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Equation of state of the hard disk and 2D convex bodies

 -------------------------------An improved two-dimensional (2D) equation of state on the basis of an expression from the scaled particle theory is proposed. For pure hard disks, the virial coefficients B 3 -B 18 are determined and compared with their pseudoexperimental values. The 2D compressibility factor, Z, of pure hard disks is evaluated from the improved equation of state (IEOS) and compared with Z from Henderson's relation and with simulation data. Similarly, Z of mixtures of hard disks with the diameter ratios σ 2 /σ 1 = 1, 2, 3, 4, 5 and 10 and mole fractions x 1 = 0.5 and 0.25 were compared with the corresponding simulation data. A fair agreement was found in the case of pure fluid as well as the studied mixtures. Third and fourth virial coefficients of three types of convex figures -hard ellipses, hard spherocylinders and rectangles -were determined from IEOS and a fair agreement with pseudo-experiment was found. Next, the predictive capability of the considered IEOS was investigated for 2D hard prolate spherocylinder and systems of hard ellipses with three values of the aspect ratio, k = a/b, k = 2, 4 and 6 (where a, b denote semi-axes of an ellipse). The compressibility factor of the 2D-spherocylinders compared well with the MC data, in the case of hard ellipses, the description is fair for the isotropic phase. ----------------------------------Equation of state; Disk; Ellipse; 2D hard spherocylinder; Virial coefficient; Non-circular parameter; Surface density; Compressibility factor; Helmholtz energy; 2

Introduction

In the last approximately 20 years a considerable interest was devoted to a study of the two-dimensional systems. This is due to the importance of these systems in description of adsorption and the behavior of planar inhomogeneous nano-systems as well as the study of simulation procedures and their application to these simple fluids. The main interest has been devoted to systems of hard disks for which virial coefficients, B n (with n ≤18) were obtained as well as the compressibility factor for densities, ρ = N/A = 0.4 -0.9, Ref. [1,2]. Mixtures of hard disks of different diameters (σ 2 /σ 1 = 1, 2, 3, 4, 5, 10) were considered by Kim et al. [3], Barrio and Solana [4], Hammawa and Hamad [5] and (for non-additive mixtures) by Al-Naafa et al. [6] . As representatives of two-dimensional (2D) convex objects (convex figures), systems of ellipses with the different axis ratios, k, were studied by Viellard-Baron [7], Cuesta and Frenkel [8] and Moradi and Khordad [9]. 2D-spherocylinders were simulated by Nezbeda et al. [10] and the virial coefficients of them (including rectangles) by Rigby [11] and Tarjus et al. [12]. Recently, non-circular figures (non-spherical 2D bodies) were simulated and predicted in Refs. [13][14][15][16][17]. Theoretical description of the behavior of the 2D systems, especially pure ellipses, started from a variant of the density functional theory (DFT), considered in Refs. [3,9,[18][19]. More versatile and simpler is the application of the equation of state for 2D hard objects, based on the scaled particle theory (SPT), which will be discussed in the next paragraph. In this paragraph we propose an improvement with respect to the form of EOS derived in paper [20].

Theoretical

The equation of state (EOS) for hard disk systems was derived within the scaled particle theory (SPT) by Helfand et al. [21]; it possesses a form

Z = P/ρkT = 1 (1 -y) 2 (1) 
Here ρ stands for the surface density, T is temperature, P -pressure and ytwo-dimensional packing fraction. 

Z = (1 + y 2 /8) (1 -y) 2 (2) 
We aren't aware of the theoretically correct derivation of the relation for a mixture of hard disks of different diameters. The less correct extension of the hard disk equation of state to mixtures was proposed e.g. by Hammawa and Hamad [5] who employed the principle of similarity of the studied mixture and the corresponding pure hard disk system. A generalization of the hard disk SPT EOS to the general convex figures was derived by the present author [23]. The 2D system was treated as a special case of the 3D system where infinitely thin bodies (i.e. figures) moved in a plane in such a way that the unit vectors in the direction of the normals (of the figures) are perpendicular to the considered plane. Similarly as in the original SPT, two conditions resulting from the limiting behavior of the system determine the equation of state

βP/ρ = [1 + (γ -1)y] (1 -y) 2 (3) 
where γ = πR 2 c /A c , with A c and R c standing for an area and mean radius (a perimeter, divided by 2π). For the hard disk γ = 1, for other (pure) convex figures γ > 1.

The extension to mixtures of convex figures is straightforward; the above equation is valid also for them, only instead of γ the parameter

γ s = π( x i R ci ) 2 / x i A ci (4) 
has to be substituted. From this definition it is obvious that for disks of different diameters the parameter of non-sphericity γ s < 1. The equation for the hard disk mixture

βP ρ = 1 (1 -y) + γ s y (1 -y) 2 (5) 
differs only by the term ξ 2 /8 (i.e. Henderson's correction) from EOS of Barrio and Solana [4] [where ξ i = (π/4)ρd i ].

βP ρ = 4 πρ [ ξ 0 (1 -ξ 2 ) + (1 + ξ 2 8 ) ξ 2 1 (1 -ξ 2 ) 2 ] ( 6 
In our former paper [20] we extended equation ( 5) to all convex (two-dimensional)

figures βP ρ = 1 (1 -y) + γy(1 + γy/8) (1 -y) 2 (7) 
It is evident that in the case of hard disks, the relation reduces to the expression proposed by Henderson. The coefficient γ 2 in the nominator of the last term was introduced in analogy with the 3D expression for the third virial coefficient, but is not fully theoretically justified.

An improved equation of state of convex figures

Recently we studied hard sphere-and hard convex body equations of state of the self-consistent types [24]. In this formalism we begun by considering an expression for the residual Helmholtz energy, ∆A, of the hard body systems.

In the case of 2D systems we assumed an expression for ∆A in the form

∆A RT = -ln(1 -y) + γy(1 + cy) (1 -y) (8) 
where c is yet unknown parameter. The corresponding EOS possesses then the form

βP ρ = 1 (1 -y) + γy(1 + 2cy -cy 2 ) (1 -y) 2 (9) 
If, for hard disks, c = 1/16, then the coefficient of the packing fraction, y, is the same as in Henderson's approximation. This correction is, however, in our case partly compensated by the last term, y 2 /16, see

βP ρ = 1 (1 -y) + y(1 + y/8 -y 2 /16) (1 -y) 2 (10) 
Even better values of Z for packing fractions y < 0.5 result from the expression with coefficients γ/7 and (-γ/14)

βP ρ = 1 (1 -y) + γy[1 + γ(y/7 -y 2 /14)] (1 -y) 2 (11) 
[This equation yields for γ = 1 B 3 = 3.143 vs. 

In the next part we will discuss results from (11) for the virial coefficients and the compressibility factor of systems composed of convex figures.

Results

Firstly we will consider the virial coefficients, B n , of the hard disk system. It is interesting to compare values of B n which follow from EOS of Henderson and from (11) in the case of γ = 1. The second virial coefficient of hard disks is B 2 = 2 and

B n /B (n-1) 2 (Henderson) = [n + (n -2)/8]/2 (n-1) B n /B (n-1) 2 (IEOS) = [n + (n -1)/14]/2 (n-1) (13) 
It is found that the former EOS, (Eqn.( 2)), yielded only B 3 and B 4 in better agreement with simulation data, whereas in all other cases B n from (11) compare better with MC data, see Table 1. Next, we compared the compressibility factor of hard disks, calculated from Eqs. ( 2) and (11) with simulation data. From Table 2. it is apparent that EOS derived here yields values in better agreement with MC data than equation of state proposed by Henderson.

In Table 3. we applied Eq. ( 11) to predict the behavior of mixtures of hard disks with the σ k /σ 1 -ratios 1 -4 and mole fractions x 1 = 0.5 and 0.25. The Table reveals a fair agreement for all the values of the packing fraction and both the mole fractions. Even better agreement discloses Table 4 where data for two extreme values of ratios σ 2 /σ 1 , 5 and 10, are listed.

In the next part we studied non-circular convex figures -2D hard prolate spherocylinder, hard rectangles and ellipses with the aspect ratios k = 2, 4, 6. In Table 5 we compare values of the ratios of B 3 /B 2 2 and B 4 /B 3 2 of the three kinds of figures with simulation data of [11,12]. The 2D prolate spherocylinder represents itself one of the simplest noncircular objects. Pseudo-experimental data of this system were obtained in the early period of MC simulations [10] for a model with the ratio l/σ = 2 (where σ stands for the diameter of a circle and l is the site-site distance). The non-circularity factor of this body is γ = 1.457. In Figure 1, a comparison of the calculated [from (11)] and experimental values of the 2D compressibility factors is presented. In the whole interval of the packing fractions a full agreement with pseudo-experimental data within the error bar was found.

Probably the first MC study of non-circular 2D objects was performed for the system of hard ellipses [10] with the aspect ratio k = a/b = 6. Recently, Cuesta and Frenkel [8] published data on ellipses with aspect ratios k = 2, 4, 6. The corresponding values of the non-circularity parameter γ ∈(1.19-2.65) follow from the simple relation for A c = πab (where a, b are semi-axes of the ellipses and R c = a × E/2π with E standing for an elliptic integral; its values (as a function of k) are available from a special table; an approximate expression for R c reads as

R c = [ 3 2 (a + b) - √ (ab)]/2 (14) 
. The comparison of the dependence of theoretical and experimental compressibility factor on η is compared for the single values of k in Figures 234.

For k= 2 theoretical and experimental values of Z agree well together up to the highest densities. However, in the case of k = 4 or 6, some of the state points don't correspond to the isotropic phases. Approximate demarcation lines are depicted in Figures 34by dashed lines: points lying left from this line represent state points of the isotropic phase. From the comparison of the calculated compressibility factors with the points in the isotropic phases it can be concluded that the proposed equation of state (11) characterizes fairly well the systems of ellipses (of k = 2, 4, 6) in the isotropic parts of the phase diagrams. By leaving, we would like to mention the study of Wojciechowski et al [14][15] dealing with the corresponding 2D hard dumbbells.

Conclusion

In this paper we derived an improved 2D equation of state for hard disks and hard convex 2D objects. In four tables we compared (i) higher virial coefficients of hard disks, followed from equation (11) with accurate pseudoexperimental data (ii) compressibility factor of hard disks (γ= 1) in the range of the packing fraction η ∈ (0, 0.6) with the recent MC data (iii) compressibility factor of mixtures of hard disks of σ 2 /σ 1 = 1, 2, 3, 4 (all with γ < 1). (In all three cases a fair agreement was found) (iv) the relative third and fourth virial coefficients of three typical 2D convex objects.

In the following four figures we considered the non-circular (convex) figures; firstly the hard 2D-spherocylinder, with a relatively high value of γ; next three systems of ellipses (with γ almost 2.5 for k=6). The prediction of the compressibility factor in the case of the hard 2D-spherocylinder proved to be very accurate -within the error estimate.

From these figures one can see the accuracy of the equation ( 11) to describe/predict the behavior of the considered 2D hard systems. However, these results also give evidence in favor of the correct form and high accuracy of the expression for the residual Helmholtz energy -equation ( 8). Thus, equations ( 8) and ( 11) make it possible to determine all the thermodynamic functions of the two-dimensional figures. As mentioned before, in the literature are available simulation data for 2D hard dumbbells; however, for the non-convex figures exact values of the geometric characteristics are not available and approximative values have to be used (cf. [13,23]). 11), MC data from Ref. [8].

Figure 3. The same as in Fig. 2 for ellipses with aspect ratio k = 4.

Figure 4. The same as in Fig. 2 for ellipses with aspect ratio k = 6.
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 1 Figure 1. Compressibility factor of hard two-dimensional spherocylinders calculated from Eq. (11), MC data from Ref.[10].

Figure 2 .

 2 Figure 2. Compressibility factor of hard ellipses with the aspect ratio k = 2 calculated from Eq. (11), MC data from Ref.[8].
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Table 1 :

 1 Ratio of the virial coefficients of hard disks.

			B n /B n-1 2			B n /B n-1 2
	n	Eq.2	Eq.11 Ref.[1, 2]	n	Eq.2	Eq.11 Ref.[1, 2]
	3 0.7812	0.7857	0.7820	11	1.18E-2 1.14E-2 1.09E-2
	4 0.5312	0.5268	0.5322	12	6.24E-3 6.24E-3 5.90E-3
	5 0.3359	0.3304	0.3335	13	3.51E-3 3.38E-3 3.18E-3
	6 0.2031	0.1987	0.1988	14	1.89E-2 1.82E-3 1.70E-3
	7 0.1191	0.1161	0.1149	15	1.01E-3 9.76E-4 9.10E-4
	8 0.0684	0.0664	0.0650	16	5.41E-4 5.21E-4 4.84E-4
	9 0.0386	0.0373	0.0362	17	2.88E-4 2.77E-4 2.56E-4
	10 0.0215	0.0208	0.0200	18	1.53E-4 1.47E-4 1.36E-4

URL: http://mc.manuscriptcentral.com/tandf/tmph

Table 2 :

 2 Compressibility factor of hard disks.

	ρ Eq.(2) Eq.(10) Eq.(11) MC[1]
	0.40	2.15	2.15	2.15	2.15
	0.45	2.43	2.42	2.43	2.43
	0.50	2.76	2.75	2.76	2.76
	0.55	3.17	3.16	3.16	3.16
	0.60	3.68	3.65	3.66	3.66
	0.65	4.31	4.28	4.29	4.29
	0.70	5.12	5.07	5.09	5.08
	0.75	6.18	6.10	6.13	6.11
	0.80	7.60	7.48	7.52	7.48
	0.85	9.55	9.39	9.43	9.25
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Table 3 :

 3 Compressibility factor (Eq.(11) vs. MC) of hard disk mixtures of packing fraction y. (Ref.[3]).

	Page 13 of 19			Molecular Physics		
	σ 2 /σ 1				x 1 = 0.5			
		y=0.3		y=0.4		y=0.5	y=0.65	
	1	2.06	2.06 2.83	2.82	4.11	4.10 8.50	8.41
	2	2.00	2.00 2.71	2.72	3.90	3.90 7.93	7.89
	3	1.94	1.93 2.60	2.60	3.69	3.68 7.37	7.32
	4	1.90	1.89 2.52	2.52	3.55	3.55 7.00	7.01
					x 1 = 0.25			
	1	2.06	2.06 2.83	2.82	4.11	4.10 8.50	8.41
	2	2.03	-	2.76	2.76	3.99	3.99 8.17	-
	3	2.00	-	2.70	2.70	3.88	3.88 7.89	-
	4	1.98	-	2.67	2.67	3.82	3.81 7.72	-
					13			
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Table 4 :

 4 Compressibility factor (Eq.(11) vs. MC) of hard disk mixtures with extreme values of σ 2 /σ 1 (Ref.[4]).

	y	x 1 =0.25		x 1 =0.5		x 1 =0.75	
			σ 2 /σ 1 = 5				
	0.2	1.520	1.5195	1.472	1.4706 1.433	1.4315
	0.3	1.963	1.9611	1.868	1.8673 1.791	1.7883
	0.4	2.645	2.6556	2.471	2.4873 2.331	2.3268
	0.5	3.774	3.773	3.459	3.452	3.204	3.195
			σ 2 /σ 1 = 10				
	0.2	1.506	1.5055	1.442	1.4416 1.381	1.3809
	0.3	1.935	1.9332	1.809	1.8078 1.689	1.6887
	0.4	2.594	2.5939	2.363	2.3609 2.143	2.1399
	0.5	3.682	3.682	3.262	3.258	2.864	2.857
				14			
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Table 5 :

 5 The reduced third and fourth virial coefficients B 3 /B 2 2 and B 4 /B 3 2 , Eq.11 vs. MC (Ref.[12]) of 2D-hard spherocylinders, ellipses and rectangles with the aspect ratio k.

	Page 15 of 19	Molecular Physics
		k Eq.11 MC	Eq.11 MC
		2D-Spherocylinder
		1 0.786 0.782	0.527 0.532
		2 0.749 0.756	0.467 0.477
		4 0.652 0.689	0.331 0.361
		6 0.576 0.655	0.243 0.283
		Ellipses
		2 0.747 0.750	0.464 0.471
		4 0.637 0.677	0.312 0.323
		6 0.549 0.631	0.216 0.230
		Rectangles
		1 0.731 0.770	0.440 0.506
		2 0.703 0.750	0.399 0.467
		4 0.620 0.696	0.292 0.363
		6 0.553 0.658	0.220 0.290
		15
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