ∗s
r = φ∗s

z = 0,

φ∗s
θ = ∆Q∗s

3 D∗
1(k

sQ
∗f
4 − iωξ̟kf)

r

̺

∂E

∂̺
,

φ∗f
r = φ∗f

z = 0,

φ
∗f
θ = −∆Q∗s

3 D∗
1(̟ksQ

∗f
1 + ξkfQ∗s

2 )
r

̺

∂E

∂̺

(6.15)

and the solution of the point force problem is complete.
Let now consider that the concentrated couple L∗s(x) = δ(x − y)m is

applied to the mixture.
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As above, we will find that the corresponding solution is

u∗s
r = u∗s

z = 0,

u∗s
θ = ∆Q∗s

3 D∗
1(k

sQ
∗f
4 − iωξ̟kf)

r

̺

∂E

∂̺
,

φ∗s
r = ∆Q∗s

3 D∗
4

zr

̺2

(

∂2E

∂̺2
−

1

̺

∂E

∂̺

)

,

φ∗s
θ = 0,

φ∗s
z = ∆Q∗s

3 D∗
1[(k

f)2∆Q∗s
1 − P ∗

2Q
∗f
2 ]E +∆Q∗s

3 D∗
4

1

̺2

(

∂2E

∂̺2
z2 +

r2

̺

∂E

∂̺

)

,

u∗f
r = u∗f

z = 0,

u
∗f
θ = −∆Q∗s

3 D∗
1(̟kfQ∗s

1 + ξksQ
∗f
2 )

r

̺

∂E

∂̺
,

φ∗f
r = ∆Q∗s

3 D∗
5

zr

̺2

(

∂2E

∂̺2
−

1

̺

∂E

∂̺

)

,

φ∗s
θ = 0,

φ∗s
z = ∆Q∗s

3 D∗
1(ξk

skf∆+̟P ∗
2 )E −∆Q∗s

3 D∗
5

1

̺2

(

∂2E

∂̺2
z2 +

r2

̺

∂E

∂̺

)

,

π∗f = 0.
(6.16)

Similarly we can find the solutions which correspond to the concentrated
loads F∗f (x) = δ(x − y)m and L∗f (x) = δ(x − y)m and the problem is
solved.
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Hörmander, L., 1964. Linear partial differential operators. Springer, Berlin.
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Ieşan, D., 2007. A Theory of Thermoviscoelastic Composites Modelled as
Interacting Cosserat Continua. Journal of Thermal Stresses 30, 1269–1289.
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