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Abstract. Recently, Dyachenko & Zakharov (2011) [9] have derived a compact form

of the well known Zakharov integro-differential equation for the third order Hamiltonian

dynamics of a potential flow of an incompressible, infinitely deep fluid with a free surface.

Special traveling wave solutions of this compact equation are numerically constructed us-

ing the Petviashvili method. Their stability properties are also investigated. In particular,

unstable traveling waves with wedge-type singularities, viz. peakons, are numerically dis-

covered. To gain insights into the properties of these singular solutions, we also consider

the academic case of a perturbed version of the compact equation, for which analytical

peakons with exponential shape are derived. Finally, by means of an accurate Fourier-

type spectral scheme it is found that smooth solitary waves appear to collide elastically,

suggesting the integrability of the Zakharov equation.
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1. Introduction

The Euler equations that describe the irrotational flow of an ideal incompressible fluid
of infinite depth with a free surface are Hamiltonian. Their symplectic formulation was
discovered by Zakharov (1968) [38] in terms of the free-surface elevation η(x, t) and the
velocity potential ϕ(x, t) = φ(x, z = η(x, t), t) evaluated at the free surface of the fluid.
Here, η(x, t) and ϕ(x, t) are conjugated canonical variables with respect to the Hamiltonian
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H given by the total wave energy. It is well known that the Euler quations are completely
integrable in several important limiting cases. For example, in a two-dimensional (2-D)
ideal fluid, unidirectional weakly nonlinear narrowband wave trains are governed by the
Nonlinear Schrödinger (NLS) equation, which is integrable [41]. Integrability also holds for
certain equations that models long waves in shallow waters, in particular the Korteweg–de
Vries (KdV) equation (see, for example, [1, 2, 6, 36]) or the Camassa–Holm (CH) equation
[4]. For these equations, the associated Lax-pairs have been discovered and the Inverse
Scattering Transform unveiled the dynamics of solitons, which elastically interact under
the invariance of an infinite number of time-conserving quantities [1, 2, 6, 36].

Another important limiting case of the Euler equations for the free-surface of an ideal
flow is that considered by [38, 39]. By means of a third order expansion of H in the
wave steepness, he derived an integro-differential equation in terms of canonical conju-
gate Fourier amplitudes, which has no restrictions on the spectral bandwidth. To derive
the Zakharov (Z) equation, fast non-resonant interactions are eliminated via a canonical
transformation that preserves the Hamiltonian structure [17, 39, 15]. The integrability of
the Z equation is still an open question, but the fully nonlinear Euler equations are non-
integrable [7, 8]. Indeed, non-integrability can be easily proven by considering the terms
of the perturbation series of the Hamiltonian in powers of the wave steepness limited on
their resonant manifolds. To have non integrability, it is enough to prove that at least
one of these amplitudes is nonzero. In this regard, [7, 8] conjectured that the Z equation
for unidirectional water waves (2-D) is integrable since the nonlinear fourth-order term of
the Hamiltonian vanishes on the resonant manifold, leaving only trivial wave-wave inter-
actions, which just cause nonlinear frequency shifts of the separate Fourier modes. They
also pushed their analysis to the next order and proved that the effective fifth-order term
does not vanish on the corresponding resonant manifold. Thus, the Euler equations of the
free-surface hydrodynamics are not integrable in two dimensions [8].

Recently, Dyachenko& Zakharov (2011) [9] realized that the trivial resonant quartet-
interactions that occur in the 2-D free surface dynamics could be further removed by a
canonical transformation. As a result, the Z equation drastically simplifies to the compact
form

ibt = Ωb+
i

8

(

b∗
(

(bx)
2
)

x
−

(

b∗x(b
2)x

)

x

)

− 1

4

[

bK{|bx|2} −
(

bxK{|b|2}
)

x

]

, (1.1)

where b is a canonical variable, bt, bx denote partial derivatives with respect to t and
x and the symbols of the pseudo-differential operators Ω and K = H[∂x] (H being the

Hilbert transform) are given, respectively, by
√

g|k| and |k|, k being the Fourier transform
parameter. Further, b relates to the wave surface η as

η =

√

ω0

2g
a+ c.c., (1.2)

where a is a conjugate canonical variable that relates to b via a non-trivial canonical
transformation (see [9]), and c.c. denotes complex conjugation. To leading order in the
wave steepness a = b.
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In this study, we explore (1.1), hereafter referred to as cDZ, for analytical studies and
numerical investigations of special solutions in the form of solitary waves. The present
paper is organized as follows. First, we derive the envelope equation associated to cDZ
and then smooth ground states and traveling waves are numerically computed using the
Petviashvili method ([26], see also [18]). Further, unstable traveling waves with wedge-
type singularities, viz. peakons, are also numerically identified. To gain insights into
the properties of singular traveling waves we consider a perturbed version of the local
compact equation, where the non-local terms involving the operator K are neglected in
(1.1). For this academic case we are able to derive analytical peakons with exponential
shape. Finally, the interaction of smooth traveling waves is numerically investigated by
means of an accurate Fourier-type pseudo-spectral scheme.

2. Envelope dynamics and special solutions

Consider the following ansatz for wave trains in deep water

b(X, T ) = ε

√

2g

ω0
a0B(X, T )ei(k0x−ω0t), (2.1)

where B is the envelope of the carrier wave ei(k0x−ω0t), and X = εk0(x − cgt), T = ε2ω0t,

with k0 =
ω2

0

g
and ω0 as characteristic wavenumber and frequencies. The small parameter

ε = k0a0 is a characteristic wave steepness associated to an amplitude a0 and cg is the
wave group velocity in deep water. From (1.2), the leading order wave surface η is given
in terms of the envelope B as

η(X, T ) = εa0B(X, T )ei(k0x−ω0t) + c.c. (2.2)

Using (2.1) in (1.1) yields the cDZ envelope equation

iBT = ΩεB +
i

4

(

B∗S((SB)2) + iB∗(SB)2 − 2S
(

B|SB|2
))

−ε

2

[

BK{|SB|2} − S
(

SBK{|B|2}
)

]

, (2.3)

where S = ε∂X + i. The approximate dispersion operator Ωε is defined as follows

Ωε :=
1

8
∂XX +

i

16
ε∂XXX − 5

128
ε2∂XXXX +

7i

256
ε3∂XXXXX ,

where o(ε3) dispersion terms are neglected. Equation (2.3) admits three invariants, viz.
the action A, momentum M and the Hamiltonian H given, respectively, by

H =

∫

R

[

B∗ΩεB +
i

4
|SB|2[B(SB)∗ −B∗SB]− ε

2
|SB|2K(|B|2)

]

dX, (2.4)

A =

∫

R

B∗B dX, M =

∫

R

i
(

B∗SB − B(SB)∗
)

dX. (2.5)

Expanding the operator S in terms of ε, (2.3) can be written in the form of a generalized
derivative NLS equation as

iBT = ΩεB + |B|2B − 3iε|B|2BX − ε

2
BK{|B|2}+ ε2N2(B) + ε3N3(B) = 0, (2.6)
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where BX denotes differentiation with respect to X ,

N2(B) = −3

2
B∗(BX)

2 +B|BX |2 − |B|2BXX +
1

2
B2B∗

XX +

i

2

[

BK(B∗BX − BB∗
X) +BXK|B|2 +

(

BK|B|2
)

X

]

,

and

N3(B) = − i

2
|BX |2BX+

i

2
BXX(B

∗BX−BB∗
X)−

i

2
BBXB

∗
XX−

1

2

[

BK|BX |2−
(

BXK|B|2
)

X

]

.

To leading order (2.6) reduces to the NLS equation.

2.1. A Hamiltonian Dysthe equation. Hereafter, we will study a special case of (2.6),
which is a symplectic version of the temporal Dysthe equation ([11], see also [31, 30, 16, 33]).
Keeping terms to O(ε) in (2.6) yields

iBT =
(1

8
∂XX +

iε

16
∂XXX

)

B + |B|2B − 3iε|B|2BX − 1

2
εBK|B|2, (2.7)

hereafter referred to as cDZ-Dysthe. Note that the original temporal Dysthe equation is
not Hamiltonian since expressed in terms of multiscale variables, which are usually non
canonical (see, for example, [12]). This is common in mathematical physics. Typically,
the dynamics is governed by partial differential equations expressed in terms of physically-
based variables, which are not usually canonical. A transformation to new variables is
needed in order to unveil the desired structure explicitly (see, for example, [27]). This is
the case for the equations of motion for an ideal fluid: in the Eulerian description, they
cannot be recast in a canonical form, whereas in a Lagrangian frame the Hamiltonian
structure is revealed by Clebsch potentials (see, for example, [27, 24]). Moreover, multiple-
scale perturbations of differential equations expressed in terms of non-canonical variables
typically lead to approximate equations that do not maintain the fundamental conserved
quantities, as the hydrostatic primitive equations on the sphere [22], where energy and
angular momentum conservation are lost under the hydrostatic approximation.

As an example, consider the finite dimensional system of an harmonic oscillator in the
classical canonical variables q(t) (coordinate) and p(t) (momentum). This admits the
canonical form

q̇ =
∂H
∂p

= p, ṗ = −∂H
∂q

= −q, (2.8)

where ṗ denotes time derivative, and H = (q2 + p2)/2. The flow in the phase-space is
’incompressible’ since the divergence vanishes:

∂q̇

∂q
+

∂ṗ

∂p
= 0.

The transformation z = q + ip is canonical and (2.8) transforms to

ż = −i
∂H
∂z∗

= −iz, ż∗ = i
∂H
∂z

= iz∗, (2.9)
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where H = |z|2 /2, and z∗ is the complex conjugate of z. It is straightforward to prove
that the gauge transformation

z = weiα|w|2 ,

with α as a free parameter, is also canonical, and (2.9) remains unchanged in the new
variables w and w∗. On the other hand, if one considers the coordinate change

Q =
q

√

1 + αq2
, P = p, (2.10)

then (2.8) transforms to the noncanonical form

Ṗ = −Q
(√

1 + αP 2 − 2αP 2
)

, Q̇ =
P√

1 + αP 2
. (2.11)

This flow does not preserve volume as (2.8) does, nonetheless equations (2.11) are those
of a disguised harmonic oscillator obtained via the noncanonical change of variables (2.10)
(see also [24]). The original Dysthe equation [11] shares the same roots as (2.11). They
both come from a noncanonical transformation of a Hamiltonian system. For the spatial
version of the Dysthe equation, canonical variables have been identified by means of a
gauge transformation, and the hidden Hamiltonian structure is unveiled [12]. The more
general canonical transformation proposed by [9] yields the symplectic form (2.7) of the
Dysthe equation [11].

In the following, insights into the underlying dynamics of the cDZ equation and associ-
ated Dysthe equation are to be gained if we construct some special families of solutions in
the form of ground states and traveling waves of the envelope B, often just called solitons
or solitary waves, as described below.

2.2. Ground states and traveling waves. To begin, consider the cDZ equation (2.3).
We construct numerically ground states and traveling waves (TWs) of the envelope B of
the form B(X, T ) = F (X− cT )e−iωT , where the function F (·) is in general complex, ω and
c are dimensionless frequency and velocity of the TW with respect to a reference frame
moving with the group velocity cg. In physical space the true frequency and velocity are
given, respectively, by ω̃ = ε2ω0ω and c̃ = εcω0/k0. After substituting this ansatz into the
governing equation (2.3) we obtain the following nonlinear steady problem for F (in the
moving frame X − cT )

LF = N (F ),

where L = ω− ic−Ωε and N (F ) denotes nonlinear terms of the cDZ of (2.3). In order to
solve this equation we use the Petviashvili method [26, 25, 18, 37]. This numerical approach
has been successfully applied in deriving TWs of the spatial version of the Dysthe equation
[12]. Schematically, the iteration takes the following form

Fn+1 = SγL−1 · N (Fn), S =
〈Fn,L · Fn〉
〈Fn,N (Fn)〉

,

where S is the so-called stabilyzing factor and the exponent γ is usually defined as a
function of the degree of nonlinearity p (p = 3 for the cDZ equation). The rule of thumb
prescribes the following formula γ = p

p−1
. The scalar product is defined in the L2 space.
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The inverse operator L−1 can be efficiently computed in the Fourier space. To initialize
the iterative process, one can use the analytical solution to the leading order NLS equation
(see the associated Dysthe equation (2.7)). We point out that this method can be very
efficiently implemented using the Fast Fourier Transform (FFT) (see, for example, [13]).

Without loosing generality, hereafter we just consider the leading term of the dispersion
operator, viz. Ωε =

1
8
∂XX , since the soliton shape is only marginally sensitive to the higher

order dispersion terms as shown in Figure 1. We also observed that the Petviashvili method
does not converge if we retain the full dispersion operator. Figure 2 shows the action A
of the ground states (c = 0, but moving with the group velocity in the physical frame)
as a function of the frequency ω computed via the Petviashvili iteration and numerical
continuation for ε = 0.20. The stability of a ground state is investigated numerically by
means of an accurate Fourier-type spectral scheme [3, 32], see also [12]. We found that
smooth ground states are stable in agreement with the criterion formulated by [34], since
dA
dω

> 0 (see also [40, 37]). Further, we notice that an abrupt reduction in the action A
occurs at a critical frequency ωc(ε) and solitons with wedge-type singularities, viz. peakons,
bifurcate from a smooth solitary waves as shown in the right panel of Figure 2. Clearly,
this bifurcation can be interpreted as a possible indication of the non-existence of smooth
solitons above the critical threshold ωc. As one can see, as ω increases the soliton shape
tends to become asymmetric and steeper until the critical threshold ωc = 0.85, above which
the smooth solitary waves bifurcate to peakons, which are unstable in agreement with [34],
since dA

dω
< 0. Peakons also bifurcate from smooth solitons of given frequency ω as the

steepness ε increases, as clearly seen in Figure 3. Note that in both cases ground states
grow asymmetrically before bifurcating to smaller peakons, and so do travelling waves
(c 6= 0). However, such bifurcation is not observed in the 2-D NLS or Dysthe equations
(see, for example, [12]), as clearly seen in Figures 5 – 7 where we report the dependence of
the three invariants A, M andH on the parameters ω, c and ε for the cDZ and cDZ-Dysthe
equations respectively.

Note that stable and elastic peakons have been discovered in a special limit of the
integrable CH equation [4]. On the contrary, from numerical investigations of the cDZ
equation peakons appear unstable. The left panel of Figure 4 shows the numerically con-
verged peakon obtained via the Petviashvili scheme using N ∼ 1.5×106 Fourier modes for
ε = 0.20.

As the frequency ω increases, peakons bifurcate at smaller steepness ε as clearly seen
in the right panel of Figure 4. Indeed, for ground states we observed numerically that
ωc(ε) ∼ ε−2 (see left panel of Figure 8), and the same scaling holds also for travelling
waves (c 6= 0). In the physical frame (x, t), owing to the scaling T = ε2ω0t, bifurcation
occurs at a well defined frequency ω = ε2ωc ≈ 0.037ω0, which is independent of ε. Further,
in the domain X both the peakon amplitude ap = |B||X=0− and the associated slope of
the wedge singularity (corner)

sp =
1

ap
∂X |B||X=0− = cot(θ/2)
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scales as ε−3/2, θ being the interior angle of the peakon’s singularity (see central and right
panels of Figure 7). In the physical frame x, from (2.2) the slope sp becomes

sp = εa0∂X |B||X=0− ∂xX = ε3apsp ≈ cot(170◦/2),

which is independent of ε and corresponds to an angle θ ≈ 170◦. For a meaningful compar-
ison of this result with the almost-highest solitary wave theory of Longuet-Higgins and Fox
[20, 21, 19], which predicts an angle of θ ≈ 120◦, higher order corrections to (2.2) hidden
within the full canonical transformation of [9] should be accounted for. This is currently
under study and will be discussed elsewhere. However, it is also important to mention
that the cDZ equation is derived assuming weak nonlinearities, so the strongly nonlinear
peakon could be a non-physical artifact, whereas the almost-highest wave satisfies the full
Euler equations and thus accounts for nonlinearities of all orders.

The derivation of an analytical solution for peakons of the non-local cDZ equation (2.6)
is a challenge. To gain more insights into the properties of these singular solutions we
consider the academic case of a perturbed version of the local cDZ, viz.

iBT =
1

8
BXX +

i

4

(

B∗S((SB)2) + (1 + δ)iB∗(SB)2 − 2S
(

B|SB|2
))

, (2.12)

Here, the non-local terms are dropped simply because peakons with exponential shape can
be found analytically as function of the free parameter δ. Indeed, the ansatz

B(X, T ) = ape
i(κX−ωpT )e−α2|X−cpT |, (2.13)

satisfies (2.12) for

κ = −8 + δ

8ε
, α2 =

|δ|
8ε

, ωp = −4 + δ

32ε2
, cp =

8 + δ

32ε
. (2.14)

The amplitude ap is still unknown and it rules the existence of peakons. Indeed, they
arise as a balance between the dispersion 1

8
BXX and the O(ε2) term of the nonlinearity

i
4
B∗S((SB)2) in (2.12). These two terms are interpreted in distributional sense because

they give rise to Dirac delta functions that must vanish by properly chosing the amplitude
ap, thus satisfying the differential equation (2.12) in the sense of distributions. As a result

ap =
1

ε

√

−2

δ
. (2.15)

Clearly, peakons exist for δ < 0 and for δ = 0 they reduce to periodic wave solutions
of the local cDZ. Thus, peakons can bifurcate from periodic waves of the local cDZ as
δ changes sign, and ground states occur for δ = −8. We note that both the NLS and
Dysthe equations do not have higher nonlinear terms similar to i

4
B∗S((SB)2) and thus

they cannot support peakons. We conclude that wedge-type singular solutions are special
features of the cDZ equation. The left panel of Figure 9 shows the remarkable agreement
of a numerical peakon (δ = −3/2 and ε = 0.3) computed using the Petviashvili scheme
(Fourier modes N ∼ 1.5×106) and the corresponding analytical solution (2.13). Moreover,
the amplitude of the numerical peakon agrees with the associated theoretical counterpart
(2.15) as function of ε (see right panel of Figure 9). Finally, note that the analytical peakon
(2.13) has a slope that scales as ε−1, in contrast to the ε−3/2 scaling observed numerically
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Figure 1. cDZ equation: Convergence of the ground state Bj (ε = 0.19,
ω = 0.1, c = 0) with respect to the approximate dispersion relation that
retains terms up to second, third, fourth and fifth orders (j = 2, . . . , 5).
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Figure 2. cDZ equation: (left) Action A of ground states of the envelope
B as function of the frequency ω and (right) bifurcation of a peakon from
smooth ground states (ε = 0.2, c = 0).

for the full cDZ singular solution. In the physical frame x, the interior angle of the wedge
singularity is independent of ε and so is the peakon frequency ωp, in agreement with the
numerical cDZ peakons. This is an indirect evidence of the validity of our numerical results
for the cDZ equation. Finally, we note that as ε approaches zero, (2.12) tends to the NLS
equation, and all the peakon parameters approach infinite values as an indication of the
non-existence of singular solutions in the NLS limit.

3. Traveling wave interactions

Hereafter, we investigate the collision of smooth traveling waves of the cDZ equation
(2.3) by means of a highly accurate Fourier-type pseudo-spectral method. We will first
briefly describe the adopted spectral approach and then discuss the numerical results.
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B as function of the steepness ε and (right) bifurcation of a peakon from
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Figure 4. cDZ peakon: (left) numerical solution via the Petviashvili scheme
(ε = 0.2, c = 0, number of Fourier modes N ∼ 1.5× 106) and (right) action
of ground states of the envelope B as function of the steepness ε for different
values of the frequency ω.

3.1. Numerical method description. We rewrite (2.3) in the operator form

Bt + L ·B = N (B), (3.1)

where L = i1
8
∂XX and

N (B) =
1

4

(

B∗S((SB)2)+ iB∗(SB)2−2S
(

B|SB|2
))

+
εi

2

[

BK{|SB|2}−S
(

SBK{|B|2}
)

]

.

We solve (3.1) numerically by applying the Fourier transform in the space variable X .

The transformed functions will be denoted by B̂ = F{B}. We recall that the symbol of
the non-local term is equal to |k|, and that of L is i1

8
k2, k being the Fourier transform

parameter. The nonlinear terms are computed in physical space, while space derivatives
∂X and the nonlocal operator K = H[∂x] are computed in Fourier space. For example, the
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Figure 5. cDZ equation: Action A, momentum M and Hamiltonian H
dependence on the frequency ω for ground states of the envelope B (ε = 0.23,
c = 0).

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3

ε

A

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

ε

M

0 0.1 0.2 0.3 0.4
−0.5

0

0.5

1

1.5

2

2.5

ε

H

cDZ

cDZ-Dysthe

Figure 6. cDZ equation: Action A, momentum M and Hamiltonian H
dependence on the steepness parameter ε for ground states of the envelope
B (ω = 0.80, c = 0).

term B2BX is discretized as

F{B2BX} = F{
(

F−1(B̂)
)2 · F−1{ikB̂}},

and all nonlinear terms are treated in a similar way. We note that the usual 4/3 rule is
applied for anti-aliasing since we have to deal with cubic nonlinearities [32, 5, 14].

In order to improve the stability of the space discretization procedure, we can integrate
exactly the linear terms. This is achieved by making a change of variables [23, 14]:

Ŵt = e(t−t0)L · N
{

e−(t−t0)L · Ŵ
}

, Ŵ (t) ≡ e(t−t0)L · B̂(t), Ŵ (t0) = B̂(t0).
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Figure 8. cDZ peakon: dependence of the critical frequency ωc, peakon
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obtained for ground states of the envelope B. Note that the same scalings
hold true also for travelling waves.

Finally, the resulting system of ODEs is discretized in space by the Verner’s embedded
adaptive 9(8) Runge–Kutta scheme [35]. The step size is chosen adaptively using the so-
called H211b digital filter [28, 29] to meet the prescribed error tolerance, set as of the order
of machine precision.

3.2. Numerical results. In all the performed simulations the accuracy has been checked
by following the evolution of invariants (2.4), (2.5). From a numerical point of view the
cDZ equation becomes gradually stiffer as the steepness parameter ε increases, or if higher
order dispersion terms are included. Consequently, the conservation of invariants H, A
and M might be degraded. Nevertheless, even in the stiffest situations a decent accuracy



12 F. FEDELE AND D. DUTYKH

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

X − cpT

|B
|

 

 

analytical peakon
numerical solution

δ = −1.5, ǫ = 0.3

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
2

3

4

5

6

7

8

9

10

11

12

a
p

ǫ

 

 

Analytical amplitude
numerical solution

δ = −1.5, ǫ = 0.3

Figure 9. Left: numerical peakon (solid) of the perturbed local cDZ equa-
tion (2.12) and associated analytical solution (2.13) (dash) for ε = 0.30,
δ = −1.5; Right: amplitude of the numerical peakon against its theoretical
counterpart (2.15) as function of ε.

Figure 10. cDZ envelope equation: collision of two smooth travelling waves
(ε = 0.10).
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of the two interacting traveling waves of Figure 10.

was assured by choosing a sufficiently large number of Fourier modes and the dispersion
operator Ωε =

1
8
∂XX . For example, for ε = 0.10 the number N = 16384 of Fourier modes

were sufficient to achieve conservation of the invariants close to ∼ 10−13. As an application,
consider the interaction between two solitary waves traveling in opposing directions with
the same speed (ε = 0.10). The plot of Figure 10 shows that the two solitons emerge out
of the collision with the same shape, but a slight phase shift. The interaction appears
elastic as clearly seen from the plot of Figure 11, which reports the initial and final shapes
of the two solitary waves. Further, the interaction of two traveling waves with a ground
state appears also elastic (see Figures 12 – 13). This suggests the integrability of the
cDZ equation (2.3) in agreement with the recent results of [10]. However, the associated
Hamiltonian version of the Dysthe equation (2.7) does not support elastic collisions as
shown in Figure 14.

4. Conclusions

Special solutions of the compact Zakharov equation in the form of traveling waves are
numerically constructed using the Petviashvili method. The stability of ground states
agrees with the Vakhitov-Kolokolov criterion. Further, unstable ground states with wedge-
type singularities, viz. peakons, are numerically identified bifurcating from smooth ground
states. As an academic case, we considered a perturbed version of the local form of the cDZ
equation, for which an analytical solution of peakons with exponential shape is derived.
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Figure 12. cDZ envelope equation: Elastic collision of two traveling waves
with a ground state (ε = 0.10).

Finally, by means of an accurate Fourier-type pseudo-spectral scheme, it is also shown
that smooth solitary waves appear to collide elastically, suggesting the integrability of the
compact Zakharov equation, but not that of the associated Hamiltonian version of the
Dysthe equation.
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