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Torsion of chiral Cosserat elastic rods

D. Ieşan

Department of Mathematics, ”Al.I. Cuza” University and ”O. Mayer” Institute of

Mathematics, Romanian Academy, 700506 Iaşi, Romania

Abstract

This paper is concerned with the torsion of isotropic chiral Cosserat elastic cylin-
ders. First, the generalized plane strain problem is defined and an existence result
is presented. Then, the three-dimensional problem is reduced to the study of some
generalized plane strain problems. In general, the torsion of the cylinder is accom-
panied by bending and extension. The method is applied to study the torsion of a
circular cylinder.
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1 Introduction

In recent years the behaviour of chiral materials has been the object of in-
tensive research. A body which is not isotropic with respect to inversion is
called chiral. Chirality can be observed in some carbon nanotubes, biological
molecules (DNA), bones, honeycomb structures as well as in composites with
inclusions.

It is well-known that chiral effects cannot be described within classical elastic-
ity (see Lakes, 2001). The theory of Cosserat elasticity is adequate to describe
the mechanical behaviour of chiral elastic bodies (Lakes, 2001; Donescu et
al., 2009). The Cosserat theory studies continua with oriented particles which
have the six degrees of freedom of a rigid body. The theory of Cosserat elastic
solids was extensively studied in the last decades. For the historical develop-
ment and the analysis of various results on the subject see Nowacki (1981),
Ciarletta and Ieşan (1993), Eringen (1999), Rubin (2000), Dyszlewicz (2004),
Jasiuk and Ostoja-Starzewski (2004). A large number of papers have been de-
voted to the study of chiral Cosserat elastic bodies (Nowacki, 1977; Lakes and
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Benedict, 1982; Dyszlewicz and Kolodziej, 1987). This class of materials con-
tinues to attract attention both from the theoretical and the technical point of
view (Healey, 2002; Dyszlewicz, 2004; Teodorescu et al., 2005; Natroshvili et
al., 2006; Khurana and Tomar, 2009). A Cosserat material is called isotropic
chiral if its symmetry group equals the proper orthogonal group. In the linear
theory an isotropic chiral Cosserat elastic material is characterized by nine
constitutive coefficients.

In this paper we study the deformation of homogeneous and isotropic chiral
Cosserat elastic cylinders subjected to torsion, extension and bending. This
work is motivated by the recent interest in the using of the isotropic chi-
ral Cosserat elastic solid as model for cellular solids and composite materials
(Prall and Lakes, 1997; Lakes, 1998, 2001; Donescu et al., 2009; Chandraseker
et al., 2009) and for bones (Lakes et al., 1983). We note that Lakes and Bene-
dict (1982) studied the problem of a chiral Cosserat elastic rod of circular
cross section, stretched axially and free to twist. In this paper we consider
the problem of extension, bending and torsion of a right cylinder with gen-
eral cross section. First, we introduce the generalized plane strain problem
and present an existence result. In contrast with the case of centrosymmetric
solids, in the generalized plane strain of a chiral Cosserat elastic cylinder, all
components of displacement vector and microrotation vector are different from
zero. We introduce four special generalized plane strain problems character-
ized by external data which depend only on the constitutive coefficients. The
solutions of these problems are used to solve the torsion problem. We show
that, in general, the torsion of an isotropic chiral Cosserat elastic cylinder is
accompanied by extension and bending. The results are applied to study the
torsion of a circular cylinder. We determine the solutions of the auxiliary gen-
eralized plane strain problems for a circular domain. Then, the displacement
and microrotation vector fields in the torsion problem are determined.

2 Basic equations

Throughout this paper B denotes the interior of a right cylinder of length h
with open cross-section Σ and lateral boundary Π (Fig. 1). We call ∂B the
boundary of B, and designate by ni the components of the outward unit nor-
mal of ∂B. Throughout this paper a rectangular cartesian coordinate system
Oxk, (k = 1, 2, 3), is used. The rectangular cartesian coordinate frame is cho-
sen such that the x3-axis is parallel to the generators of B and the x1Ox2 plane
contains one of terminal cross-sections. We denote by Σ1 and Σ2, respectively,
the cross-section located at x3 = 0 and x3 = h.

Fig. 1. A general prismatic rod
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We assume that the generic cross-section Σ is a simply connected regular
region. Let L be the boundary of the region Σ. We shall employ the usual
summation and differentiation conventions: Greek subscripts are understood
to range over the integers (1, 2), whereas Latin subscripts (unless otherwise
specified) to the range (1, 2, 3); summation over repeated subscripts is implied
and subscripts preceded by a comma denote partial differentiation with respect
to the corresponding cartesian coordinate. Letters in boldface stand for tensors
of an order p ≥ 1, and if v has the order p, we write vij...s (p subscripts) for
the components of v in the cartesian coordinate frame.

Throughout this paper we consider the linear theory of homogeneous and
isotropic chiral Cosserat elastic bodies. Let u be the displacement vector field
on B. We denote by ϕ the microrotation vector field. The strain measures are
given by

eij = uj,i + εjikϕk, κij = ϕj,i, (1)

where εijk is the alternating symbol. Let tij be the stress tensor and let mij

be the couple stress tensor. The equilibrium equations, in the absence of body
loads, are

tji,j = 0, mji,j + εirstrs = 0. (2)

The constitutive equations can be presented in the form (Lakes and Benedict,
1982; Dyszlewicz, 2004)

tij = λerrδij + (µ+ κ)eij + µeji + C1κssδij + C2κji + C3κij ,

mij = ακrrδij + βκji + γκij + C1errδij + C2eji + C3eij , (3)

where δij is Kronecker’s delta, and γ, µ, κ, α, β, γ, C1, C2 and C3 are consti-
tutive constants. In the case of a centrosymmetric material the coefficients
C1, C2 and C3 are equal to zero. The surface force and the surface moment
acting at a regular point of ∂B are given by

ti = tjinj , mi = mjinj .

We assume that the considered cylinder is free of lateral loads. Thus, we have
the following conditions

tαinα = 0, mαinα = 0 on Π. (4)

We suppose that the cylinder B is subjected to extension, bending and torsion.
Let R = (0, 0, R3) and M = (M1,M2,M3) be prescribed vectors representing
the resultant force and the resultant moment about O of the tractions acting
on Σ1. On Σ2 there are tractions applied so as to satisfy the equilibrium
conditions of the body. Consequently, for x3 = 0 we have the conditions

∫

Σ1

t3αda = 0, (5)
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∫

Σ1

t33da = −R3, (6)

∫

Σ1

(xαt33 − ε3αβm3β)da = εαβ3Mβ, (7)

∫

Σ1

(εαβ3xαt3β +m33)da = −M3. (8)

The problem consists in finding of the functions ui and ϕi of class C2(B) ∩
C1(B) which satisfy the equations (1)-(3) on B, the conditions (4) on the
lateral surface, and the conditions (5)-(8) on the end Σ1. We have introduced
the mechanical loads R3 and Mα in order to emphasize the torsional effects
on the deformation of the cylinder.

We assume that Σ is C∞-smooth. We have chosen this hypothesis in order
to best describe the method for the solution of the problem. We consider
only a ”C∞-theory” but it is possible to get a classical solution for more
general assumptions of regularity. In what follows we suppose that the elastic
potential is a positive definite quadratic form. The restrictions imposed by
this hypothesis on the constitutive coefficients have been presented in various
works (Lakes, 1982; Dyszlewicz, 2004). We note only the following inequalities

κ > 0, 2µ+ κ > 0, γ + β > 0, γ − β > 0, λ+ 2µ+ κ > 0,

(λ+ 2µ+ κ)(α + β + γ)− (C1 + C2 + C3)
2 > 0. (9)

3 Generalized plane strain

Let us assume now that a body force f and a body couple g are prescribed on
B. Moreover, we consider that on the lateral boundary of the cylinder there
are prescribed the surface force t̃ and the surface moment m̃. We suppose
that f , g, t̃ and m̃ are all independent of the axial coordinate. We define the
state of generalized plane strain of the cylinder to be that state in which the
displacement vector and microrotation vector are independent of the axial
coordinate,

ui = ui(x1, x2), ϕi = ϕi(x1, x2), (x1, x2) ∈ Σ1. (10)

The above restrictions, in conjunction with the geometrical equations (1) and
the constitutive equations (2), imply that eij , κij, tij and mij are all indepen-
dent of the axial coordinate. The equations (1) reduce to

eαi = ui,α + εiαjϕj, e3i = εi3βϕβ, καi = ϕi,α, κ3i = 0. (11)
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The constitutive equations for a generalized plane strain are given by

tαβ = λeρρδαβ + (µ+ κ)eαβ + µeβα + C1κρρδαβ + C2κβα + C3καβ ,

tα3 = (µ+ κ)eα3 + µe3α + C3κα3,

t3α = (µ+ κ)e3α + µeα3 + C2κα3, t33 = λeρρ + C1κρρ, (12)

mνη = ακρρδνη + βκην + γκνη + C1eρρδνη + C2eην + C3eνη,

mα3 = γκα3 + C2e3α + C3eα3,

m3α = βκα3 + C2eα3 + C3e3α, m33 = ακρρ + C1eρρ.

The equations of equilibrium can be written as

tβi,β + fi = 0, mβi,β + εirstrs + gi = 0, (13)

on Σ1. The conditions on the lateral surface become

tβinβ = t̃i, mβinβ = m̃i on L. (14)

We assume that fi, gi, t̃i and m̃i are functions of class C∞.

The generalized plane strain problem consists in finding of the displacement
ui and microrotations ϕi which satisfy the equations (11)-(13) on Σ1, and the
boundary conditions (14) on L. In view of (11) and (12), the equations of
equilibrium can be expressed in terms of the functions ui and ϕi in the form

(µ+ κ)∆uα + (λ+ µ)uβ,βα + κεαβ3ϕ3,β + C3∆ϕα + (C1 + C2)ϕβ,βα + fα = 0,

(µ+ κ)∆u3 + κε3βαϕα,β + C3∆ϕ3 + f3 = 0,

C3∆uν + (C1 + C2)uρ,ρν + κενβ3u3,β + γ∆ϕν+ (15)

+ (α + β)ϕρ,ρν + 2(C3 − C2)ενη3ϕ3,η − 2κϕν + gν = 0,

C3∆u3 + κε3νηuη,ν + γ∆ϕ3 + 2(C3 − C2)ε3νηϕη,ν − 2κϕ3 + g3 = 0,

on Σ1, where ∆ is the two-dimensional Laplacian.

In the case of the generalized plane strain the elastic potential W is given by

2W = λeρρeνν + (µ+ κ)eαβeαβ + µeβαeαβ + (µ+ κ)eα3eα3+

+ 2µeα3e3α + (µ+ κ)e3αe3α + ακρρκνν + βκηνκνη+ (16)

+ γκνηκνη + γκα3κα3 + 2C1κρρeνν + 2C2eαβκβα+

+ 2C3eαβκαβ + 2C2e3ακα3 + 2C3eα3κα3.

Let

u∗

1 = c1 − c4x2, u
∗

2 = c2 + c4x1, u
∗

3 = c3, ϕ
∗

1 = 0, ϕ∗

2 = 0, ϕ∗

3 = c4, (17)

where cs, (s = 1, 2, 3, 4), are arbitrary constants. Then U∗ = (u∗

1, u
∗

2, u
∗

3, ϕ
∗

1,
ϕ∗

2, ϕ
∗

3) is called a plane rigid vector field.

5



 

Theorem 1. If the elastic potential W is a positive definite quadratic form,

then any two solutions of the generalized plane strain problem (11)− (14) are
equal modulo a plane rigid vector field.

Proof. In view of (11)-(13) and (16), we get

2W = tβieβi + t3ie3i +mβiκβi =

= (tβiui +mβiϕi),β + fiui + giϕi.

With the help of the divergence theorem we obtain

2
∫

Σ1

Wda =
∫

L
(tβiui +mβiϕi)nβds+

∫

Σ1

(fiui + giϕi)da. (18)

Let (u′

i, ϕ
′

i) and (u′′

i , ϕ
′′

i ) be two solutions of the problem (11)-(14). We denote
u0
i = u′

i−u′′

i and ϕ0
i = ϕ′

i−ϕ′′

i . The functions u
0
i and ϕ0

i satisfy the generalized
plane strain problem corresponding to null data. Thus, from (18) we find that

∫

Σ1

W 0da = 0, (19)

where W 0 is the elastic potential corresponding to u0
i and ϕ0

i . Since W 0 is
positive definite, we find e0ji = 0, and κ0

αi = 0 on Σ1. These equations imply
that (u0

1, u
0
2, u

0
3, ϕ

0
1, ϕ

0
2, ϕ

0
3) is a plane rigid vector field.�

The six-dimensional vector U∗ = (u∗

1, u
∗

2, u
∗

3, ϕ
∗

1, ϕ
∗

2, ϕ
∗

3) defined by (17) can be
expressed in the form

U∗ =
4∑

k=1

ckU
(k),

where

U (1) = (1, 0, 0, 0, 0, 0), U (2) = (0, 1, 0, 0, 0, 0),

U (3) = (0, 0, 1, 0, 0, 0), U (4) = (−x2, x1, 0, 0, 0, 1). (20)

Let us consider the equations (11)-(13) on Σ1 with the boundary conditions

tβinβ = 0, mβinβ = 0 on L. (21)

Following Fichera (1972), a C∞ solution of the boundary valued problem (11)-
(13), (21) exists if and only if

∫

Σ1

4∑

j=1

HjU
(k)
j da = 0, (k = 1, 2, 3, 4), (22)

where H = (H1, H2, . . . , H6) with Hi = fi, H3+i = gi, and U (k) = (U
(k)
1 , U

(k)
2 ,

. . . , U
(k)
6 ), U

(1)
1 = 1, U

(1)
1+s = 0, (s = 1, 2, . . . , 5), U

(2)
2 = 1, U

(2)
1 = U

(2)
2+m = 0,
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(m = 1, 2, 3, 4), U
(3)
3 = 1, U (3)

α = U
(3)
3+p = 0, U

(4)
1 = −x2, U

(4)
2 = x1, U

(4)
6 = 1,

U
(4)
2+k = 0. The conditions (22) reduce to

∫

Σ1

fia = 0,
∫

Σ1

(x1f2 − x2f1 + g3)da = 0.

It is a simple matter to see that in the case of the boundary value problem
(11)-(14), the above conditions are replaced by

∫

Σ1

fida+
∫

L
t̃ids = 0,

∫

Σ
(εαβ3xαfβ + g3)da+

∫

L
(εαβ3xαt̃β + m̃3)ds = 0. (23)

Thus, we have the following existence result.

Theorem 2. The boundary value problem (11)−(14) has solutions if and only

if the relations (23) hold.

In the next section we will have occasion to use four generalized plane strain
problems P (k), (k = 1, 2, 3, 4). The problem P (1) corresponds to the body loads

f
(1)
i = λδ1i, g

(1)
i = (C1 + C3 − C2)δ1i, (24)

and to the boundary data

t̃(1)α = −λx1nα, t̃
(1)
3 = C2n2, m̃

(1)
ρ = −C1x1nρ, m̃

(1)
3 = βn2. (25)

In the problem P (2) the body loads and the boundary data are

f
(2)
i = λδ2i, g

(2)
i = (C1 + C3 − C2)δ2i,

t̃(2)α = −λx2nα, t̃
(2)
3 = −C2n1, m̃

(2)
α = −C1x2nα, m̃

(2)
3 = −βn1. (26)

The problem P (3) corresponds to the following loading

f
(3)
i = 0, g

(3)
i = 0, t̃(3)α = −λnα, t̃

(3)
3 = 0, m̃

(3)
β = −C1nβ , m̃

(3)
3 = 0. (27)

We denote by P (4) the problem characterized by the following body loads and
boundary tractions

f
(4)
i = 0, g(4)α = −κxα, g

(4)
3 = 0,

t̃(4)α = −C1nα, t̃
(4)
3 = −µε3ραxρnα, m̃

(4)
ρ = −αnρ, m̃

(4)
3 = C2ε3ρνxνnρ. (28)

We note that the necessary and sufficient conditions (23) for the existence of
the solution are satisfied for each boundary value problem P (k), (k = 1, 2, 3, 4).

We denote by u
(k)
i , ϕ

(k)
i , e

(k)
ij , κ

(k)
ij , t

(k)
ij and m

(k)
ij the displacement, microrota-

tion, strain measures, stress tensor and couple stress tensor in the problem
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P (k), respectively. Clearly, the problems P (k) are characterized by the geomet-
rical equations

e
(k)
αi = u

(k)
i,α + εiαjϕ

(k)
j , e

(k)
3i = εi3βϕ

(k)
β , κ

(k)
αi = ϕ

(k)
i,α, (29)

the constitutive equations

t
(k)
αβ = λe(k)ρρ δαβ + (µ+ κ)e

(k)
αβ + µe

(k)
βα + C1κ

(k)
ρρ δαβ + C2κ

(k)
βα + C3κ

(k)
αβ ,

t
(k)
α3 = (µ+ κ)e

(k)
α3 + µe

(k)
3α + C3κ

(k)
α3 ,

t
(k)
3α = (µ+ κ)e

(k)
3α + µe

(k)
α3 + C2κ

(k)
α3 , t

(k)
33 = λe(k)ρρ + C1κ

(k)
ρρ , (30)

m(k)
νη = ακ(k)

ρρ δνη + βκ(k)
ην + γκ(k)

νη + C1e
(k)
ρρ δνη + C2e

(k)
ην + C3e

(k)
νη ,

m
(k)
α3 = γκ

(k)
α3 + C2e

(k)
3α + C3e

(k)
α3 , m

(k)
3α = βκ

(k)
α3 + C2e

(k)
α3 + C3e

(k)
3α ,

m
(k)
33 = ακ(k)

ρρ + C1e
(k)
ρρ ,

and the equations of equilibrium

t
(k)
βi,β + f

(k)
i = 0, m

(k)
βi,β + εirst

(k)
rs + g

(k)
i = 0, (31)

on Σ1, and the following boundary conditions

t
(k)
βi nβ = t̃

(k)
i , m

(k)
βi nβ = m̃

(k)
i on L, (32)

(k = 1, 2, 3, 4). Here, f
(k)
i , g

(k)
i , t̃

(k)
i and m̃

(k)
i are defined by (24)-(28).

4 Solution of the problem

In this section we reduce the three-dimensional problem to the study of four
generalized plane strain problems. Following Ieşan (1986) we seek the solution
of the problem formulated in Section 2 in the form

uα = −
1

2
aαx

2
3 + ε3βαa4xβx3 +

4∑

k=1

aku
(k)
α ,

u3 = (a1x1 + a2x2 + a3)x3 +
4∑

k=1

aku
(k)
3 , (33)

ϕα = ε3αβaβx3 +
4∑

k=1

akϕ
(k)
α ,

ϕ3 = a4x3 +
4∑

k=1

akϕ
(k)
3 , (x1, x2, x3) ∈ B,
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where u
(k)
i and ϕ

(k)
i are the displacements and microrotations from the prob-

lems P (k) introduced in Section 3, and ak, (k = 1, 2, 3, 4), are unknown con-
stants. It follows from (1) and (30) that

eαi =
4∑

k=1

ake
(k)
αi , e3α = ε3βαxβa4 +

4∑

k=1

ake
(k)
3α ,

e33 = a1x1 + a2x2 + a3, καi =
4∑

k=1

akκ
(k)
αi , κ3α = ε3αβaβ, κ33 = a4, (34)

where e
(k)
ij and κ

(k)
ij are given by (29). By (34) and the constitutive equations

(3) we obtain

tαβ = λ(a1x1 + a2x2 + a3)δαβ + C1δαβa4 +
4∑

k=1

akt
(k)
αβ ,

tα3 = µε3βαxβa4 + C2ε3αβaβ +
4∑

k=1

akt
(k)
α3 ,

t3α = (µ+ κ)ε3βαxβa4 + C3ε3αβaβ +
4∑

k=1

akt
(k)
3α ,

t33 = (λ+ µ+ κ)(a1x1 + a2x2 + a3) + (C1 + C2 + C3)a4 +
4∑

k=1

akt
(k)
33 , (35)

mνη = [αa4 + C1(a1x1 + a2x2 + a3)]δνη +
4∑

k=1

akm
(k)
νη ,

mν3 = βε3νρaρ + C2ε3ρνxρa4 +
4∑

k=1

akm
(k)
ν3 ,

m3ν = γε3νρaρ + C3ε3ρνxρa4 +
4∑

k=1

akm
(k)
3ν ,

m33 = (α + β + γ)a4 + (C1 + C2 + C3)(a1x1 + a2x2 + a3) +
4∑

k=1

akm
(k)
33 ,

where t
(k)
ij and m

(k)
ij are the stress tensor and the couple stress tensor from the

problem P (k), (k = 1, 2, 3, 4).

It is a simple matter to see that the equations of equilibrium (2) and the
boundary conditions (4) are satisfied on the basis of equations (31) and the
boundary conditions (32). Let us study the end conditions (5). With the help
of equilibrium equations (2) and boundary conditions (4) we can write

∫

Σ1

t31da =
∫

Σ1

(t13 −mρ2,ρ)da =
∫

Σ1

[(x1tρ3),ρ −mα2,α]da =

=
∫

L
(x1tα3nα −mα2nα)ds = 0.

Similarly we can prove that the second condition from (5) is satisfied.
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The functions tij and mij from (35) can be expressed in the form

tij =
4∑

k=1

aks
(k)
ij , mij =

4∑

k=1

akπ
(k)
ij , (36)

where

s
(ν)
αβ = λxνδαβ + t

(ν)
αβ , s

(3)
αβ = λδαβ + t

(3)
αβ , s

(4)
αβ = C1δαβ + t

(4)
αβ ,

s
(ν)
α3 = C2ε3αν + t

(ν)
α3 , s

(3)
α3 = t

(3)
α3 ,

s
(4)
α3 = µε3ραxρ + t

(4)
α3 , s

(ν)
3α = C3ε3αν + t

(ν)
3α , s

(3)
3α = t

(3)
3α ,

s
(4)
3α = (µ+ κ)ε3ραxρ + t

(4)
3α , (37)

s
(ν)
33 = (λ+ 2µ+ κ)xν + t

(ν)
33 ,

s
(3)
33 = λ+ 2µ+ κ+ t

(3)
33 , s

(4)
33 = C1 + C2 + C3 + t

(4)
33 ,

π
(ν)
αβ = C1xνδαβ +m

(ν)
αβ , π

(3)
αβ = C1δαβ +m

(3)
αβ , π

(4)
νη = αδνη +m(4)

νη ,

π
(ρ)
3ν = γε3νρ +m

(ρ)
3ν , π

(3)
3ν = m

(3)
3ν , π

(4)
3ν = C3ε3ρνxρ +m

(4)
3ν ,

π
(ρ)
33 = (C1 + C2 + C3)xρ +m

(ρ)
33 , π

(3)
33 = C1 + C2 + C3 +m

(3)
33 ,

π
(4)
33 = α + β + γ +m

(4)
33 .

In view of (36), the conditions (6)-(8) reduce to the following system for the
constants a1, a2, a3 and a4,

4∑

k=1

Dαkak = εαβ3Mβ ,
4∑

k=1

D3kak = −R3,
4∑

k=1

D4kak = −M3, (38)

where we have introduced the notations

Dαk =
∫

Σ1

(xαs
(k)
33 − ε3αβπ

(k)
3β )da, D3k =

∫

Σ1

s
(k)
33 da,

D4k =
∫

Σ1

[ε3αβxαs
(k)
3β + π

(k)
33 ]da. (39)

We note that the constants Drs, (r, s = 1, 2, 3, 4), depend only on the cross
section and the constitutive coefficients. As in classical theory (Ieşan, 2009)
we can prove that

det(Drs) > 0, Drs = Dsr. (40)

The inequality from (40) follows from (36) and the positive definiteness of
the elastic potential. The symmetry of Drs is a direct consequence of the
reciprocal theorem. The system (38) uniquely determines the constants ak,
(k = 1, 2, 3, 4).

We conclude that the solution of the problem has the form (33), where the
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constants ak are given by (38) and (u
(k)
j , ϕ

(k)
j ) are the solutions of the two-

dimensional problems P (k), (k = 1, 2, 3, 4). Generally, the torsion of an isotropic
chiral Cosserat elastic cylinder is accompanied by bending and extension.

5 Torsion of a circular cylinder

In this section we use the solution given in Section 4 in order to study the
torsion of a circular cylinder made of an isotropic chiral Cosserat elastic ma-
terial. We assume that the cylinder B is defined by B = {x : x2

1 + x2
2 < a2,

0 < x3 < h}, (a > 0), and suppose that M1 = M2 = 0. The solution has

the form (33) where the functions u
(k)
i and ϕ

(k)
i are the displacements and

microrotations in the problem P (k), (k = 1, 2, 3, 4) defined by (29)-(32), and
the constants ak are given by the system (38).

First, we study the generalized plane strain problem P (3) characterized by the
external loading (27). We seek the solution of this problem in the form

u(3)
α = xαG(r), u

(3)
3 = 0, ϕ(3)

α = xαΦ(r), ϕ
(3)
3 = 0, (41)

where r = (x2
1 + x2

2)
1/2, and G and Φ are unknown functions. Clearly,

u
(3)
α,β = δαβG+ xαxβr

−1G′, u(3)
ρ,ρ = 2G+ rG′,

u(3)
ρ,ρα = ∆u(3)

α = xα(G
′′ + r−1G′), (42)

ϕ
(3)
α,β = δαβΦ + xαxβr

−1Φ′, ∆ϕ(3)
α = xα(Φ

′′ + 3r−1Φ′),

where f ′ = df/dr. It follows from (29) and (42) that

e
(3)
αβ = e

(3)
βα = u

(3)
β,α, e

(3)
ρ3 = ε3ρβxβΦ = −e

(3)
3ρ , e

(3)
33 = 0,

κ(3)
ρρ = 2Φ + rΦ′, κ

(3)
αβ = κ

(3)
βα = ϕ

(3)
α,β, κ

(3)
α3 = 0, κ

(3)
3i = 0. (43)

In view of (42), the equations of equilibrium (15) for the problem P (3), reduce
to

(λ+ 2µ+ κ)(G′′ + 3r−1G′) + (C1 + C2 + C3)(Φ
′′ + 3r−1Φ′) = 0, (44)

(C1 + C2 + C3)(G
′′ + 3r−1G′) + (α + β + γ)(Φ′′ + 3r−1Φ′ − s2Φ) = 0,

where

s2 =
2κ

α + β + γ
. (45)
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If we eliminate the function G, from (44) we find that Φ satisfies the equation

Φ′′ + 3r−1Φ′ − q2Φ = 0, (46)

where

q2 = 2κ(λ+2µ+κ)Q−1, Q = (λ+2µ+κ)(α+β+ γ)− (C1+C2+C3)
2. (47)

Clearly, from (9) we find that s2 > 0, Q > 0 and q2 > 0. We introduce the
function Ω by

Ω = rΦ. (48)

Then, the equation (46) becomes

Ω′′ +
1

r
Ω′ −

(
1

r2
+ q2

)
Ω = 0. (49)

In what follows we denote by In and Kn the modified Bessel functions of order
n. The general solution of the equation (49) is

Ω = B1I1(qr) + B2K1(qr),

where B1 and B2 are arbitrary constants. Since the functions ϕ(3)
α must be

bounded for r = 0, we have B2 = 0. Thus, we find that

Φ = r−1B1I1(qr). (50)

It follows from (44) that the function G satisfies the equation

(
d2

dr2
+

3

r

d

dr

)(
d2

dr2
+

3

r

d

dr
− q2

)
G = 0. (51)

We can write G = G1+G2 where the functions G1 and G2 satisfy the equations

G′′

1 + 3r−1G′

1 = 0, G′′

2 + 3r−1G′

2 − q2G2 = 0.

Clearly,
G1 = A1 + A2r

−2, G2 = r−1[D1I1(qr) +D2K1(qr)],

where Aα and Dα are arbitrary constants. Since the functions u(3)
α are bounded

for r = 0 we must take A2 = 0 and D2 = 0. Thus the function G has the form

G = A1 +D1r
−1I1(qr). (52)

We note that the functions G and Φ, given by (50) and (52), must satisfy the
system of second-order (44). Substituting G and Φ into the equations (44) we
obtain the relations

(λ+ 2µ+ κ)D1 + (C1 + C2 + C3)B1 = 0,

(C1 + C2 + C3)q
2D1 + (α + β + γ)q2B1 − 2κB1 = 0. (53)
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The first equation from (53) implies that

D1 = −σB1, (54)

where
σ = (C1 + C2 + C3)(λ+ 2µ+ κ)−1. (55)

It is a simple matter to see that the second equation from (53) is identically
satisfied on the basis of the relations (47) and (55). We conclude that

G = A1 − σr−1B1I1(qr), Φ = r−1B1I1(qr). (56)

Let us impose the boundary conditions (32) for k = 3. It follows from (43)
and the constitutive equations (30) that

t
(3)
αβ = λ(2G+ rG′)δαβ + (2µ+ κ)(Gδαβ + xαxβr

−1G′)+

+ C1(2Φ + rΦ′)δαβ + (C2 + C3)(Φδαβ + xαxβr
−1Φ′),

t
(3)
α3 = κε3αβxβΦ = −t

(3)
3α , t

(3)
33 = λ(2G+ rG′) + C1(2Φ + rΦ′), (57)

m(3)
νη = α(2Φ + rΦ′)δνη + (β + γ)(Φδνη + xνxηr

−1Φ′)+

+ C1(2G+ rG′) + (C2 + C3)(Gδνη + xνxηr
−1G′),

m
(3)
ν3 = −m

(3)
3ν = (C3 − C2)ε3νβxβΦ, m

(3)
33 = α(2Φ + rΦ′) + C1(2G+ rG′).

On the boundary L we have r = a and nα = xα/a. From (57) we obtain

t
(3)
αβnα = a−1xβ[(2λ+ 2µ+ κ)G(a) + (λ+ 2µ+ κ)aG′(a)+

+ (2C1 + C2 + C3)Φ(a) + (C1 + C2 + C3)aΦ
′(a)],

t
(3)
α3nα = κa−1ε3αβxαxβΦ

′(a) = 0, (58)

m
(3)
αβnα = a−1xβ[(2α + β + γ)Φ(a) + (α + β + γ)aΦ′(a)+

+ (2C1 + C2 + C3)G(a) + (C1 + C2 + C3)aG
′(a)],

m
(3)
α3nα = (C3 − C2)ε3αβxαxβa

−1Φ(a) = 0 on L.

In view of (58), the boundary conditions (32), for k = 3, reduce to

(2λ+ 2µ+ κ)G(a) + (λ+ 2µ+ κ)aG′(a) +

+(2C1 + C2 + C3)Φ(a) + (C1 + C2 + C3)aΦ
′(a) = −λ,

(2α + β + γ)Φ(a) + (α + β + γ)aΦ′(a) + (2C1 + C2 + (59)

+C3)G(a) + (C1 + C2 + C3)aG
′(a) = −C1.

By using the relations (56) and (59) we find that the constants A1 and B1

must satisfy the equations

(2λ+ 2µ+ κ)aA1 + l1B1 = −λa,

(2C1 + C2 + C3)aA1 + l2B1 = −C1a, (60)
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where

l1 = (C1 − σλ)I1(qa) + a[C1 + C2 + C3 − σ(λ+ 2µ+ κ)]I ′1(qa),

l2 = (α− σC1)I1(qa) + a[α + β + γ − σ(C1 + C2 + C3)]I
′

1(qa). (61)

We introduce the notation

Λ = [(2λ+ 2µ+ κ)l2 − (2C1 + C2 + C3)l1]a. (62)

From (60) we get

A1 = (C1l1 − λl2)aΛ
−1, B1 = [(C2 + C3)λ− (2µ+ κ)C1]a

2Λ−1. (63)

Let us study now the problem P (4). We seek the solution of this problem in
the form

u(4)
α = xαF (r), u

(4)
3 = 0, ϕ(4)

α = xα[Ψ(r)−
1

2
], ϕ

(4)
3 = 0, (64)

where F and Ψ are unknown functions. We note that in this case we have

e
(4)
αβ = e

(4)
βα = u

(4)
α,β = Fδαβ + xαxβr

−1F ′, e
(4)
33 = 0,

e
(4)
α3 = −e

(4)
3α = ε3αβxβ(Ψ−

1

2
), κ

(4)
α3 = κ

(4)
3α = 0, (65)

κ
(4)
αβ = κ

(4)
βα = ϕ

(4)
α,β = (Ψ−

1

2
)δαβ + xαxβr

−1Ψ′.

The equations of equilibrium (15) with the body loads fi = 0, gα = −κxα,
g3 = 0, reduce to

(λ+ 2µ+ κ)(F ′′ + 3r−1F ) + (C1 + C2 + C3)(Ψ
′′ + 3r−1Ψ′) = 0, (66)

(C1 + C2 + C3)(F
′′ + 3r−1F ) + (α + β + γ)(Ψ′′ + 3r−1Ψ′ − s2Ψ) = 0,

where s2 is given by (45). From these equations we find that F and Ψ satisfy
the equations

(
d2

dr2
+

3

r

d

dr

)(
d2

dr2
+

3

r

d

dr
− q2

)
F = 0,Ψ′′ + 3r−1Ψ′ − q2Ψ = 0,

where q2 is defined in (47). The functions F and Ψ which are bounded at the
origin are given by

F = E1 +N1r
−1I1(qr), Ψ = H1r

−1I1(qr),

where E1, N1 and H1 are arbitrary constants. It is easy to see that F and Ψ
satisfy the equations (66) only if N1 = −σH1, where σ is given by (55). Thus,

14



 

the displacements u(4)
α and the microrotations ϕ(4)

α have the form

u(4)
α = xα[E1 − σH1r

−1I1(qr)], ϕ
(4)
α = xα[H1r

−1I1(qr)−
1

2
]. (67)

It follows from (65), (29) and (30) that

t
(4)
αβ = λ(2F + rF ′)δαβ + (2µ+ κ)(Fδαβ + xαxβr

−1F ′)+

+ C1(2Ψ + rΨ′ − 1)δαβ + (C2 + C3)(Ψδαβ −
1

2
δαβ + xαxβr

−1Ψ′),

t
(4)
α3 = −t

(4)
3α = κε3αβxβ(Ψ−

1

2
), t

(4)
33 = λ(2F + rF ′) + C1(2Ψ + rΨ′ − 1),

m(4)
νη = α(2Ψ + rΨ′ − 1)δνη + (β + γ)(Ψδνη −

1

2
δνη + xνxηr

−1Ψ′)+ (68)

+ C1(2F + rF ′)δνη + (C3 + C4)(Fδαβ + xαxβr
−1F ′),

m
(4)
ν3 = −m

(4)
3ν = (C3 − C2)ε3νβxβ(Ψ−

1

2
),

m
(4)
33 = α(2Ψ + rΨ′ − 1) + C1(2F + rF ′).

Taking into account (68) and the form of F and Ψ, we find that on the
boundary L the following relations hold

t
(4)
αβnα = a−2xβ [(2λ+ 2µ+ κ)aE1 + lH1 −

1

2
a(2C1 + C2 + C3)],

t
(4)
α3nα = 0, m

(4)
α3nα = 0, (69)

m(4)
αρnα = a−2xρ[(2C1 + C2 + C3)aE1 + l2H1 −

1

2
a(2α + β + γ)],

where l1 and l2 are defined in (61). Thus, the boundary conditions (32), for
k = 4, reduce to the following system for the constants E1 and H1,

(2λ+ 2µ+ κ)aE1 + l1H1 =
1

2
(C2 + C3)a,

(2C1 + C2 + C3)aE1 + l2H1 =
1

2
(β + γ)a. (70)

We obtain

E1 =
1

2
aΛ−1[(C2 + C3)l2 − (β + γ)l1], (71)

H1 = −
1

2
Λ−1a2[(2C1 + C2 + C3)(C2 + C3)− (2λ+ 2µ+ κ)(β + γ)],

where the constant Λ is given by (62).

As the functions u
(3)
i , ϕ

(3)
i , u

(4)
i and ϕ

(4)
i are known, from (39) we can determine

the constants Dk3 and Dk4, (k = 1, 2, 3, 4). It follows from (37), (39) and (57)
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that

Dα3 =
∫

Σ1

xα[λ+ 2µ+ κ+ t
(3)
33 + (C2 − C3)Φ]da,

D33 =
∫

Σ1

[λ + 2µ+ κ+ t
(3)
33 ]da, (72)

Dα4 =
∫

Σ1

[xα(C1 + C2 + C3 + t
(4)
33 )− ε3αβ(C3ε3ρβxρ +m

(4)
3β )da],

D34 =
∫

Σ1

(C1 + C2 + C3 + t
(4)
33 )da,

D44 =
∫

Σ1

[(µ+ κ)xαxα + ε3αβxαt
(4)
3β + α + β + γ +m

(4)
33 ]da.

With the help of (56), (57), (67) and (68), the relations (72) reduce to

Dα3 = 0, Dα4 = 0,

D33 = π(λ+ 2µ+ κ)a2 + 2π
∫ a

0
{2λA1r+

+ (C1 − λσ)[I1(qr) + rI ′1(qr)]B1}dr, (73)

D34 = π(C2 + C3)a
2 + 2πλa2E1 + 2π(C1 − λσ)H1

∫ a

0
[I1(qr) + rI ′1(qr)]dr,

D44 = π(β + γ)a2 +
1

4
(2µ+ κ)πa4 + 2π

∫ a

0
r[κr2Ψ+

+ α(2Ψ + rΨ′) + C1(2F + rF ′)]dr.

We note that

∫ a

0
r3Ψdr = H1

∫ a

0
r2I1(qr)dr,

α(2Ψ + rΨ′) + C1(2F + rF ′) = 2C1E1 +

+(α− C1σ)H1[r
−1I1(qr) + I ′1(qr)], (74)

[x2I2(x)]
′ = x2I1(x), I1(0) = 0.

By using the relations (73) and (74) we find

D33 = π(λ+ 2µ+ κ)a2 + 2πλa2A1 + 2π(C1 − λσ)aB1I1(qa),

D34 = π(C2 + C3)a
2 + 2πλa2E1 + 2π(C1 − λσ)aH1I1(qa), (75)

D44 = π(β + γ)a2 +
1

4
(2µ+ κ)πa4 + 2πa2C1E1+

+ 2πκq−1a2H1I2(qa) + 2π(α− C1σ)aH1I1(qa).

Sice Drs = Dsr, from (73) we obtain D43 = D34, and

D3α = Dα3 = 0, D4α = Dα4 = 0. (76)

The system (38) becomes

Dαβaβ = 0, D33a3 +D34a4 = −R3, D34a3 +D44a4 = −M3. (77)
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Thus, for a right circular cylinder the system (38) reduces to two uncoupled
systems: one for the unknowns a1 and a2 and the other for the constants a3
and a4. It follows from (76) that in this case the problem of bending can be
treated independently. From (77) we obtain

a1 = a2 = 0, a3 = d−1(D34M3 −D44R3), a4 = d−1(D34R3 −D33M3), (78)

where d = D33D44 −D2
34. It follows from (33), (41), (56), (64) and (78) that

the solution of the problem of torsion and extension is

uα = ε3βαa4xβx3 + xα[a3A1 + a4E1 − σr−1(a3B1 + a4H1)I1(qr)],

u3 = a3x3, ϕ3 = a4x3, (79)

ϕα = xα[r
−1(a3B1 + a4H1)I1(qr)−

1

2
a4],

where A1, E1, B1 and H1 are defined in (63), (71), and the constants a3 and a4
are given by (78). We conclude that the torsion of a right circular cylinder made
of an isotropic chiral Cosserat elastic material is accompanied by extension.
Clearly, if M3 = 0 then we obtain the solution of the extension problem.

The torsion problem for an isotropic centrosymmetric Cosserat elastic cylinder
has been studied by Ieşan (1971). In the case of centrosymmetric materials we
have Cj = 0, and the relations (53), (61) and (70) imply that

σ = 0, l1 = 0, E1 = 0. (80)

It follows from (75) and (80) that for an isotropic and centrosymmetric circular
cylinder we have

D34 = 0,

so that in this case the torsion is not accompanied by extension. Moreover,
it is a simple matter to see from (75) and (80) that the constant D44 re-
duces to the torsional rigidity calculated by Usidus and Sokolovski (1973).
The extension, bending and flexure of a circular cylinder made of an isotropic
centrosymmetric Cosserat elastic material have been investigated by Reddy
and Venkatasubramanian (1976).

6 Conclusions

The original results established in this paper can be summarized as follows:

(a) We present a solution of the torsion, bending and extension problem for a
right cylinder made of an isotropic chiral Cosserat elastic material. The three-
dimensional problem is reduced to the study of two-dimensional problems.
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(b) We study the generalized plane strain problem in the case of chiral materi-
als and present an existence result. We introduce four generalized plane strain
problems characterized by external data which depend only on the constitu-
tive coefficients. The solution of the torsion problem is expressed in terms of
solutions of these problems.

(c) We prove that, in general, the torsion of an isotropic chiral Cosserat elastic
cylinder is accompanied by bending and extension.

(d) We apply the method to study the torsion of a circular cylinder. We estab-
lish the solutions of the auxiliary generalized plane strain problems for a cir-
cular domain. The displacement and microrotation vector fields in the torsion
problem are determined. We show that in this case the torsion is accompanied
by extension and a plane deformation. The solution established in the case of
a circular cylinder could be of interest for experimental investigations.
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