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Finite element calculations are reported for the dynamic shock response of fully clamped monolithic and sandwich beams, with elastic face sheets and a compressible elastic-plastic core. Predictions of the peak mid-span deflections and deflected shapes of the beams are compared with the previously reported measured response of endclamped sandwich beams, made from face sheets of glass fibre reinforced vinyl ester and a core of PVC foam or balsa wood (Tagarielli V.L., Deshpande V.S. and Fleck N.A.. The dynamic response of composite sandwich beams to transverse impact, Int. J.

of Solids and Structures, 44, 2007) [1]. Good agreement is observed, and the maximum sustainable impulse is also predicted adequately upon assuming a tensile failure criterion for the face sheets. The finite element calculations can also be used to bound the response by considering the extremes of a fully intact core and a fully damaged core.

It is concluded that the shock resistance of a composite sandwich beam is maximised by selecting a composite with fibres of high failure strain.

A significant body of literature exists on the experimental characterisation of composite sandwich plates subject to low-velocity transverse impact. In this regime, inertial effects are negligible and the deformation and failure mechanisms are the same as those obtained for quasi-static loading, see for example Abrate [START_REF] Abrate | Impact on composite structures[END_REF], Shubel et al. [START_REF] Shubel | Low velocity impact behaviour of composite sandwich panels[END_REF] and Zenkert et al. [START_REF] Zenkert | Damage tolerance assessment of composite sandwich panels with localised damage[END_REF]. A number of analytical models for the low-velocity impact of sandwich beams and plates have been developed (e.g. Librescu et al. [START_REF] Librescu | Linear and non-linear dynamic response of sandwich panels to blast loading[END_REF], Perel and Palazzotto [START_REF] Perel | Dynamic geometrically nonlinear analysis of transversely compressible sandwich panels[END_REF], Li et al. [START_REF] Li | An elastic-plastic model on the dynamic response of composite sandwich beams subjected to mass impact[END_REF]). These models are inappropriate for the case of intense dynamic loading for at least one of the following reasons:

1. They assume that the dynamic modes of deformation are identical to the quasi-static modes.

2. They employ linear, small-deflection plate theory and thereby neglect the dominant contribution of face sheet and core stretching upon the structural response.

3. They ignore plastic core compression in the transverse direction, and they do not account for failure.

At higher impact velocities inertial effects become important, and the deformation and failure modes can differ substantially from those observed in a quasi-static scenario.

The blast resistance of sandwich structures to intense underwater explosions is of obvious concern in military applications. Analytical and numerical models suggest that metallic sandwich structures outperform metallic monolithic structures under fluidshock loadings (Fleck and Deshpande [START_REF] Fleck | The resistance of clamped sandwich beams to shock loading[END_REF], Xue and Hutchinson [START_REF] Xue | A Comparative Study of Impulse-Resistant Metal Sandwich Plates[END_REF]). These Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF] have measured the dynamic response of end-clamped sandwich beams made from face sheets of glass fibre reinforced vinylester and a core of PVC foam or balsa wood. The beams were loaded transversely at mid-span using metal foam projectiles. Upon impact the projectiles exerted a pressure pulse of about 100 MPa for a duration of approximately 0.1 ms. This loading technique was introduced by Radford et al. [START_REF] Radford | The use of metal foam projectiles to simulate impulse loading on a structure[END_REF] for simulating blast loading on a sandwich structure, and was used by Radford et al. [START_REF] Radford | The response of clamped sandwich beams subjected to shock loading[END_REF] and Rathbun et al. [START_REF] Rathbun | Performance of metallic honeycomb-core sandwich beams under shock loading[END_REF] to measure the dynamic response of metallic sandwich beams with lattice cores. Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF] found that a composite sandwich beam deflects much less then a monolithic beam of the same mass.

In the experimental study by Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF], the composite sandwich beams were loaded by metal foam projectiles travelling at high speed, and the deflection versus time history of the structure was recorded via high-speed photography. The observed deformation mechanism comprised propagation of a transient flexural wave along the beam, accompanied by stretching. The failure modes were explored as a function of imposed impulse and sandwich geometry, and included fibre tearing, core cracking and interfacial delamination.

The phenomena investigated are sufficiently complex that a combination of numerical analysis and experiments is required. Other authors have relied solely on computation.

For example, Bahei-El-Din et al. [START_REF] Bahei-El-Din | A blast-tolerant sandwich plate design with a polyurea interlayer[END_REF] have performed finite element simulations of the blast response of a composite sandwich beam with composite faces and a PVC foam core. They argued that the addition of a polyurea interlayer enhanced the blast resistance.

In order to gain confidence into the set of assumptions underlying their simulations, instrumented tests are required.

In the present study, finite element simulations are performed to help interpret the observations of Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF]. The simulations also serve to validate recently developed constitutive descriptions for the PVC foam (Deshpande and Fleck [START_REF] Deshpande | Isotropic constitutive models for metallic foams[END_REF],) and balsa wood cores (Tagarielli et al. [START_REF] Tagarielli | A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood[END_REF]). First, a brief summary of the main experimental findings of Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF] is reported for end-clamped composite sandwich beams subjected to transverse loading at mid-span by metal foam projectiles. The results of this previous experimental investigation motivate our numerical analysis.

Second, explicit finite element calculations are performed for the dynamic response of fully clamped monolithic and sandwich beams, with elastic face sheets and a compressible elastic-plastic core. A visco-plastic formulation is employed for the PVC foam and balsa wood cores, based upon the multi-axial constitutive descriptions of Deshpande and Fleck [START_REF] Deshpande | Multiaxial yield behaviour of polymer foams[END_REF] and Tagarielli et al. [START_REF] Tagarielli | A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood[END_REF]. The rate sensitivity of the core materials is taken from the independent measurements of Tagarielli et al. [START_REF] Tagarielli | The high strain rate response of PVC foams and end-grain balsa wood[END_REF]. Finally, the FE predictions are compared with the observed response, including the maximum admissible blast impulse assuming a tensile failure criterion for the face sheets.

SUMMARY OF MEASURED DYNAMIC RESPONSE OF COMPOSITE

SANDWICH BEAMS

Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF] have measured the response of end-clamped composite monolithic and sandwich beams to dynamic transverse loading. The beams were impacted transversely by circular cylindrical projectiles made from an aluminium alloy foam of (i) H100 Divinycell PVC foam (density 100 kgm -3 ), (ii) H250 Divinycell PVC foam (density 250 kgm -3 ) and

(iii) an end-grain balsa wood (DIAB designation ProBalsa LD7, density 90 kgm -3 ), with the cell direction aligned with the thickness direction of the core.

For each core material, sandwich beams were manufactured with a range of face sheet and core thicknesses but with a fixed span of 2L = 200 mm and width b = 30 mm. The face sheet and core thickness were chosen in order to obtain three target values of areal mass m of sandwich beam. Monolithic beams were also manufactured from the quasiisotropic glass-vinylester composites to achieve the same areal mass as that of the sandwich beams. The ten geometries of monolithic and sandwich beams tested by Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF] are summarised in Table 1. Monolithic beams are designated with the letter M while the sandwich beams with a core made from the low density H100 PVC, the high density H250 PVC and Balsa wood are denoted by the letters H, HD and B, respectively. The specimens have been arranged in the table to form sets of equal areal mass: Set 0 is for a single monolithic beam, while Sets 1 to 3 comprise monolithic and sandwich beams. curve is for a single geometry and is a best-fit through the experimental data of the previous study. Typically, 3 to 6 tests were performed for each geometry over a range of 0 I . The data points are omitted for the sake of clarity, and the line style for each curve is chosen to collect together the responses for Sets 1 to 3 of Table 1. The curves in Fig. 3 were truncated at the impulse for which ultimate failure was observed by Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF]. We note that W increases with 0 I but there is no straightforward dependence of W upon the areal mass m or the beam composition. The following detailed finite element calculations are needed in order to interpret these results.

FINITE ELEMENT CALCULATIONS

Finite element (FE) simulations have been performed in order to develop an understanding for the dynamic modes of deformation of composite sandwich beams, and to compare directly with the observed deformation histories reported by Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF].

Two-dimensional (2D) plane strain dynamic calculations were performed using the general-purpose finite element package ABAQUS Explicit (HKS -Hibbitt, Karlsson & Sorensen, Inc.). In the plane strain calculations, the circular projectile was replaced by a rectangular projectile of length L p , density ρ p and cross-sectional area equivalent to that of the circular cylindrical projectile such that the equivalent projectile was taken to have a rectangular cross-section of width b and span 2a with Plane strain 4-noded rectangular elements were employed, of type CPE4R in the ABAQUS notation, for both the sandwich beam and the metal foam projectile. Only half of the beam was modelled due to symmetry, and the clamped boundary conditions were enforced by constraining horizontal and vertical motion of all nodes at the ends of the beam, as sketched in Fig. 1. Typically elements with a maximum edge length of 1 mm were used to model the sandwich and monolithic beams. The prescription used to specify the mesh in the foam projectile is detailed in Section 3.3.

Constitutive description of the face sheets

Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF] performed uniaxial tension and compression tests on the composite face sheets, at a strain rate of 10 -4 s -1 . The face sheets were linear elastic to failure in both tension and compression. It is assumed that the modulus of the glass fibre composite is independent of strain rate. The density ρ f , axial Young's modulus E f , inplane Poisson's ratio ν f , tensile strength σ T and micro-buckling strength σ C are summarized in Table 2 for each thickness of face sheet.

In the finite element simulations, the monolithic beams and the face sheets of composite sandwich beams were treated as elastic isotropic solids. This approximation is justified by the fact that the dominant stress state within the face sheets is uniaxial bending and stretching; through-thickness stresses within the face sheets are small and have a negligible effect upon the overall response. This idealisation of face sheet behaviour has been used previously to model the static response of composite sandwich beams with face sheets made from a quasi-isotropic stack of composite plies (see Steeves and

Fleck [START_REF] Steeves | Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part II: experimental investigation and numerical modelling[END_REF], Tagarielli et al. [START_REF] Tagarielli | Collapse of clamped and simply supported composite sandwich beams in three-point bending[END_REF]).

Constitutive description of the cores

PVC foam cores

Both quasi-static and dynamic compressive tests were performed by Tagarielli et al. [START_REF] Tagarielli | The high strain rate response of PVC foams and end-grain balsa wood[END_REF] on the H100 and H250 PVC foam cores. Results from these tests are used in the present
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8 study to calibrate the constitutive models for the PVC foam core. Preliminary checks revealed that the PVC foams were isotropic. Uniaxial compression tests were performed on the PVC foams at strain rates in the range 10 -4 to 10 4 s -1 . At all strain rates employed, the stress versus strain response had an initial elastic regime followed by a plastic plateau at almost constant stress, and densification at a nominal strain D ε .

Tagarielli et al [START_REF] Tagarielli | The high strain rate response of PVC foams and end-grain balsa wood[END_REF] found that the compressive plateau stress pl σ for the PVC foams scales with the applied strain rate ε& according to the power law relation 0 0

N pl pl ε σ σ ε ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ & & (1) 
Values of σ 0 and N (with the reference strain rate chosen to be 0 pl ε& = 1 s -1 ), along with the density ρ, modulus E, densification strain D ε and Poisson's ratio ν are listed in Table 3 for the foams.

The PVC foams were modelled as a compressible, isotropic visco-plastic solid. A creep potential was derived from the yield surface of Deshpande and Fleck [START_REF] Deshpande | Multiaxial yield behaviour of polymer foams[END_REF] for polymeric foams. This yield surface comprises the inner envelope of an ellipsoid and flat facets in principal stress space, and assumes that compressive yield is governed by a maximum principal stress criterion. The physical basis for this modification is that polymeric foams collapse by elastic buckling of the cell walls under macroscopic compression (hence the flat facets in principal stress space) while it is governed by cell wall bending under tensile stress states resulting in the ellipsoidal yield criterion. First, we summarise briefly the rate-independent case of Deshpande and Fleck [START_REF] Deshpande | Multiaxial yield behaviour of polymer foams[END_REF], and then we state the visco-plastic version. stress. The ellipsoidal yield surface is defined via an overall equivalent stress measure

σ 2 2 2 2 2 2 1 ˆ( ) 1 ( /3) e m Y σ σ ασ α ≡ + ≤ + (2) M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 9 
The material constant α defines the aspect ratio of this yield surface, and for PVC foams we take α = 2.12. The equivalent plastic strain rate ε & is the work conjugate of σ and can be expressed in terms of the von Mises effective strain rate e ε& and the volumetric plastic strain rate m ε& according to

( ) ( )( ) 2 2 2 2 2 e m ˆ1 /3 ε α ε α ε - = + + & & & (3) 
where

pl pl 2 e 3 2 ij ij ε ε ε & & & ≡ and pl m ii ε ε & & ≡
upon adopting the usual Einstein summation convention for repeated suffixes. Finally, the flat facets of the yield surface for PVC foams, in principal stress space ( )

I I I I I I , , σ σ σ are given by I C II C III C ; ; Y Y Y σ σ σ ≥ - ≥ - ≥ - (4) 
A visco-plastic description is adopted in the present study, with the plastic strain rate

pl ij ε& derived from a creep potential ( ) ij σ Φ such that pl ij ij ε σ ∂Φ = ∂ & ( 5 
)
This potential is written as

( ) I II III E σ Φ =Φ +Φ +Φ +Φ (6) 
where ( )

1 0 0 0 , , , , 1 N pl N i i i N H i I I I I I I N σ σ ε σ σ + ⎛ ⎞ Φ = - = ⎜ ⎟ + ⎝ ⎠ & and 1 0 0 0 1 N pl N E N N βσ ε σ βσ + ⎛ ⎞ Φ = ⎜ ⎟ + ⎝ ⎠ & ( 7 
)
in terms of the material constants ( 0 σ , N, β) and the Heaviside step function H( ⋅ ).

Thus, for uniaxial tensile loading with a stress σ , the Heaviside function ensures that there is no contribution from i Φ and the creep law follows as
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In contrast, when the foam is subjected to a uniaxial compressive stress σ , both the i Φ and E Φ terms contribute and the uniaxial plastic strain rate is given by the sum of two contributions as

1 1 pl pl pl 0 0 0 0 | | | | N N σ σ ε ε ε σ β σ ⎛ ⎞ ⎛ ⎞ = - - ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ & & & (9) 
The creep parameters ( 0 σ , N) for the PVC foams have been measured by Tagarielli et al. [START_REF] Tagarielli | The high strain rate response of PVC foams and end-grain balsa wood[END_REF] and are listed in Table 3 (with the reference strain rate chosen to be

1 0 1s pl ε - = & );
for both the H100 and H250 PVC foams we have 1.5

β = .
Lock-up at densification is included in the analysis by enforcing an elastic response when any of the principal strain values pl I ε attains the densification strain D ε , as given in Table 3.

Balsa wood core

The static and dynamic material responses of the balsa wood were measured by Tagarielli et al. ( [START_REF] Tagarielli | A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood[END_REF], [START_REF] Tagarielli | The high strain rate response of PVC foams and end-grain balsa wood[END_REF]). Uniaxial compression and single-lap shear tests were performed in the in-plane and transverse directions of the balsa wood sheets and revealed that the balsa wood has a plastically compressible, transversely isotropic response.

In the finite element simulations the balsa core is treated as a rate dependent, transversely isotropic compressible solid. Choose the Cartesian axes of reference ( , , )

x x x such that the axes 1 2

x x lies in the isotropic plane and 3

x is along the grain (recall that in the dynamic sandwich beam experiments of Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF], the 3 x core direction is aligned with the axis of the cylindrical projectile, as indicated in Fig. 1).

The rate-dependent plastic response is based upon the equivalent stress σ for a transversely isotropic compressible solid, 

B C D E F σ σ σ σ σ σ σ σ σ σ σ σ σ ≡ + + - + - + + + + = (10) 
as discussed by Tagarielli et al. [START_REF] Tagarielli | A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood[END_REF]. The five constants B to F characterise the anisotropic plastic response the balsa core, and are listed in Table 4 from the
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11 measurements of Tagarielli et al. [START_REF] Tagarielli | A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood[END_REF]. The elastic response is also transversely isotropic and the elastic constants are included in Table 4, again from Tagarielli et al. [START_REF] Tagarielli | A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood[END_REF].

A visco-plastic version was implemented in the finite element simulations, again based on a creep potential ( )

ij σ Φ
, where ( )

1 0 0 0 1 N pl N N N σ ε σ σ σ + ⎛ ⎞ Φ = ⎜ ⎟ + ⎝ ⎠ & ( 11 
)
in terms of ( 0 σ , N). The values for ( 0 σ , N) are taken from Tagarielli et al. [START_REF] Tagarielli | The high strain rate response of PVC foams and end-grain balsa wood[END_REF] and are listed in Table 3 for the choice 0 pl ε& =1 s -1 . Lock-up at densification is included in the analysis by enforcing an elastic response when pl ε (work-conjugate to σ ) attains the densification strain D ε , as given in Table 3.

Constitutive description of the metal foam projectiles

The metal foam projectile was treated as a rate-dependent compressible solid using the Deshpande and Fleck [START_REF] Deshpande | Isotropic constitutive models for metallic foams[END_REF] constitutive law. The yield and hardening properties of the metal foam were calibrated using uniaxial compression data of Alporas foam specimens (Radford et al. [START_REF] Radford | The use of metal foam projectiles to simulate impulse loading on a structure[END_REF]).

Subsequent to impact, a plastic shock wave travels along the axis of the projectile. In order to capture the propagation of this plastic shock-wave in a robust computational manner, strain rate sensitivity is introduced in the form of an overstress, linearly viscous model as

( ) 0 ˆpl Y Y ε με = + & (12) 
Here, Y is the current yield stress, ε & is the effective plastic strain rate as defined in 

Shock effects in the foam cores and projectile

Under extreme compressive dynamic loadings, the deformation of cellular materials is highly localised due to the propagation of shock waves wherein the cellular material is completely densified behind the propagating shock front while the material is essentially undeformed ahead of the shock. This shock behaviour has been observed in numerous experimental studies on a range of foams including Al foams [START_REF] Radford | The use of metal foam projectiles to simulate impulse loading on a structure[END_REF], wood [START_REF] Reid | Dynamic uniaxial crushing of wood[END_REF] etc. Recent finite element modelling of the dynamic compression of regular hexagonal honeycombs and Voronoi "random" foams [START_REF] Tan | Dynamic compressive strength properties of aluminium foams. Part II: shock theory and comparison with experimental[END_REF] has clearly demonstrated that these shock effects are the main causes for localisations within cellular materials under extreme dynamic conditions.

A number of studies have laid out the theory of shock waves in cellular materials including the conditions under which such shock waves are generated and the resulting deformation and stress fields; see for example Tan et al. [START_REF] Tan | Dynamic compressive strength properties of aluminium foams. Part II: shock theory and comparison with experimental[END_REF]. These studies have clearly demonstrated that continuum compressible foam models capture the observed shock effects if (i) the quasi-static stress versus strain response of the foam is concaveup (e.g. a plateau stress followed by hardening due to densification) and (ii) rate dependence is included in the constitutive description in order to allow for additional dissipation across the shock front. The continuum foam models employed in this study satisfy both these criteria and have been shown in numerous previous studies (e.g. [START_REF] Radford | The use of metal foam projectiles to simulate impulse loading on a structure[END_REF][START_REF] Deshpande | One-dimensional response of sandwich plates to unerwater shock loading[END_REF]) to exhibit shock-type dynamic localisations in analytical studies and full 3D finite element calculations.
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ACCURACY OF THE FINITE ELEMENT PREDICTIONS

Deformation history of the sandwich beams

In the experimental study of Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF], high speed photographs were obtained for each dynamic experiment on the composite sandwich beams listed in Table 1. In this study, comparisons were made between the FE-predicted and observed deformation histories of each sandwich beam. As an example, consider the beam HD1, impacted at mid-span by a metal foam projectile of mass 0.008 kg travelling at a velocity of 96 ms -1 .

The right-hand side of Figure 4 (a)-(g) contains a sequence of frames with the deformation history of the beam after impact, as predicted by FE. The deflected profile of the bottom face sheet, as observed by Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF] or predicted by FE simulations, are shown in the left-hand side of Fig. 4 (a)-(g). It is clear that a good qualitative and quantitative agreement is found between experiment and FE simulation.

The time history of mid-span deflection of the bottom face of the beam, w(t), is given in Fig. 4 (h); again, the measured and predicted responses are shown. The frames in Fig. 4 (a)-(g) correspond to the points marked in Fig. 4 (h). The two curves in Fig. 4 (h) are qualitatively similar but present some discrepancies. Nevertheless, it is evident that the FE simulation captures accurately both the maximum deflection of the sandwich beam and the response time, defined as the time required for the beam to achieve maximum mid-span deflection.

We proceed by exploring the accuracy of the FE predictions for all the geometries in Table 1 and for a range of impact velocities. , where m is the areal mass of the beam and the reference value m 0 is the areal mass of the monolithic beam M1 (M1 constitutes Set 0 in Table 1). The
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14 above choice of non-dimensionalisation of 0 I follows that employed by Fleck and Deshpande [START_REF] Fleck | The resistance of clamped sandwich beams to shock loading[END_REF], upon replacing the strength of the face sheet by its modulus f E . 

Maximum deflection versus applied impulse: monolithic beams

Maximum mid-span deflection versus applied impulse: sandwich beams

Sandwich beams with a H250 PVC foam core tearing, as defined in Fig. 2. We emphasize that these three beams have markedly different areal masses, as already noted in Table 1.

The agreement between experiments and predictions is adequate for configurations H1 and H2 (Figs. 7 (a) and (b)), but W is underpredicted for configuration H3. Note that the beam H3 suffers core fracture accompanied by face sheet delamination (CFD) over the entire range of impulses tested. In contrast, the configuration H2 undergoes only core fracture (CF) at large I . It is concluded that core fracture leads to a dramatic increase in peak deflection W , and this is not captured by the present FE simulations as the H100 foam constitutive model does not include a softening response due to damage or fracture.

To explore this phenomenon further, we performed an additional set of FE predictions for the sandwich beam H3 upon neglecting the presence of the core. The sandwich beam is now replaced by a monolithic beam of thickness twice that of the sandwich face sheet. This idealisation mimics the major drop in bending stiffness of the sandwich beam and the minor drop in axial stiffness due to the fracture of the core. The FE predictions for this monolithic beam are now in good agreement with the observed peak deflections of the sandwich beam H3. We conclude that including a softening response of the H100 PVC foam in the constitutive model is critical in order to model these experiments in a fully predictive manner.

Sandwich beams with a balsa wood core

The results from dynamic experiments conducted on balsa wood core sandwich beams are reported in Fig. 8, along with the FE predictions. Figures 8 (a to beams B1 and B2, absent the core. For beams B1 and B2, core cracking and face sheet delamination was observed at all levels of applied impulse.

The finite element predictions are in good agreement with the measurements, despite the fact that the sandwich beams have undergone delamination. This is in sharp contrast to the case of sandwich beams with a H100 PVC core, as detailed above. This has been traced to the feature that the balsa wood has a lower shear strength than the H100 PVC foam and undergoes shear yielding in the simulations. Consequently, the face sheets of the sandwich beam with an intact balsa core behave similarly to two independent monolithic beams, with negligible overall sandwich action. These independent face sheets are slender and deform mainly by stretching. By this argument, a doubled-up face sheet in the form of the monolithic beam M1 will still deform predominantly by stretching and will have similar deflections to those of the sandwich with an intact balsa core. The comparable deflections for beams M1, B1 and B2 support this argument. The measured response of the failed sandwich beams are close to the predictions for the sandwich beams with an intact balsa core.

FAILURE PREDICTION OF SANDWICH BEAMS

Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF] have made approximate measurements of the required impulse in order to cause tearing of the sandwich beams. In all cases, catastrophic failure was by face sheet tearing. The observed failure impulse is bounded by two measured values, namely the impulse at which perforation is observed in the test, and a lower applied impulse for which negligible face tearing occurs. These two levels of impulse give upper and lower limits on the failure impulse.

The FE simulations of the current study were used to predict face sheet failure as follows. The longitudinal strains in the composite faces, averaged over the cross-section of the face sheets, were extracted from the simulations as a function of time. It was found that the average strain was a maximum at the built-in ends of the front face sheet, for all sandwich beam geometries. The time at which the maximum strain is attained

M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS
17 coincides with the time at which the beam reaches its maximum deflection. Similarly, for monolithic beams, the maximum strain is attained at the encastre section when the beam reaches the maximum deflection.

Figure 9 (a) presents FE predictions of the maximum strain attained in the beam as a function of the applied non-dimensional impulse, for two representative beams: the monolithic beam M2 and the sandwich beam H3. We assume that face sheets fail when the maximum longitudinal strain attains the static failure strain of 2.5%, as observed by Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF]. This failure criterion is used in order to predict the maximum impulse that can be sustained by beams without perforation. For the beams M2 and H3, the maximum impulse is given by the cross-symbols in Fig. 9 (a). The figure includes the measured lower and upper limits of failure impulse. The agreement between the measured and predicted failure impulse is satisfactory for these two structures.

In Fig. 9 (b) the failure impulse predicted by the FE simulations is compared to the measured values for all the monolithic and sandwich beams of Table 1. For most of the beam geometries, good agreement is noted. In contrast, the FE predictions under-predict the failure impulse for the sandwich geometries HD1, HD2, HD3 and H2. No explanation can be provided as to why these four structures were much more resistant to perforation than predicted. In broad terms, our predictions give the initiation of failure and do not account for damage development. Thus, these predictions are somewhat conservative.

CONCLUDING REMARKS

This study has focused on the dynamic response of clamped monolithic and sandwich beams comprising composite face sheets and a lightweight core. Dynamic finite element simulations have been performed to predict the maximum mid-span deflection of monolithic and sandwich beams as a function of the applied impulse.

With an appropriate choice and calibration of the constitutive models for the core material, FE simulations are able to predict correctly the dynamic response of clamped sandwich beams to shock loading over a central patch. In the majority of this study, two-dimensional (2D) FE simulations are used to predict the dynamic response of the clamped beams. In this section, we justify this simplification.

The FE calculations performed in this study attempt to mimic the experiments in Tagarielli et al. [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF], in which prismatic composite beams were impacted by circular cylindrical metal foam projectiles. Thus, the problem is three-dimensional (3D) in nature, and a set of 3D simulations are required. However, 3D FE calculations are much slower than 2D calculations, and a set of 2D and 3D calculations were performed to demonstrate that a 2D model suffices.

In the 2D, plane strain calculations, the circular projectile was replaced by a rectangular projectile of length L p , density ρ p and cross-sectional area equivalent to that of the circular cylindrical projectile. Assume that the beam is of width b. Then, the equivalent projectile was taken to have a rectangular cross-section of width b and span 2a such that In order to verify the equivalence of the two calculations, selected 2D and 3D simulations were performed, and their results compared. A single clamped monolithic beam, and a single clamped sandwich beam with high density PVC foam core have been considered, corresponding to the specimens M2 and HD2 of Table 1.

In the 3D calculations, 8-noded brick elements of type C3D8R were used, and the simulations were performed by modelling in detail the impact of a circular cylindrical [START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF]. The photographs of the failed sandwich beams are labelled as per the notation in Table 1.

Fig. 3. Summary of the observed peak deflections versus applied impulse, for the beams in Sets 1, 2 and 3 in Table 1. failure impulse for all the monolithic and sandwich specimens listed in Table 1. 

  predictions have been verified by more detailed calculations and accompanying sets of M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 3 experiments. Much less is known about the blast response of composite sandwich structures.

1 .

 1 velocity p v in the range of 50 ms -1 to 400 ms -1 . Both ends of the beam were fully clamped, as sketched in Fig.1. The geometry of the beam and the relevant material properties for the face sheets and the core are also defined in Fig. The sandwich beams comprised composite face sheets and a foam core. The face sheets were made from a laminated stack of four plies of lay-up [0, ± 45,90] or eight plies of symmetric lay-up [0, ± 45,90] S . The dry fibres were infiltrated with vinyl ester resin and were bonded to the core in a single step by cold vacuum infusion. The overall density M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 5 of the composite faces was approximately 1700 kg m -3 . Three types of foam core were used, each supplied by DIAB 2 :

6 The

 6 photographs and sketches of Fig.2. It was found that catastrophic failure of the beam was by face sheet tearing. The reference case of an intact core will be denoted by (IC) in this paper.

  et al.[START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF] we have D p = 28.5 mm and b = 30 mm, giving an equivalent projectile span of 2a = 21.3 mm. The projectile, of mass m p and initial velocity v p , is initially in contact with the beam. The geometry and material properties of the beams and projectile were taken to be consistent with the experimental investigation of Tagarielli et al.[START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF]. Selected three-dimensional calculations have also been performed to justify the use of the much simpler 2D approach, see Appendix A for this comparison.

  uniaxial tensile and compressive yield strengths of the PVC foam. Here e σ is the von Mises stress and m σ is the mean (or hydrostatic)

eq. ( 3 )

 3 , and μ is an artificial viscosity. Y 0 ( ) ε ˆ is the quasi-static compressive stress versus strain response oft the foam. It is adequately represented by a perfectly plastic characteristic of flow strength Y 0 = 2.1 MPa up to a nominal densification strain of 0.8. An elastic response is assumed post-densification. A viscosity of 225 Pa s e = were adequate to resolve the plastic shock wave in the metal foam, as discussed by Deshpande and Fleck [21].

  The most convenient way to make the comparison is to plot the maximum non-dimensional back-face, mid-span deflection / W W L = as a function of the applied impulse (projectile momentum) per unit area, as quantified by the non-dimensional parameter Young's modulus of the composite face sheets (or of the monolithic beam), respectively. The mass of the beam is represented by the non-dimensional parameter 0 / M m m =

Figure 5

 5 Figure 5 shows the measured peak mid-span deflection W as a function of the applied impulse per unit mass, as quantified by ˆ/ I I M = , for the clamped monolithic beams M1 and M2. The choice Î is appropriate for beams which absorb their kinetic energy mainly by axial, elastic stretching rather than by bending. The measured values display significant scatter and Tagarielli et al. [1] associated this with the observed variability in modulus. A re-analysis of our original data revealed that the thin monolithic beams had an initial deflection of 0.02 W ≈ upon tightening of the test fixture. This problem only arose for the case of the monolithic beams as their bending stiffness is much less than that of the sandwich beams.

Figure 6 Figure 7

 67 Figure 6 presents experimental results and FE predictions for sandwich beams with a H250 PVC foam core. Figures 6 (a), (b) and (c) relate to the beam configurations HD1, HD2 and HD3, respectively. As indicated in the figures by the IC label, no core fracture

  ) and (b) present M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 16 results for the specimens B1 and B2, respectively. Each of these figures includes the response of the monolithic beam M1 for comparison: this monolithic beam is identical

18 Face

 18 sheet debonding dramatically impairs the dynamic performance of composite sandwich beams, and as a result the core ductility and the toughness of the bonding interface are key parameters in the design of a sandwich beams for dynamic strength. It remains to develop satisfactory FE approaches which include modelling of damage initiation and evolution within the face sheets and the core.The ultimate failure of the sandwich beams is by face sheet tearing, and can be predicted conservatively by a maximum principal strain failure criterion. It follows that the dynamic shock resistance of the composite sandwich beams can be maximised by selecting face sheet materials with a high failure strain. of the 2D FE approach: results for 2D and 3D simulations

  experiments in Tagarielli et al. [1] we have D p = 28.5 mm and b = 30 mm, giving an equivalent projectile span of 2a = 21.3 mm.

Fig. 1 .

 1 FIGURE CAPTIONSFig. 1. (a) Geometry of a fully clamped sandwich beam impacted centrally by a metal foam projectile. Schematisation of the full FE simulations conducted in this study.

Fig. 2 .

 2 Fig. 2. (a) Sketches and (b) photographs of the dynamic failure modes of composite sandwich beams, observed by Tagarielli et al. [1]. The photographs of the failed

Fig. 4 .

 4 Fig. 4. (a)-(g) Deformation history of the sandwich beam HD1 impacted by a metal foam projectile. The back-face deflection profile is reported on the left hand side, as predicted by an FE simulation or extracted from high-speed photographs. The deformation of the beam predicted by a FE simulation is presented on the right hand side. (h) Measured and predicted mid-span deflection of the bottom face sheet as a function of time.

Fig. 5 .

 5 Fig. 5. Maximum mid-span deflection of the clamped monolithic beams M1 and M2 as a function of the non-dimensional applied impulse (normalised by the non-dimensional mass of the beam). Experiments are compared with FE simulations. The occurrence of tearing is indicated by the symbols FT and the vertical arrows.

Fig. 6 .

 6 Fig. 6. Maximum mid-span deflection as a function of the applied impulse for sandwich beams with a H250 core, of type (a) HD1, (b) HD2 and (c) HD3. Experimental results are compared with FE predictions. The observed damage and failure modes are denoted by IC and FT.

Fig. 7 .

 7 Fig. 7. Maximum mid-span deflection as a function of the applied impulse for sandwich beams with a H100 core, of type (a) H1, (b) H2 and (c) H3. Experimental results are compared with FE predictions. The observed damage and failure modes are denoted by IC, CF, CFD, FT.Figure 7 (c) includes FE predictions for a clamped monolithic beam of axial stiffness approximately equal to that of the sandwich beam H3.

Fig. 8 .

 8 Fig. 8. Maximum mid-span deflection as a function of the applied impulse for sandwich beams with a balsa wood core, of type (a) B1, (b) B2. Experimental results are compared with FE predictions. The observed damage and failure modes are denoted

Fig. 9 .

 9 Fig. 9. (a) FE predictions of the maximum strain attained in the monolithic beam M2 and in the face sheets of the sandwich beam H3, as a function of the non-dimensional applied impulse. Observed failure impulse intervals for these two structures are included in the figure. (b) Comparison of observed and FE-predicted non-dimensional

Fig. A1 .

 A1 Fig. A1. Non-dimensional mid-span deflection versus time history for (a) the monolithic beam M2 and (b) the sandwich beam HD2, impacted by a metal foam projectile at selected projectile velocities. Results from two-and three-dimensional FE simulations are compared.
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TABLE CAPTIONS Table 1 :

 CAPTIONS1 The geometry of the sandwich beams tested by Tagarielli et al.[START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF]. The specimens labelled M denote monolithic beams, H and HD denote sandwich beams with the H100 and H250 PVC foam cores, respectively, and the specimens labelled B are the sandwich beams with a balsa wood core. The specimens are divided into 4 sets, with beams in each set having approximately equal areal masses (indicated in the Table). The

	span for all beams tested was 2	L =	200 mm	, and the width	b =	30mm	.

Table 2 :

 2 The mechanical properties of the woven GFRP/Vinylester face sheets tested by Tagarielli et al.[START_REF] Tagarielli | The dynamic response of composite sandwich beams to transverse impact[END_REF]. Material parameters are listed for two values of the sheet thickness.

Table 3 :

 3 Summary of the mechanical properties of the three core materials tested by Tagarielli et al.[START_REF] Tagarielli | The high strain rate response of PVC foams and end-grain balsa wood[END_REF].

Table 4 .

 4 Additional material data for the balsa wood core.

	M A N U S C R I P T

m ≈ 6.3 kgm -2 Set 2, m ≈ 4.3 kgm -2 Set 0, m ≈ 2.5 kgm -2 Set 1, m ≈ 3.5 kgm -2Table 1

 1 

Table 3 Table 4

 34 

DIAB AB, Box 201,

[START_REF] Reid | Dynamic uniaxial crushing of wood[END_REF] Laholm -Sweden.