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This paper is concerned with the torsion of isotropic chiral Cosserat elastic cylinders. First, the generalized plane strain problem is defined and an existence result is presented. Then, the three-dimensional problem is reduced to the study of some generalized plane strain problems. In general, the torsion of the cylinder is accompanied by bending and extension. The method is applied to study the torsion of a circular cylinder.

Introduction

In recent years the behaviour of chiral materials has been the object of intensive research. A body which is not isotropic with respect to inversion is called chiral. Chirality can be observed in some carbon nanotubes, biological molecules (DNA), bones, honeycomb structures as well as in composites with inclusions.

It is well-known that chiral effects cannot be described within classical elasticity (see [START_REF] Lakes | Elastic and viscoelastic behaviour of chiral materials[END_REF]. The theory of Cosserat elasticity is adequate to describe the mechanical behaviour of chiral elastic bodies [START_REF] Lakes | Elastic and viscoelastic behaviour of chiral materials[END_REF][START_REF] Donescu | On the Young's modulus of an auxetic composite structure[END_REF]. The Cosserat theory studies continua with oriented particles which have the six degrees of freedom of a rigid body. The theory of Cosserat elastic solids was extensively studied in the last decades. For the historical development and the analysis of various results on the subject see [START_REF] Nowacki | Theory of Asymmetric Elasticity[END_REF], [START_REF] Ciarletta | Non-Classical Elastic Solids[END_REF], [START_REF] Eringen | Microcontinuum Field Theories, I: Foundations and Solids[END_REF], [START_REF] Rubin | Cosserat Theories: Shells, Rods and Points[END_REF], [START_REF] Dyszlewicz | Micropolar Theory of Elasticity[END_REF], [START_REF] Jasiuk | From lattices and composites to micropolar continua. Analysis of materials with complex microstructure[END_REF]. A large number of papers have been devoted to the study of chiral Cosserat elastic bodies [START_REF] Nowacki | Green functions for a hemitropic micropolar continuum[END_REF]Lakes and Email address: iesan@uaic.ro (D. Ieşan).
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19 July 2010 [START_REF] Lakes | Noncentrosymmetry in micropolar elasticity[END_REF][START_REF] Dyszlewicz | Selected one-dimensional problems of elastostatics and thermoelastostatics of the hemitropic micropolar medium[END_REF]. This class of materials continues to attract attention both from the theoretical and the technical point of view [START_REF] Healey | Material symmetry and chirality in nonlinearly elastic rods[END_REF][START_REF] Dyszlewicz | Micropolar Theory of Elasticity[END_REF][START_REF] Teodorescu | On the wave propagation in chiral media[END_REF][START_REF] Natroshvili | Representation formulae of general solutions in the theory of hemitropic elasticity[END_REF][START_REF] Khurana | Longitudinal wave response of a chiral slab interposed between micropolar solid half-spaces[END_REF]. A Cosserat material is called isotropic chiral if its symmetry group equals the proper orthogonal group. In the linear theory an isotropic chiral Cosserat elastic material is characterized by nine constitutive coefficients.

In this paper we study the deformation of homogeneous and isotropic chiral Cosserat elastic cylinders subjected to torsion, extension and bending. This work is motivated by the recent interest in the using of the isotropic chiral Cosserat elastic solid as model for cellular solids and composite materials [START_REF] Prall | Properties of a chiral honeycomb with a Poisson's ratio-1[END_REF]Lakes, 1998[START_REF] Lakes | Elastic and viscoelastic behaviour of chiral materials[END_REF][START_REF] Donescu | On the Young's modulus of an auxetic composite structure[END_REF][START_REF] Chandraseker | An atomisticcontinuum Cosserat rod model of carbon nontubes[END_REF] and for bones [START_REF] Lakes | Slow compressional wave propagation in wet human and bovine cortical bone[END_REF]. We note that [START_REF] Lakes | Noncentrosymmetry in micropolar elasticity[END_REF] studied the problem of a chiral Cosserat elastic rod of circular cross section, stretched axially and free to twist. In this paper we consider the problem of extension, bending and torsion of a right cylinder with general cross section. First, we introduce the generalized plane strain problem and present an existence result. In contrast with the case of centrosymmetric solids, in the generalized plane strain of a chiral Cosserat elastic cylinder, all components of displacement vector and microrotation vector are different from zero. We introduce four special generalized plane strain problems characterized by external data which depend only on the constitutive coefficients. The solutions of these problems are used to solve the torsion problem. We show that, in general, the torsion of an isotropic chiral Cosserat elastic cylinder is accompanied by extension and bending. The results are applied to study the torsion of a circular cylinder. We determine the solutions of the auxiliary generalized plane strain problems for a circular domain. Then, the displacement and microrotation vector fields in the torsion problem are determined.

Basic equations

Throughout this paper B denotes the interior of a right cylinder of length h with open cross-section Σ and lateral boundary Π (Fig. 1). We call ∂B the boundary of B, and designate by n i the components of the outward unit normal of ∂B. Throughout this paper a rectangular cartesian coordinate system Ox k , (k = 1, 2, 3), is used. The rectangular cartesian coordinate frame is chosen such that the x 3 -axis is parallel to the generators of B and the x 1 Ox 2 plane contains one of terminal cross-sections. We denote by Σ 1 and Σ 2 , respectively, the cross-section located at x 3 = 0 and x 3 = h.

Fig. 1. A general prismatic rod

We assume that the generic cross-section Σ is a simply connected regular region. Let L be the boundary of the region Σ. We shall employ the usual summation and differentiation conventions: Greek subscripts are understood to range over the integers (1, 2), whereas Latin subscripts (unless otherwise specified) to the range (1, 2, 3); summation over repeated subscripts is implied and subscripts preceded by a comma denote partial differentiation with respect to the corresponding cartesian coordinate. Letters in boldface stand for tensors of an order p ≥ 1, and if v has the order p, we write v ij...s (p subscripts) for the components of v in the cartesian coordinate frame.

Throughout this paper we consider the linear theory of homogeneous and isotropic chiral Cosserat elastic bodies. Let u be the displacement vector field on B. We denote by ϕ the microrotation vector field. The strain measures are given by

e ij = u j,i + ε jik ϕ k , κ ij = ϕ j,i , (1) 
where ε ijk is the alternating symbol. Let t ij be the stress tensor and let m ij be the couple stress tensor. The equilibrium equations, in the absence of body loads, are t ji,j = 0, m ji,j + ε irs t rs = 0.

(2)

The constitutive equations can be presented in the form [START_REF] Lakes | Noncentrosymmetry in micropolar elasticity[END_REF][START_REF] Dyszlewicz | Micropolar Theory of Elasticity[END_REF])

t ij = λe rr δ ij + (µ + κ)e ij + µe ji + C 1 κ ss δ ij + C 2 κ ji + C 3 κ ij , m ij = ακ rr δ ij + βκ ji + γκ ij + C 1 e rr δ ij + C 2 e ji + C 3 e ij , (3) 
where δ ij is Kronecker's delta, and γ, µ, κ, α, β, γ, C 1 , C 2 and C 3 are constitutive constants. In the case of a centrosymmetric material the coefficients C 1 , C 2 and C 3 are equal to zero. The surface force and the surface moment acting at a regular point of ∂B are given by

t i = t ji n j , m i = m ji n j .
We assume that the considered cylinder is free of lateral loads. Thus, we have the following conditions

t αi n α = 0, m αi n α = 0 on Π. ( 4 
)
We suppose that the cylinder B is subjected to extension, bending and torsion. Let R = (0, 0, R 3 ) and M = (M 1 , M 2 , M 3 ) be prescribed vectors representing the resultant force and the resultant moment about O of the tractions acting on Σ 1 . On Σ 2 there are tractions applied so as to satisfy the equilibrium conditions of the body. Consequently, for x 3 = 0 we have the conditions

Σ 1 t 3α da = 0, (5) 
Σ 1 t 33 da = -R 3 , (6) Σ 1 (x α t 33 -ε 3αβ m 3β )da = ε αβ3 M β , (7) 
Σ 1 (ε αβ3 x α t 3β + m 33 )da = -M 3 . (8) 
The problem consists in finding of the functions u i and ϕ i of class C 2 (B) ∩ C 1 (B) which satisfy the equations ( 1)-(3) on B, the conditions (4) on the lateral surface, and the conditions ( 5)-( 8) on the end Σ 1 . We have introduced the mechanical loads R 3 and M α in order to emphasize the torsional effects on the deformation of the cylinder.

We assume that Σ is C ∞ -smooth. We have chosen this hypothesis in order to best describe the method for the solution of the problem. We consider only a "C ∞ -theory" but it is possible to get a classical solution for more general assumptions of regularity. In what follows we suppose that the elastic potential is a positive definite quadratic form. The restrictions imposed by this hypothesis on the constitutive coefficients have been presented in various works [START_REF] Lakes | Noncentrosymmetry in micropolar elasticity[END_REF][START_REF] Dyszlewicz | Micropolar Theory of Elasticity[END_REF]. We note only the following inequalities

κ > 0, 2µ + κ > 0, γ + β > 0, γ -β > 0, λ + 2µ + κ > 0, (λ + 2µ + κ)(α + β + γ) -(C 1 + C 2 + C 3 ) 2 > 0. ( 9 
)
3 Generalized plane strain

Let us assume now that a body force f and a body couple g are prescribed on B. Moreover, we consider that on the lateral boundary of the cylinder there are prescribed the surface force t and the surface moment m. We suppose that f , g, t and m are all independent of the axial coordinate. We define the state of generalized plane strain of the cylinder to be that state in which the displacement vector and microrotation vector are independent of the axial coordinate,

u i = u i (x 1 , x 2 ), ϕ i = ϕ i (x 1 , x 2 ), (x 1 , x 2 ) ∈ Σ 1 . ( 10 
)
The above restrictions, in conjunction with the geometrical equations (1) and the constitutive equations ( 2), imply that e ij , κ ij , t ij and m ij are all independent of the axial coordinate. The equations (1) reduce to

e αi = u i,α + ε iαj ϕ j , e 3i = ε i3β ϕ β , κ αi = ϕ i,α , κ 3i = 0. ( 11 
)
The constitutive equations for a generalized plane strain are given by

t αβ = λe ρρ δ αβ + (µ + κ)e αβ + µe βα + C 1 κ ρρ δ αβ + C 2 κ βα + C 3 κ αβ , t α3 = (µ + κ)e α3 + µe 3α + C 3 κ α3 , t 3α = (µ + κ)e 3α + µe α3 + C 2 κ α3 , t 33 = λe ρρ + C 1 κ ρρ , (12) 
m νη = ακ ρρ δ νη + βκ ην + γκ νη + C 1 e ρρ δ νη + C 2 e ην + C 3 e νη , m α3 = γκ α3 + C 2 e 3α + C 3 e α3 , m 3α = βκ α3 + C 2 e α3 + C 3 e 3α , m 33 = ακ ρρ + C 1 e ρρ .
The equations of equilibrium can be written as

t βi,β + f i = 0, m βi,β + ε irs t rs + g i = 0, (13) 
on Σ 1 . The conditions on the lateral surface become

t βi n β = t i , m βi n β = m i on L. ( 14 
)
We assume that f i , g i , t i and m i are functions of class C ∞ .

The generalized plane strain problem consists in finding of the displacement u i and microrotations ϕ i which satisfy the equations ( 11)-( 13) on Σ 1 , and the boundary conditions ( 14) on L. In view of ( 11) and ( 12), the equations of equilibrium can be expressed in terms of the functions u i and ϕ i in the form

(µ + κ)∆u α + (λ + µ)u β,βα + κε αβ3 ϕ 3,β + C 3 ∆ϕ α + (C 1 + C 2 )ϕ β,βα + f α = 0, (µ + κ)∆u 3 + κε 3βα ϕ α,β + C 3 ∆ϕ 3 + f 3 = 0, C 3 ∆u ν + (C 1 + C 2 )u ρ,ρν + κε νβ3 u 3,β + γ∆ϕ ν + (15) + (α + β)ϕ ρ,ρν + 2(C 3 -C 2 )ε νη3 ϕ 3,η -2κϕ ν + g ν = 0, C 3 ∆u 3 + κε 3νη u η,ν + γ∆ϕ 3 + 2(C 3 -C 2 )ε 3νη ϕ η,ν -2κϕ 3 + g 3 = 0,
on Σ 1 , where ∆ is the two-dimensional Laplacian.

In the case of the generalized plane strain the elastic potential W is given by 2W = λe ρρ e νν + (µ + κ)e αβ e αβ + µe βα e αβ + (µ + κ)e α3 e α3 + + 2µe α3 e 3α + (µ + κ)e 3α e 3α + ακ ρρ κ νν + βκ ην κ νη + (16)

+ γκ νη κ νη + γκ α3 κ α3 + 2C 1 κ ρρ e νν + 2C 2 e αβ κ βα + + 2C 3 e αβ κ αβ + 2C 2 e 3α κ α3 + 2C 3 e α3 κ α3 . Let u * 1 = c 1 -c 4 x 2 , u * 2 = c 2 + c 4 x 1 , u * 3 = c 3 , ϕ * 1 = 0, ϕ * 2 = 0, ϕ * 3 = c 4 , (17) 
where c s , (s = 1, 2, 3, 4), are arbitrary constants. Then

U * = (u * 1 , u * 2 , u * 3 , ϕ * 1 , ϕ * 2 , ϕ * 3
) is called a plane rigid vector field.

Theorem 1. If the elastic potential W is a positive definite quadratic form, then any two solutions of the generalized plane strain problem (11) -( 14) are equal modulo a plane rigid vector field.

Proof. In view of ( 11)-( 13) and ( 16), we get

2W = t βi e βi + t 3i e 3i + m βi κ βi = = (t βi u i + m βi ϕ i ) ,β + f i u i + g i ϕ i .
With the help of the divergence theorem we obtain 2

Σ 1 W da = L (t βi u i + m βi ϕ i )n β ds + Σ 1 (f i u i + g i ϕ i )da. ( 18 
)
Let (u ′ i , ϕ ′ i ) and (u ′′ i , ϕ ′′ i ) be two solutions of the problem ( 11)-( 14). We denote

u 0 i = u ′ i -u ′′ i and ϕ 0 i = ϕ ′ i -ϕ ′′ i .
The functions u 0 i and ϕ 0 i satisfy the generalized plane strain problem corresponding to null data. Thus, from (18) we find that

Σ 1 W 0 da = 0, ( 19 
)
where W 0 is the elastic potential corresponding to u 0 i and ϕ 0 i . Since W 0 is positive definite, we find e 0 ji = 0, and κ 0 αi = 0 on Σ 1 . These equations imply that (u 0 1 , u 0 2 , u 0 3 , ϕ 0 1 , ϕ 0 2 , ϕ 0 3 ) is a plane rigid vector field.

The six-dimensional vector

U * = (u * 1 , u * 2 , u * 3 , ϕ * 1 , ϕ * 2 , ϕ *
3 ) defined by ( 17) can be expressed in the form

U * = 4 k=1 c k U (k) ,
where U (1) = (1, 0, 0, 0, 0, 0), U (2) = (0, 1, 0, 0, 0, 0),

U (3) = (0, 0, 1, 0, 0, 0), U (4) = (-x 2 , x 1 , 0, 0, 0, 1). ( 20 
)
Let us consider the equations ( 11)-( 13) on Σ 1 with the boundary conditions

t βi n β = 0, m βi n β = 0 on L. ( 21 
)
Following [START_REF] Fichera | Existence Theorems in Elasticity[END_REF], a C ∞ solution of the boundary valued problem ( 11)-( 13), ( 21) exists if and only if

Σ 1 4 j=1 H j U (k) j da = 0, (k = 1, 2, 3, 4), (22) 
where

H = (H 1 , H 2 , . . . , H 6 ) with H i = f i , H 3+i = g i , and 
U (k) = (U (k) 1 , U (k) 2 , . . . , U (k) 6 ), U (1) 1 = 1, U (1) 1+s = 0, (s = 1, 2, . . . , 5), U (2) 2 = 1, U (2) 1 = U (2) 2+m = 0, 6 (m = 1, 2, 3, 4), U (3) 3 = 1, U (3) α = U (3) 3+p = 0, U (4) 1 = -x 2 , U (4) 2 = x 1 , U (4) 6 = 1, U (4) 2+k = 0. The conditions (22) reduce to Σ 1 f i a = 0, Σ 1 (x 1 f 2 -x 2 f 1 + g 3 )da = 0.
It is a simple matter to see that in the case of the boundary value problem ( 11)-( 14), the above conditions are replaced by

Σ 1 f i da + L t i ds = 0, Σ (ε αβ3 x α f β + g 3 )da + L (ε αβ3 x α t β + m 3 )ds = 0. (23)
Thus, we have the following existence result.

Theorem 2. The boundary value problem (11) -( 14) has solutions if and only if the relations (23) hold.

In the next section we will have occasion to use four generalized plane strain problems P (k) , (k = 1, 2, 3, 4). The problem P (1) corresponds to the body loads

f (1) i = λδ 1i , g (1) i = (C 1 + C 3 -C 2 )δ 1i , (24) 
and to the boundary data

t (1) α = -λx 1 n α , t (1) 
3 = C 2 n 2 , m (1) ρ = -C 1 x 1 n ρ , m (1) 
3 = βn 2 . ( 25 
)
In the problem P (2) the body loads and the boundary data are

f (2) i = λδ 2i , g (2) 
i = (C 1 + C 3 -C 2 )δ 2i , t (2) α = -λx 2 n α , t (2) 
3 = -C 2 n 1 , m (2) α = -C 1 x 2 n α , m (2) 
3 = -βn 1 . (26) 
The problem P (3) corresponds to the following loading

f (3) i = 0, g (3) 
i = 0, t (3) α = -λn α , t (3) 
3 = 0, m (3) 
β = -C 1 n β , m (3) 
3 = 0. ( 27 
)
We denote by P (4) the problem characterized by the following body loads and boundary tractions

f (4) i = 0, g (4) α = -κx α , g (4) 3 = 0, t (4) α = -C 1 n α , t (4) 3 = -µε 3ρα x ρ n α , m (4) ρ = -αn ρ , m (4) 3 = C 2 ε 3ρν x ν n ρ . ( 28 
)
We note that the necessary and sufficient conditions (23) for the existence of the solution are satisfied for each boundary value problem P (k) , (k = 1, 2, 3, 4). We denote by u

(k) i , ϕ (k) 
i , e

(k) ij , κ (k) ij , t (k) ij and m (k)
ij the displacement, microrotation, strain measures, stress tensor and couple stress tensor in the problem P (k) , respectively. Clearly, the problems P (k) are characterized by the geometrical equations

e (k) αi = u (k) i,α + ε iαj ϕ (k) j , e (k) 3i = ε i3β ϕ (k) β , κ (k) αi = ϕ (k) i,α , (29) 
the constitutive equations

t (k) αβ = λe (k) ρρ δ αβ + (µ + κ)e (k) αβ + µe (k) βα + C 1 κ (k) ρρ δ αβ + C 2 κ (k) βα + C 3 κ (k) αβ , t (k) α3 = (µ + κ)e (k) α3 + µe (k) 3α + C 3 κ (k) α3 , t (k) 3α = (µ + κ)e (k) 3α + µe (k) α3 + C 2 κ (k) α3 , t (k) 33 = λe (k) ρρ + C 1 κ (k) ρρ , (30) 
m (k) νη = ακ (k) ρρ δ νη + βκ (k) ην + γκ (k) νη + C 1 e (k) ρρ δ νη + C 2 e (k) ην + C 3 e (k) νη , m (k) α3 = γκ (k) α3 + C 2 e (k) 3α + C 3 e (k) α3 , m (k) 3α = βκ (k) α3 + C 2 e (k) α3 + C 3 e (k) 3α , m (k) 33 = ακ (k) ρρ + C 1 e (k) ρρ ,
and the equations of equilibrium

t (k) βi,β + f (k) i = 0, m (k) βi,β + ε irs t (k) rs + g (k) i = 0, (31) 
on Σ 1 , and the following boundary conditions

t (k) βi n β = t (k) i , m (k) βi n β = m (k) i on L, (32) 
(k = 1, 2, 3, 4). Here, f

(k) i , g (k) 
i , t

(k) i and m

(k) i are defined by ( 24)-( 28).

Solution of the problem

In this section we reduce the three-dimensional problem to the study of four generalized plane strain problems. Following [START_REF] Ieşan | On Saint-Venant's problem[END_REF] we seek the solution of the problem formulated in Section 2 in the form

u α = - 1 2 a α x 2 3 + ε 3βα a 4 x β x 3 + 4 k=1 a k u (k) α , u 3 = (a 1 x 1 + a 2 x 2 + a 3 )x 3 + 4 k=1 a k u (k) 3 , (33) 
ϕ α = ε 3αβ a β x 3 + 4 k=1 a k ϕ (k) α , ϕ 3 = a 4 x 3 + 4 k=1 a k ϕ (k) 3 , (x 1 , x 2 , x 3 ) ∈ B,
where u (k) i and ϕ

(k) i are the displacements and microrotations from the problems P (k) introduced in Section 3, and a k , (k = 1, 2, 3, 4), are unknown constants. It follows from ( 1) and ( 30) that

e αi = 4 k=1 a k e (k) αi , e 3α = ε 3βα x β a 4 + 4 k=1 a k e (k) 3α , e 33 = a 1 x 1 + a 2 x 2 + a 3 , κ αi = 4 k=1 a k κ (k) αi , κ 3α = ε 3αβ a β , κ 33 = a 4 , (34) 
where e

(k) ij and κ (k)
ij are given by ( 29). By ( 34) and the constitutive equations (3) we obtain

t αβ = λ(a 1 x 1 + a 2 x 2 + a 3 )δ αβ + C 1 δ αβ a 4 + 4 k=1 a k t (k) αβ , t α3 = µε 3βα x β a 4 + C 2 ε 3αβ a β + 4 k=1 a k t (k) α3 , t 3α = (µ + κ)ε 3βα x β a 4 + C 3 ε 3αβ a β + 4 k=1 a k t (k) 3α , t 33 = (λ + µ + κ)(a 1 x 1 + a 2 x 2 + a 3 ) + (C 1 + C 2 + C 3 )a 4 + 4 k=1 a k t (k) 33 , (35) m νη = [αa 4 + C 1 (a 1 x 1 + a 2 x 2 + a 3 )]δ νη + 4 k=1 a k m (k) νη , m ν3 = βε 3νρ a ρ + C 2 ε 3ρν x ρ a 4 + 4 k=1 a k m (k) ν3 , m 3ν = γε 3νρ a ρ + C 3 ε 3ρν x ρ a 4 + 4 k=1 a k m (k) 3ν , m 33 = (α + β + γ)a 4 + (C 1 + C 2 + C 3 )(a 1 x 1 + a 2 x 2 + a 3 ) + 4 k=1 a k m (k) 33 ,
where t

(k) ij and m (k)
ij are the stress tensor and the couple stress tensor from the problem P (k) , (k = 1, 2, 3, 4).

It is a simple matter to see that the equations of equilibrium (2) and the boundary conditions (4) are satisfied on the basis of equations ( 31) and the boundary conditions (32). Let us study the end conditions (5). With the help of equilibrium equations (2) and boundary conditions (4) we can write

Σ 1 t 31 da = Σ 1 (t 13 -m ρ2,ρ )da = Σ 1 [(x 1 t ρ3 ) ,ρ -m α2,α ]da = = L (x 1 t α3 n α -m α2 n α )ds = 0.
Similarly we can prove that the second condition from ( 5) is satisfied.

The functions t ij and m ij from ( 35) can be expressed in the form

t ij = 4 k=1 a k s (k) ij , m ij = 4 k=1 a k π (k) ij , (36) 
where

s (ν) αβ = λx ν δ αβ + t (ν)
αβ , s

(3)

αβ = λδ αβ + t (3) αβ , s (4) 
αβ = C 1 δ αβ + t (4) αβ , s (ν) α3 = C 2 ε 3αν + t (ν) α3 , s (3) α3 = t (3) α3 , s (4) α3 = µε 3ρα x ρ + t (4) α3 , s (ν) 3α = C 3 ε 3αν + t (ν) 3α , s (3) 3α = t (3) 3α , s (4) 3α = (µ + κ)ε 3ρα x ρ + t (4) 3α , (37) 
s (ν) 33 = (λ + 2µ + κ)x ν + t (ν)
33 , s

(3) 33 = λ + 2µ + κ + t (3) 33 , s (4) 33 = C 1 + C 2 + C 3 + t (4) 33 , π (ν) αβ = C 1 x ν δ αβ + m (ν) αβ , π (3) αβ = C 1 δ αβ + m (3) αβ , π (4) νη = αδ νη + m (4) νη , π (ρ) 3ν = γε 3νρ + m (ρ) 3ν , π (3) 3ν = m (3) 3ν , π (4) 3ν = C 3 ε 3ρν x ρ + m (4) 3ν , π (ρ) 33 = (C 1 + C 2 + C 3 )x ρ + m (ρ) 33 , π (3) 33 = C 1 + C 2 + C 3 + m (3) 33 , π (4) 33 = α + β + γ + m (4) 33 .
In view of (36), the conditions ( 6)-( 8) reduce to the following system for the constants a 1 , a 2 , a 3 and a 4 ,

4 k=1 D αk a k = ε αβ3 M β , 4 k=1 D 3k a k = -R 3 , 4 k=1 D 4k a k = -M 3 , (38) 
where we have introduced the notations

D αk = Σ 1 (x α s (k) 33 -ε 3αβ π (k) 3β )da, D 3k = Σ 1 s (k) 33 da, D 4k = Σ 1 [ε 3αβ x α s (k) 3β + π (k) 33 ]da. ( 39 
)
We note that the constants D rs , (r, s = 1, 2, 3, 4), depend only on the cross section and the constitutive coefficients. As in classical theory [START_REF] Ieşan | Classical and Generalized Models of Elastic Rods[END_REF] we can prove that det(D rs ) > 0, D rs = D sr .

(40) The inequality from (40) follows from (36) and the positive definiteness of the elastic potential. The symmetry of D rs is a direct consequence of the reciprocal theorem. The system (38) uniquely determines the constants a k , (k = 1, 2, 3, 4).

We conclude that the solution of the problem has the form (33), where the where

l 1 = (C 1 -σλ)I 1 (qa) + a[C 1 + C 2 + C 3 -σ(λ + 2µ + κ)]I ′ 1 (qa), l 2 = (α -σC 1 )I 1 (qa) + a[α + β + γ -σ(C 1 + C 2 + C 3 )]I ′ 1 (qa). (61) 
We introduce the notation

Λ = [(2λ + 2µ + κ)l 2 -(2C 1 + C 2 + C 3 )l 1 ]a. (62) 
From (60) we get

A 1 = (C 1 l 1 -λl 2 )aΛ -1 , B 1 = [(C 2 + C 3 )λ -(2µ + κ)C 1 ]a 2 Λ -1 . (63) 
Let us study now the problem P (4) . We seek the solution of this problem in the form

u (4) α = x α F (r), u (4) 
3 = 0, ϕ (4) α = x α [Ψ(r) - 1 2 ], ϕ (4) 
3 = 0, (64) 
where F and Ψ are unknown functions. We note that in this case we have e

βα = u (4) α,β = F δ αβ + x α x β r -1 F ′ , e (4) αβ = e (4) 
= ε 3αβ x β (Ψ - 1 2 ), κ (4) 33 = 0, e (4) α3 = -e (4) 3α 
α3 = κ (4) 3α = 0, (4) 
αβ = κ (4) βα = ϕ (4) α,β = (Ψ - 1 2 )δ αβ + x α x β r -1 Ψ ′ . (65) κ (4) 
The equations of equilibrium (15) with the body loads f i = 0, g α = -κx α , g 3 = 0, reduce to

(λ + 2µ + κ)(F ′′ + 3r -1 F ) + (C 1 + C 2 + C 3 )(Ψ ′′ + 3r -1 Ψ ′ ) = 0, ( 66 
) (C 1 + C 2 + C 3 )(F ′′ + 3r -1 F ) + (α + β + γ)(Ψ ′′ + 3r -1 Ψ ′ -s 2 Ψ) = 0,
where s 2 is given by (45). From these equations we find that F and Ψ satisfy the equations

d 2 dr 2 + 3 r d dr d 2 dr 2 + 3 r d dr -q 2 F = 0, Ψ ′′ + 3r -1 Ψ ′ -q 2 Ψ = 0,
where q 2 is defined in (47). The functions F and Ψ which are bounded at the origin are given by

F = E 1 + N 1 r -1 I 1 (qr), Ψ = H 1 r -1 I 1 (qr),
where E 1 , N 1 and H 1 are arbitrary constants. It is easy to see that F and Ψ satisfy the equations (66) only if N 1 = -σH 1 , where σ is given by (55). Thus, the displacements u (4) α and the microrotations ϕ (4) α have the form

u (4) α = x α [E 1 -σH 1 r -1 I 1 (qr)], ϕ (4) α = x α [H 1 r -1 I 1 (qr) - 1 2 ]. (67) 
It follows from ( 65), ( 29) and (30) that t (4)

αβ = λ(2F + rF ′ )δ αβ + (2µ + κ)(F δ αβ + x α x β r -1 F ′ )+ + C 1 (2Ψ + rΨ ′ -1)δ αβ + (C 2 + C 3 )(Ψδ αβ - 1 2 δ αβ + x α x β r -1 Ψ ′ ), t (4) α3 = -t (4) 3α = κε 3αβ x β (Ψ - 1 2 ), t (4) 33 = λ(2F + rF ′ ) + C 1 (2Ψ + rΨ ′ -1), m (4) νη = α(2Ψ + rΨ ′ -1)δ νη + (β + γ)(Ψδ νη - 1 2 δ νη + x ν x η r -1 Ψ ′ )+ (68) + C 1 (2F + rF ′ )δ νη + (C 3 + C 4 )(F δ αβ + x α x β r -1 F ′ ), m (4) ν3 = -m (4) 3ν = (C 3 -C 2 )ε 3νβ x β (Ψ - 1 2 ), m (4) 33 = α(2Ψ + rΨ ′ -1) + C 1 (2F + rF ′ ).
Taking into account (68) and the form of F and Ψ, we find that on the boundary L the following relations hold t (4)

αβ n α = a -2 x β [(2λ + 2µ + κ)aE 1 + lH 1 - 1 2 a(2C 1 + C 2 + C 3 )], t (4) 
α3 n α = 0, m

α3 n α = 0, (69)

m (4) αρ n α = a -2 x ρ [(2C 1 + C 2 + C 3 )aE 1 + l 2 H 1 - 1 2 a(2α + β + γ)],
where l 1 and l 2 are defined in (61). Thus, the boundary conditions (32), for k = 4, reduce to the following system for the constants E 1 and H 1 ,

(2λ + 2µ + κ)aE 1 + l 1 H 1 = 1 2 (C 2 + C 3 )a, (2C 1 + C 2 + C 3 )aE 1 + l 2 H 1 = 1 2 (β + γ)a. ( 70 
)
We obtain

E 1 = 1 2 aΛ -1 [(C 2 + C 3 )l 2 -(β + γ)l 1 ], (71) 
H 1 = - 1 2 Λ -1 a 2 [(2C 1 + C 2 + C 3 )(C 2 + C 3 ) -(2λ + 2µ + κ)(β + γ)],
where the constant Λ is given by (62).

As the functions u

(3) i , ϕ (3) 
i , u

i and ϕ

(4)

i are known, from (39) we can determine the constants D k3 and D k4 , (k = 1, 2, 3, 4). It follows from ( 37), ( 39) and ( 57) that

D α3 = Σ 1 x α [λ + 2µ + κ + t (3) 33 + (C 2 -C 3 )Φ]da, D 33 = Σ 1 [λ + 2µ + κ + t (3) 33 ]da, (72) 
D α4 = Σ 1 [x α (C 1 + C 2 + C 3 + t (4) 33 ) -ε 3αβ (C 3 ε 3ρβ x ρ + m (4) 3β )da], D 34 = Σ 1 (C 1 + C 2 + C 3 + t (4) 33 )da, D 44 = Σ 1 [(µ + κ)x α x α + ε 3αβ x α t (4) 3β + α + β + γ + m (4) 33 ]da.
With the help of ( 56), ( 57), ( 67) and ( 68), the relations (72) reduce to

D α3 = 0, D α4 = 0, D 33 = π(λ + 2µ + κ)a 2 + 2π a 0 {2λA 1 r+ + (C 1 -λσ)[I 1 (qr) + rI ′ 1 (qr)]B 1 }dr, (73) 
D 34 = π(C 2 + C 3 )a 2 + 2πλa 2 E 1 + 2π(C 1 -λσ)H 1 a 0 [I 1 (qr) + rI ′ 1 (qr)]dr, D 44 = π(β + γ)a 2 + 1 4 (2µ + κ)πa 4 + 2π a 0 r[κr 2 Ψ+ + α(2Ψ + rΨ ′ ) + C 1 (2F + rF ′ )]dr.
We note that

a 0 r 3 Ψdr = H 1 a 0 r 2 I 1 (qr)dr, α(2Ψ + rΨ ′ ) + C 1 (2F + rF ′ ) = 2C 1 E 1 + +(α -C 1 σ)H 1 [r -1 I 1 (qr) + I ′ 1 (qr)], (74) 
[x 2 I 2 (x)] ′ = x 2 I 1 (x), I 1 (0) = 0.
By using the relations ( 73) and (74) we find

D 33 = π(λ + 2µ + κ)a 2 + 2πλa 2 A 1 + 2π(C 1 -λσ)aB 1 I 1 (qa), D 34 = π(C 2 + C 3 )a 2 + 2πλa 2 E 1 + 2π(C 1 -λσ)aH 1 I 1 (qa), (75) 
D 44 = π(β + γ)a 2 + 1 4 (2µ + κ)πa 4 + 2πa 2 C 1 E 1 + + 2πκq -1 a 2 H 1 I 2 (qa) + 2π(α -C 1 σ)aH 1 I 1 (qa).
Sice D rs = D sr , from (73) we obtain D 43 = D 34 , and

D 3α = D α3 = 0, D 4α = D α4 = 0. ( 76 
)
The system (38) becomes

D αβ a β = 0, D 33 a 3 + D 34 a 4 = -R 3 , D 34 a 3 + D 44 a 4 = -M 3 . (77) 
Thus, for a right circular cylinder the system (38) reduces to two uncoupled systems: one for the unknowns a 1 and a 2 and the other for the constants a 3 and a 4 . It follows from ( 76) that in this case the problem of bending can be treated independently. From (77) we obtain

a 1 = a 2 = 0, a 3 = d -1 (D 34 M 3 -D 44 R 3 ), a 4 = d -1 (D 34 R 3 -D 33 M 3 ), ( 78 
)
where d = D 33 D 44 -D 2 34 . It follows from ( 33), ( 41), ( 56), ( 64) and ( 78) that the solution of the problem of torsion and extension is

u α = ε 3βα a 4 x β x 3 + x α [a 3 A 1 + a 4 E 1 -σr -1 (a 3 B 1 + a 4 H 1 )I 1 (qr)], u 3 = a 3 x 3 , ϕ 3 = a 4 x 3 , (79) 
ϕ α = x α [r -1 (a 3 B 1 + a 4 H 1 )I 1 (qr) - 1 2 a 4 ],
where A 1 , E 1 , B 1 and H 1 are defined in ( 63), ( 71), and the constants a 3 and a 4 are given by ( 78). We conclude that the torsion of a right circular cylinder made of an isotropic chiral Cosserat elastic material is accompanied by extension.

Clearly, if M 3 = 0 then we obtain the solution of the extension problem.

The torsion problem for an isotropic centrosymmetric Cosserat elastic cylinder has been studied by [START_REF] Ieşan | Torsion of micropolar elastic beams[END_REF]. In the case of centrosymmetric materials we have C j = 0, and the relations ( 53), ( 61) and ( 70) imply that σ = 0, l 1 = 0, E 1 = 0. (80)

It follows from ( 75) and ( 80) that for an isotropic and centrosymmetric circular cylinder we have D 34 = 0, so that in this case the torsion is not accompanied by extension. Moreover, it is a simple matter to see from ( 75) and ( 80) that the constant D 44 reduces to the torsional rigidity calculated by [START_REF] Usidus | Torsion of cylindrical shafts made of micropolar materials[END_REF]. The extension, bending and flexure of a circular cylinder made of an isotropic centrosymmetric Cosserat elastic material have been investigated by [START_REF] Reddy | Saint-Venant's problems for a micropolar elastic circular cylinder[END_REF].

Conclusions

The original results established in this paper can be summarized as follows:

(a) We present a solution of the torsion, bending and extension problem for a right cylinder made of an isotropic chiral Cosserat elastic material. The threedimensional problem is reduced to the study of two-dimensional problems.

(b) We study the generalized plane strain problem in the case of chiral materials and present an existence result. We introduce four generalized plane strain problems characterized by external data which depend only on the constitutive coefficients. The solution of the torsion problem is expressed in terms of solutions of these problems.

(c) We prove that, in general, the torsion of an isotropic chiral Cosserat elastic cylinder is accompanied by bending and extension.

(d) We apply the method to study the torsion of a circular cylinder. We establish the solutions of the auxiliary generalized plane strain problems for a circular domain. The displacement and microrotation vector fields in the torsion problem are determined. We show that in this case the torsion is accompanied by extension and a plane deformation. The solution established in the case of a circular cylinder could be of interest for experimental investigations. 
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constants a k are given by ( 38) and (u (k) j , ϕ (k) j ) are the solutions of the twodimensional problems P (k) , (k = 1, 2, 3, 4). Generally, the torsion of an isotropic chiral Cosserat elastic cylinder is accompanied by bending and extension.

Torsion of a circular cylinder

In this section we use the solution given in Section 4 in order to study the torsion of a circular cylinder made of an isotropic chiral Cosserat elastic material. We assume that the cylinder B is defined by B = {x : x 2 1 + x 2 2 < a 2 , 0 < x 3 < h}, (a > 0), and suppose that M 1 = M 2 = 0. The solution has the form (33) where the functions u

are the displacements and microrotations in the problem P (k) , (k = 1, 2, 3, 4) defined by ( 29)-( 32), and the constants a k are given by the system (38).

First, we study the generalized plane strain problem P (3) characterized by the external loading (27). We seek the solution of this problem in the form

where r = (x 2 1 + x 2 2 ) 1/2 , and G and Φ are unknown functions. Clearly,

where f ′ = df /dr. It follows from ( 29) and ( 42) that e

(3)

3ρ , e

(3)

In view of ( 42), the equations of equilibrium ( 15) for the problem P (3) , reduce to

If we eliminate the function G, from (44) we find that Φ satisfies the equation

where

Clearly, from ( 9) we find that s 2 > 0, Q > 0 and q 2 > 0. We introduce the function Ω by Ω = rΦ.

(48) Then, the equation ( 46) becomes

In what follows we denote by I n and K n the modified Bessel functions of order n. The general solution of the equation ( 49) is

where B 1 and B 2 are arbitrary constants. Since the functions ϕ (3) α must be bounded for r = 0, we have B 2 = 0. Thus, we find that

It follows from (44) that the function G satisfies the equation

We can write G = G 1 +G 2 where the functions G 1 and G 2 satisfy the equations

Clearly,

where A α and D α are arbitrary constants. Since the functions u (3) α are bounded for r = 0 we must take A 2 = 0 and D 2 = 0. Thus the function G has the form

We note that the functions G and Φ, given by ( 50) and ( 52), must satisfy the system of second-order (44). Substituting G and Φ into the equations ( 44) we obtain the relations
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The first equation from ( 53) implies that

where

(55) It is a simple matter to see that the second equation from ( 53) is identically satisfied on the basis of the relations ( 47) and ( 55). We conclude that

Let us impose the boundary conditions (32) for k = 3. It follows from ( 43) and the constitutive equations (30) that t

(3)

On the boundary L we have r = a and n α = x α /a. From ( 57) we obtain t

(3)

(3)

In view of (58), the boundary conditions (32), for k = 3, reduce to By using the relations (56) and ( 59) we find that the constants A 1 and B 1 must satisfy the equations (2λ + 2µ + κ)aA 1 + l 1 B 1 = -λa,