
Algebraic Properties to Optimize kNN Queries

Mônica R. P. Ferreira1,3, Lucio F. D. Santos1, Agma J. M. Traina1,
Ires Dias2, Richard Chbeir3, Caetano Traina Jr.1

1 Computer Science Dept., ICMC-USP, São Carlos-SP, Brazil
2 Math. Dept., ICMC-USP, São Carlos-SP, Brazil

3 LE2I Lab. UMR-CNRS Univ. Bourgogne, Dijon, France
{monika, luciodb, agma, iresdias, caetano}@icmc.usp.br

richard.chbeir@u-bourgogne.fr

Abstract. New applications that are being required to employ Database Management Systems (DBMSs), such as
storing and retrieving complex data (images, sound, temporal series, genetic data, etc.) and analytical data processing
(data mining, social networks analysis, etc.), increasingly impose the need for new ways of expressing predicates.
Among the new most studied predicates are the similarity-based ones, where the two commonest are the similarity
range and the k-nearest neighbor predicates. The k-nearest neighbor predicate is surely the most interesting for several
applications, including Content-Based Image Retrieval (CBIR) and Data Mining (DM) tasks, yet it is also the most
expensive to be evaluated. A strong motivation to include operators to execute the k-nearest neighbor predicate inside a
DBMS is to employ the powerful resource of query rewriting following algebraic properties to optimize query execution.
Unfortunately, too few properties of the k-nearest neighbor operator have been identified so far that allow query rewriting
rules leading to effectively more efficient query execution. In fact, a k-nearest neighbor operator does not even commute
with either other k-nearest neighbor operator or any other attribute comparison operators (similarity range or any
other of the traditional attribute comparison operator). In this paper, we investigate a new class of properties for the
k-nearest neighbor operator based not on expression equivalence, but on result set inclusion. We develop a complete set
of properties based on set inclusion, which can be successfully employed to rewrite query expressions involving k-nearest
neighbor operators combined to any of the traditional attribute comparison operators or to other k-nearest neighbor
and similarity range operators. We also give examples of how applying those properties to rewrite queries improve
retrieval efficiency.

Categories and Subject Descriptors: H.2.4 [Database management]: Systems—Query processing

Keywords: algebraic properties, query optimization, similarity algebra, unary similarity queries

1. INTRODUCTION

The relational database management systems (RDBMSs) were initially conceived to handle data com-
posed of numbers and small character strings. Those traditional data can be compared using both
exact matching (= and 6=) and relational operators (<, ≤, > and ≥), which we call traditional opera-
tors. Almost every component of a RDBMS is able to process only data that meet the exact matching
and relational operators, including the indexing structures, query optimizers and selectivity estima-
tors. Nowadays, new applications that are being required to employ Database Management Systems
(DBMSs) increasingly requires new kinds of comparison operators. Examples of those applications
include storing and retrieving complex data (images, sound, multi-dimensional measurements, tempo-
ral series, genetic data, etc.) and analytical data processing (data mining, social networks evaluation,
etc.). The relational operators do not apply over complex data, and they are not useful to perform
analytical processing over them either. The exact matching operators have also few uses, as few com-
plex data are identical to others. For those applications, the notion of similarity emerges naturally

This work has been supported by FAPESP, CAPES, CNPq, CNRS and Microsoft Research.
Copyright c©2011 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011, Pages 385–400.

386 · Mônica R. P. Ferreira et al

as the way to compare pairs of elements in complex domains, pushing the degree of similarity among
data elements as the most important factor [Faloutsos 1997].

The two most well-known similarity-based comparison operators are the similarity range and the
k-nearest neighbor ones. A query using the similarity range operator – usually known as a range query
– returns the elements closer than or at the same distance to a threshold from a query element (also
called the query center). A query using the k-nearest neighbor operator (kNN) – usually known as a
k-nearest neighbor query – returns the k elements nearest to the query center. The kNN predicate is
the most interesting for several similarity search applications, including retrieving of complex elements
by content such as Content-Based Image Retrieval (CBIR) and Data Mining (DM) tasks [Böhm et al.
2000; Berchtold et al. 2001; Bartolini 2002; Falchi et al. 2008].

To be able to perform similarity comparisons, a function must be defined to evaluate how similar
two elements are. Assuming that more similar elements can be seen as closer in a given data space,
this function can be defined as a distance function d, which is the basis to create a metric space.
Formally, a metric space is a pair M = 〈S, d〉, where S denotes the universe of valid elements, and d is
a function d : S× S→ R+ that expresses the distance between elements of S, and which satisfies the
following properties: symmetry: d(s1, s2) = d(s2, s1); non-negativity: 0 < d(s1, s2) < ∞, if s1 6= s2
and d(s1, s1) = 0; and triangular inequality: d(s1, s2) ≤ d(s1, s3) + d(s3, s2),∀s1, s2, s3 ∈ S.

Nowadays, RDBMSs provide very little support for similarity queries, leading the developers of
applications that handle complex elements or that execute data mining processes to code the similarity
based algorithms inside the applications. However, a much more elegant and flexible way would be
providing support for similarity queries inside the RDBMS. A great motivation should be to employ
the powerful resource of query rewriting following algebraic properties to optimize the execution of
non-trivial, compound queries. That is, queries that involve several predicates, and in particular,
queries in which at least one of the predicates are based on similarity. An example of a query that
meets this expectation over a database of medical exams is: “Select the five radiographies taken the
last month that are the most similar to this one from my current patient and whose medical report was
written by Dr. House and include at least three of the words {calcification, cyst, fibroadenoma,
fibrocyst}”. This query includes four predicates:

—An exact matching predicate: select the exams whose report was written_by=‘Dr. House’;

—A relational comparison predicate: select the exams having date>=Today-30;

—A similarity range predicate: select the exams whose report is in the range of at most 1 word excluding
the specified ones (using a distance function that counts how many words of those given one are not in the
medical report);

—A similarity k-nearest neighbor predicate: select the five images similar to the given one (using image
features and a distance function that are not specified here).

Choosing the best way to execute compound queries depends on the existence of two or more
equivalent ways to represent it. For example, it is a well-known property that exact matching and
relational comparisons can be performed in any order – they meet the commutative property. Thus,
it is possible to elect the most selective predicate among those that refer to indexed attributes to be
executed first. In fact, the rich set of algebraic properties existing over the traditional operators allows
the optimizer of a RDBMS to rewrite a compound query into several equivalent representations for
execution, attaining speedups of several magnitude orders.

Unfortunately, too few equivalence properties exists for the k-nearest neighbor operator. In fact, it
does not even commute, neither with other k-nearest neighbor or similarity range operator nor with
any of the traditional attribute comparison operators. In a more formal description, σ(θ)

(
σ ¨(θ)

T
)
6=

σ(θ̈)

(
σ(θ)T

)
where θ̈ is a k-nearest neighbor operator and θ is either a k-nearest neighbor or any other

attribute comparison operator (traditional operators or the similarity range) [Ferreira et al. 2009].

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

Algebraic Properties to Optimize kNN Queries · 387

This article proposes a new class of properties for the kNN operator that is not based on ex-
pression equivalence, but on inclusion expression – for example, acknowledging that σ(θ)

(
σ ¨(θ)

T
)
⊆

σ(θ̈)

(
σ(θ)T

)
. We develop a complete set of properties based on inclusion that can be successfully

employed to rewrite query expressions involving k-nearest neighbor operators combined to any of
the traditional attribute comparison operators or to other k-nearest neighbor and similarity range
operators.

The remainder of this article is structured as follows. Section 2 discusses previous works and shows
properties and algebraic manipulations already studied for the k-nearest neighbor operator. Section 3
presents concepts existing in the literature that are important to help understanding the current article.
Section 4 presents a broad collection of set inclusion properties for kNN predicates that enlarges
the resources that the query DBMS rewriter module can count on to choose good query execution
plans. Section 5 shows experiments performed over real datasets that include traditional and complex
attributes, evaluating compound queries mixing similarity, relational and exact match predicates, and
shows that our properties can indeed improve query execution efficiency. In Section 6 we digest the
results of the experiments aiming at using the proposed properties in a DBMS interpreter/optimizer.
Finally, Section 7 concludes this article.

2. RELATED WORK

There are several extensions to the relational algebra in the literature aimed at including similarity-
based functionality in RDBMS from various perspectives. Usually, multimedia information systems
treat similarity using four different approaches: 1) Rank: aims at providing only the top-k results,
according to a user-specified ranking criterion; 2) Fuzzy: associates the similarity to an uncertainty or
imprecise grade and provides fuzzy logic-based methods to solve queries; 3) Hybrid: mixes the rank
and the fuzzy approaches; 4) Exact: evaluates each element according to how well it fits similarity
criteria given for the query.

In 1998, [Adali et al. 1998] presented the Multi-Similarity Algebra (MSA). Although this work was
the first one to consider a similarity extension to relational algebra, it is not fully consistent with the
relational model because the MSA cannot be used for modeling, optimizing and processing queries
that combine traditional and similarity-based operators [Atnafu et al. 2004].

Further developing the “rank approach”, Adali et al. [2004] introduced an algebra for querying
ranked relations and proved various coherence preservation properties for this algebra, which shows
when it is possible to guarantee that distinct rank columns induce the same ordering among tuples. Li
et al. [2005] proposed the “rank-relational” algebra, which supports ranking as a first-class construct.
In Adali et al. [2007], the authors presented an algebra that supports mining and fusion tasks using
the reuse and combination of ranked elements.

Regarding the “fuzzy approach”, the first work presenting an extension to the relational algebra was
Montesi and Trombetta [1999], where the authors included two new operators (the top and ε-similar
ones) to formulate queries about the similarity of elements represented in the fuzzy relational model.
The Similarity Algebra for Multimedia Extended with Weights (SAMEW), proposed by Ciaccia et
al. [2000], generalized the relational algebra to allow the formulation of compound similarity queries
over multimedia databases. SAMEW also introduced two new operators (the cut and top ones) that are
useful for range and kNN queries. Picariello and Sapino [2002] developed an algebra for dealing with
fuzziness related to the semantic descriptors of an image. Montesi et al. [2003] extended the relational
algebra to correctly capture the imprecise information related to several kinds of multimedia data.
Schmitt and Schulz [2004] introduced the Similarity Algebra (SA), raising vagueness and weighting
into relational algebra.

The work of Belohlavek et at. [2007] targeted a “hybrid approach”, in which both rank and fuzzy

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

388 · Mônica R. P. Ferreira et al

approaches were combined to extend the relational algebra over domains enabled to be evaluated by
similarity. Also, the concept of a ranked table based on the calculus of fuzzy relations was introduced.

Pursuing the “exact approach”, Atnafu et al. [2001] initially defined a similarity-based algebra able
to identify equivalence properties in an expression involving similarity-based operators. However, this
first work only targeted similarity comparisons over images stored in a database, aiming at formalizing
similarity queries over images that are indirectly evaluated over feature vectors extracted from each
image, instead of directly comparing the images. The first work to target equivalence properties of
similarity-based operators that hold on general metric spaces were proposed by Traina Jr. et al. [2006].
It proposed an extension for the relational algebra to allow combining two or more similarity predicates
over the same query reference connected by Boolean operators. Ferreira et al. [2009] further improved
that work, evaluating the properties holding over any combination of traditional predicates with
similarity-based ones. The authors identified the fundamental properties that allow integrating both
traditional and similarity-based unary operators into the Relational Algebra, providing a complete
set of equivalence rules to optimize queries combining at least one similarity-based with any other
operators through query rewriting. The analyzed properties are able to treat queries centered either
at the same or at distinct query elements. In another work, Chbeir and Laurent [2009] also studied
the inclusion properties of multimedia operators (range and KNN) in order to identify the minterms
in a query sets. The aim of this study was to adapt multimedia fragmentation database. Silva and
Aref [2009] analyzed relationships among similarity join and similarity group-by operators.

However, all of these works were elaborated using only equivalence properties that, as shown in
Ferreira et al. [2009], provide too few properties for the kNN predicate. In this work, we explore
another class of properties that also holds on similarity predicates and their combination with the
traditional ones, namely the set inclusion properties. Those properties also allow choosing the best
definition of what interpretation the DBMS must assume for a query expression involving kNN
predicates, due to the lack of conformance to the commutativity property of those predicates, and we
argue that the performance-guided consensus existing in the literature is not the best choice.

3. CONCEPTS

In this article, we employ the basic notation introduced in Ferreira et al. [2009] to represent database
relations storing at least one attribute that can be referenced in similarity predicates. We also follow
the same conceptual definitions of that work, which are summarized as follows. The term ‘simple
attribute’ refers to an attribute of a traditional, scalar data type that is compared by the traditional
relational or identity comparison operators, and the term ‘simple domain’ refers to the traditional
scalar data types. In the same way, we use the term ‘complex attribute’ to refer to an attribute that
can be compared by similarity, that is, it is drawn from a metric domain where a distance function
was defined.

Let Ah ⊂ Ah be a simple attribute in a domain Ah that allows comparisons using traditional (θ)
operators. Let Sj ⊂ Sj be a complex attribute in a domain Sj in a metric space that allows comparisons
using similarity (either θ̈ or θ̂) operators; and let T be a relation with any number of both simple
and complex attributes. In this way, T = {A1, . . . ,Am,S1, . . . ,Sp} represents a schema relation, and
a relation T ⊂ T is a set of elements represented as tuples of the format T = (A1, . . . , Am, S1, . . . , Sp).
Each tuple t = 〈a1, . . . , am, s1, . . . , sp〉 has values ah (1 ≤ h ≤ m) obtained in the the corresponding
domain Ah and values sj (1 ≤ j ≤ p) obtained in the corresponding domain Sj . Thus, let ti(Sj)
(1 ≤ i ≤ n, where n is the cardinality of the relation) be the value of the complex attribute Sj of the
ith tuple in the relation, and correspondingly let ti(Ah) be the value of the simple attribute Ah. To
alleviate the notation, we also use S and S to refer to complex attribute Sj and its respective domain
Sj (and correspondingly A and A to refer to a simple attribute Ah and its respective domain Ah)
whenever only one attribute is involved in the text.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

Algebraic Properties to Optimize kNN Queries · 389

Table I. Table of symbols.
Symbol Description

S Complex domain over which similarity conditions can be expressed.
θ̈ kNN operator.
θ̂ Similarity range operator.
θ Exact match or relational comparison operator.

S, S1, S2 Complex attributes taken in domain S.
d, d1, d2 Distance functions in S.

k, k1, k2 ∈ N∗ Quantities of elements to be retrieved, used as query stop thresholds.
sq , sq1 , sq2 Query references.

Traditional selections follow the format σ(A θ a) T , where θ is a traditional comparison operator
valid in the domain A of the attribute A, and ‘a’ is either a constant taken in the domain of A or
the value of another attribute from the same domain of A in the same tuple. Likewise, similarity
selections follow the same format: σc (S θc sq) T , where σc represents a similarity selection, θc is a
similarity operator valid in the domain S of the attribute S, and ‘sq’ is either a constant taken in
the domain of S or the value of another attribute from the same domain of S in the same tuple.
Obviously, in this formulation a domain S where similarity queries can be applied is a metric domain.
The two most common similarity operators θc are the range and the k-nearest neighbor operators. As
their properties can be different from the relational and exact match counterparts, we use the symbols
θ̂ and θ̈ to represent the range and the k-nearest neighbor operators, and the symbols σ̂ and σ̈ to
represent the range and the k-nearest neighbor selection queries, respectively.

A range query – Rq – returns every element that differs from the query reference in at most the
similarity threshold. Its formal definition and properties are defined in Ferreira et at. [2009]. A k-
nearest neighbor query – kNNq – returns the k elements nearest to the query reference. The goal of
this article is to define algebraic properties aimed at optimizing kNN queries. In the sequence we
summarize the equivalence properties defined in Ferreira et al. [2009].

Applying similarity queries over a metric domain S implies that a distance function exists over the
domain. Therefore, for a relational expression to be able to refer to a complex attribute by similarity,
the domain’s metric must be known. We assume here that the assignment of a metric to a complex
attribute is stated as a constraint over the attribute. Considering an implementation of those concepts,
we assume that the SQL language is extended to include the ability of defining the attribute metric
either as a row or as a table constraint in the table definition command, in the same way as it was
done in SIREN [Barioni et al. 2006; Barioni et al. 2009].

There are three equivalence-based properties for kNN queries in general and two special cases
that hold only for kNN queries sharing the same query reference and distance functions. Table II
summarizes those properties, where the employed symbols are defined in Table I.

Property 1 expresses that a sequence of complex predicates (i.e. conjunctions of θ̈ operators), can
be rewritten into a sequence of intersection operations. Notice that the query centers and the distance
functions employed can be different at each predicate. A special case exists for this property: if the
query centers and the distance functions are the same for all the predicates, then only the kNN
selection with the smallest number of elements needs to be executed [Traina-Jr. et al. 2006].

Property 2 expresses that a disjunction of complex predicates (i.e., disjunctions of θ̈ operators),
can be rewritten into a sequence of union operations. Notice that if relation T is a set, this property
warrants that duplications will be correctly eliminated. A special case exists for this property too: if
the query centers and the distance functions are the same for all the predicates then only the kNN
selection with the largest number of elements needs to be executed [Traina-Jr. et al. 2006].

Strictly speaking, Property 3 does not refer to a kNN predicate, as it just states that the datasets
that are the results of two kNN selections are commutative. However, as the kNN operator by itself

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

390 · Mônica R. P. Ferreira et al

Table II. The three equivalence-based properties for kNN queries in general and the two special cases that holds for
kNN queries sharing the same query reference.

1 σ̈(S1 θ̈(d1,k1) sq1)∧(S2 θ̈(d2,k2) sq2) T =
(
σ̈(S1 θ̈(d1,k1) sq1) T

)
∩

(
σ̈(S2 θ̈(d2,k2) sq2) T

)
1.1

(
σ̈(S θ̈(d,k1) sq) T

)
∩

(
σ̈(S θ̈(d,k2) sq) T

)
= σ̈(S θ̈(d,k1) sq)∧(S θ̈(d,k2) sq) T = σ̈(S θ̈(d,min(k1,k2)) sq) T

2 σ̈(S1 θ̈(d1,k1) sq1)∨(S2 θ̈(d2,k2) sq2) T =
(
σ̈(S1 θ̈(d1,k1) sq1) T

)
∪

(
σ̈(S2 θ̈(d2,k2) sq2) T

)
2.1

(
σ̈(S θ̈(d,k1) sq) T

)
∪

(
σ̈(S θ̈(d,k2) sq) T

)
= σ̈(S θ̈(d,k1) sq)∨(S θ̈(d,k2) sq) T = σ̈(S θ̈(d,max(k1,k2)) sq) T

3
(
σ̈(S1 θ̈(d1,k1) sq1) T

)
∩

(
σ̈(S2 θ̈(d2,k2) sq2) T

)
=

(
σ̈(S2 θ̈(d2,k2) sq2) T

)
∩

(
σ̈(S1 θ̈(d1,k1) sq1) T

)
,(

σ̈(S1 θ̈(d1,k1) sq1) T
)
∪

(
σ̈(S2 θ̈(d2,k2) sq2) T

)
=

(
σ̈(S2 θ̈(d2,k2) sq2) T

)
∪

(
σ̈(S1 θ̈(d1,k1) sq1) T

)

is not commutative either with other selection operators or with itself, each selection must be executed
separately and the intersection (for conjunctive conditions) or the union (for disjunctive conditions)
of their results can be manipulated. Thus, Property 3 is useful to handle kNN predicates.

Besides those three properties involving only kNN predicates, equivalent ones hold when combining
kNN predicates with either similarity range or traditional predicates. Thus, Properties 1 to 3 hold
for any combination of “σ̈[∩,∪]σ̂” and “σ̈[∩,∪]σ”, even when the query centers, distance functions and
query stop thresholds are distinct.

4. KNN PROPERTIES

In this section we describe the properties that hold for kNN predicates taking into account the set
inclusion properties of querying by similarity datasets of complex elements. For illustration purposes,
we first describe a dataset used as a running example for the remainder of this article. Although
the presented concepts hold for any dataset of complex elements that can be represented in a metric
space, without loss of generality we use a dataset of geographical coordinates under the Euclidean
distance function, as it is both a metric space and makes it intuitively easy to understand the presented
examples. The running example is a relation of cities
USCities={Id, Name, State, Lat, Long, Coordinate, PerCapita, PctPovertyFam},

where the attribute Coordinate is the complex one, that is, the Euclidean distance function is defined
over the domain of Coordinate, so the similarity predicates can be answered over it. In order to make
easier to understand the examples, we assume that there is a function Coord(USCities.Name) that
returns the Coordinate of the city named Name.

4.1 Formal Definition

A kNN query returns the k elements most similar to the query reference based on a given distance
function. Usually, it is defined as in Definition 1.

Definition 1. k-Nearest Neighbor query - kNNq - Conventional: Given that S, θ̈, S, d,
k ∈ N∗ and sq ∈ S as defined in Table I, the query σ̈(S θ̈(d,k) sq) T returns the tuples {t1, . . . , tk} ⊆ T

such that, for each i = 1, . . . , k, the value of the attribute S in the tuple ti - ti(S) - is one of the k
elements in S nearest to the query element sq based on the distance function d. That is,

σ̈(S θ̈(d,k) sq) T = {ti ∈ T | ∀ t ∈ T − T ′, d (ti(S), sq) ≤ d (t(S), sq)} , (1)

where T ′ = ∅, if i = 1 and T ′ = {t1, . . . , ti−1}, if 1 < i ≤ k.

Defining the kNNq in this way is easier to understand and it is the most commonly used in the
database literature to explain the kNN operator. However, to prove the inclusion-based properties,
it is convenient to express the kNNq query following algebraic rules, where the concept being defined
cannot itself be employed in its definition. Therefore, we express its formal definition as follows.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

Algebraic Properties to Optimize kNN Queries · 391

Definition 2. k-Nearest Neighbor query - kNNq - Formal: Given that S, θ̈, S, d, k ∈ N∗ and
sq ∈ S as defined in Table I, the query σ̈(S θ̈(d,k) sq) T returns the tuples

σ̈(S θ̈(d,k) sq) T = {t1, . . . , tk} , (2)

where
t1 ={ti ∈ T | ∀t ∈ T, d (ti(S), sq) ≤ d (t(S), sq)} ,
t2 ={ti ∈ T − {t1}|∀t ∈ T − {t1}, d (ti(S), sq) ≤ d (t(S), sq)} ,

...
tk ={ti ∈ T − {t1, . . . , tk−1}|∀t ∈ T − {t1, t2, . . . , tk−1}, d (ti(S), sq) ≤ d (t(S), sq)} .

In other words, since T is a finite set, we can write:
σ̈(S θ̈(d,k) sq) T = {t1, . . . , tk} , (3)

where
t1 = {t1 ∈ T | d (t1(S), sq) = min {d (t(S), sq) ; t ∈ T}} ,

t2 = {t2 ∈ T − {t1}| d (t2(S), sq) = min {d (t(S), sq) ; t ∈ T − {t1}}} ,

...
tk = {tk ∈ T − {t1, t2, . . . , tk−1}| d (tk(S), sq) = min {d (t(S), sq) ; t ∈ T − {t1, . . . , tk−1}}} .

Thus, by definition, d(t1(S), sq) ≤ d(t2(S), sq) ≤ . . . ≤ d(tk(S), sq).

4.2 kNN Properties

Now we are ready to show the set inclusion-based properties valid for kNN selection predicates.
4.2.1 Idempotent property. An operation is said to be idempotent when repeating this operation

multiple times has exactly the same result as applying it once. Property 4.1 shows that a kNN selection
operation meets this property.

Property 4.1. Let T be a relation, S in T be a complex attribute taken in domain S over which the
similarity condition is expressed, and θ̈, d, k and sq as defined in Table I. Then the kNN idempotent
property is expressed as

σ̈(S θ̈(d,k) sq)
(
σ̈(S θ̈(d,k) sq) T

)
= σ̈(S θ̈(d,k) sq) T . (4)

Example 4.1 illustrates this property. In this example, we want to find the 5 most similar cities of
“New York city-NY”.

Example 4.1. “Select the 5 nearest cities of “New York city-NY”, considering the Euclidean dis-
tance L2”.
Algebraically, this query is expressed as σ̈(Coordinate θ̈(L2,5) Coord(New York)) USCities. The execu-
tion of this query returns 5 tuples {New York city-NY, Guttenberg town-NJ, Hoboken city-NJ,
Union City city-NJ, West New York town-NJ}. If we repeat the query in multiple selection as in:

σ̈(Coordinate θ̈(L2,5) Coord(New York))
(
σ̈(Coordinate θ̈(L2,5) Coord(New York)) USCities

)
,

the results are always the same, due to the idempotent property of kNNq. Although this property is
barely useful for query rewriting purposes, it is nevertheless required to have a well-defined algebra.

4.2.2 Inclusion properties. The following properties show the inclusion properties when executing
kNN in sequence with itself and with other traditional and similarity operations.

Property 4.2 treats the relationship between conjunctions of θ̈ operators and the composition of
kNN selection operations. Following this property, the result of a kNN executed over a conjunction
of θ̈ operators is included in the result of the conjunction of kNN selection operations.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

392 · Mônica R. P. Ferreira et al

Property 4.2. Let T be a relation, S1, S2 in T be a complex attribute taken in domain S over
which the similarity condition is expressed, and θ̈, d1, d2, k1, k2, sq1 and sq2 as defined in Table I.
Then

σ̈(S1 θ̈(d1,k1) sq1)∧(S2 θ̈(d2,k2) sq2) T︸ ︷︷ ︸
(i)

⊆ σ̈(S1 θ̈(d1,k1) sq1)
(
σ̈(S2 θ̈(d2,k2) sq2)T

)
︸ ︷︷ ︸

(ii)

. (5)

Due to space limitations, we do not prove every property derived in this article. We do however
prove this property, noting that the others follow suit.

Proof. By Definition 1, we have:
σ̈(S2 θ̈(d2,k2) sq2) T = {ti ∈ T |∀t ∈ T − T ′2, d2 (ti(S2), sq2) ≤ d2 (t(S2), sq2)} = D ⊆ T,

where T ′2 = ∅ if i = 1 and T ′2 = {t1, . . . , ti−1} if 1 < i ≤ k2.

Replacing in (ii), we have:

(ii) = σ̈(S1 θ̈(d1,k1) sq1) D = {ti ∈ D|∀t ∈ D − T ′1, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1)},

where T ′1 = ∅ if i = 1 and T ′1 = {t1, . . . , ti−1} if 1 < i ≤ k1.

As D ⊆ T , and considering (ii) we have:

(ii) ⊃ {ti ∈ D|∀t ∈ T − T ′1, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1)}
= {ti ∈ T |∀t ∈ T − T ′2, d2 (ti(S2), sq2) ≤ d2 (t(S2), sq2) ∧ ∀t ∈ T − T ′1, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1)}
= {ti ∈ T |∀t ∈ T − T ′1, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1) ∧ ∀t ∈ T − T ′2, d2 (ti(S2), sq2) ≤ d2 (t(S2), sq2)}
= σ̈(S1 θ̈(d1,k1) sq1)∧(S2 θ̈(d2,k2) sq2)T = (i),

where T ′1 and T ′2 are defined as above. Thus, (i) ⊆ (ii), as required.

To exemplify this property, suppose that we are looking for the 5 cities most similar to “New York
city-NY” and the 3 cities most similar to “Jersey City city-NJ”, as presented in Example 4.2.

Example 4.2. “Select the 5 nearest cities of “New York city-NY” and the 3 nearest cities of “Jersey
City city-NJ” considering the Euclidean distance function L2”.

Algebraically, this query can be represented as:
σ̈(Coordinate θ̈(L2,5) Coord(New York))∧(Coordinate θ̈(L2,3) Coord(New Jersey)) USCities . (6)

It returns 2 tuples corresponding to {Hoboken city-NJ, Union City city-NJ}. Applying algebraic
properties, we can transform this algebraic expression into a composition of kNN/kNN selection
operation, such as:

σ̈(Coordinate θ̈(L2,3) Coord(New Jersey))
(
σ̈(Coordinate θ̈(L2,5) Coord(New York))USCities

)
, (7)

which returns the 3 tuples {Hoboken city-NJ, Union City city-NJ, Guttenberg town-NJ}. No-
tice that the result of Equation 6 is included in the result of Equation 7.

Property 4.3 treats the relation between compositions of kNN and traditional selection operation,
showing that the result of a traditional selection performed over a kNN selection is included in the
result of a kNN selection performed over a traditional selection.

Property 4.3. Let T be a relation, S in T be a complex attribute taken in domain S over which
the similarity condition is expressed, and θ̈, d, k and sq as defined in Table I. Let also A in T be a
traditional attribute taken in domain A over which the traditional condition is expressed, θ as defined
in Table I, and a be either a constant taken in a domain of A or the value of another attribute from
the same domain of A in the same tuple. Then

σ(A θ a)

(
σ̈(S θ̈(d,k) sq) T

)
⊆ σ̈(S θ̈(d,k) sq)

(
σ(A θ a) T

)
. (8)

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

Algebraic Properties to Optimize kNN Queries · 393

To illustrate this property, suppose that we want to find the 5 cities most similar to “New York
City-NY” that have the per capita income greater than 22,400 (the per capita income of “New York
City-NY”) in Census 2000, according to Example 4.3.

Example 4.3. “Select the 5 cities nearest to “New York city-NY” considering the Euclidean distance
L2, and the per capita income greater than 22,400”.

Expressing Example 4.3 algebraically, we have:

σ(PerCapita > 22400)

(
σ̈(Coordinate θ̈(L2,5) Coord(New York)) USCities

)
, (9)

which returns 2 tuples {Hoboken city-NJ, Guttenberg town-NJ}. If we apply the commutative
property, executing the traditional selection before the kNN one, this algebraic expression is expressed
as:

σ̈(Coordinate θ̈(L2,5) Coord(New York))
(
σ(PerCapita > 22400) USCities

)
, (10)

which returns the 5 tuples {Ridgefield borough-NJ,Guttenberg town-NJ,Edgewater borough-NJ,
Cliffside Park borough-NJ, Hoboken city-NJ}. Notice that the result of Equation 9 is included
in the result of Equation 10.

Analogously, Property 4.4 considers the relationship between range and kNN selection operations.
According to this property, the result of the range selection executed over a kNN selection operation
is included in the result of the kNN selection performed over the range selection operation.

Property 4.4. Let T be a relation, S1, S2 in T be a complex attribute taken in domain S over
which the similarity condition is expressed, ξ be the threshold and θ̂, θ̈, d, k and sq as defined in
Table I. Then

σ̂(S2 θ̂(d2,ξ) sq2)
(
σ̈(S1 θ̈(d1,k) sq1) T

)
⊆ σ̈(S1 θ̈(d1,k) sq1)

(
σ̂(S2 θ̂(d2,ξ) sq2) T

)
. (11)

The following example illustrates this property. Suppose that we want to show the 5 cities most
similar to “New York city-NY” that are not farther than 210 km from “Albany city-NY” (the capital
of New York State), as shown in Example 4.4.

Example 4.4. “Select the 5 cities nearest to “New York city-NY” and whose distances from “Albany
city-NY” are not farther than 210 km, considering the Euclidean distance L2”.

Using similarity algebra, this query is expressed as:

σ̂(Coordinate θ̂(L2,1.9) Coord(Albany))
(
σ̈(Coordinate θ̈(L2,5) Coord(New York)) USCities

)
. (12)

It returns the two tuples {Guttenberg town-NJ, West New York town-NJ}. Applying the commu-
tative property and executing the range selection before the kNN one, this algebraic expression is
posed as:

σ̈(Coordinate θ̈(L2,5) Coord(New York))
(
σ̂(Coordinate θ̂(L2,1.9) Coord(Albany))USCities

)
, (13)

which returns the 5 tuples {West New York town-NJ,Fairview borough-NJ,Guttenberg town-NJ,
Edgewater borough-NJ, Cliffside Park borough-NJ}. Notice that the result of Equation 12 is
included in the result of Equation 13.

Property 4.5 describes the effect of applying the kNN selection over the traditional union binary
operator. It states that the result of the kNN executed over the union of relations is included in the
result of the union between kNN selection operations executed in both relations.

Property 4.5. Let T1 and T2 be two relations, S be a complex attribute taken in domain S over
which the similarity condition is expressed, and θ̈, d, k and sq as defined in Table I. Then

σ̈(S θ̈(d,k) sq)
(
T1

⋃
T2

)
⊆
(
σ̈(S θ̈(d,k) sq) T1

) ⋃ (
σ̈(S θ̈(d,k) sq) T2

)
. (14)

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

394 · Mônica R. P. Ferreira et al

For instance, suppose that we want to find, in either New York State or New Jersey State, the 5
cities most similar to “New York city-NY”. Example 4.5 expresses this query.

Example 4.5. “Select the 5 cities nearest to “New York city-NY” that belong either to the New
York State or to the New Jersey State, considering the Euclidean distance L2”.

This query, algebraically expressed as

σ̈(Coordinate θ̈(L2,5) Coord(New York))
(
σ(State=NY)USCities

⋃
σ(State=NJ)USCities

)
, (15)

returns 5 tuples {Guttenberg town-NJ,New York city-NY,Union City city-NJ,Hoboken city-NJ,
West New York town-NJ}. Applying the distributive property and executing the union over the kNN
selection of each relation, this expression is rewritten as:(

σ̈(Coordinate θ̈(L2,5) Coord(New York)) σ(State=NY)USCities
) ⋃(

σ̈(Coordinate θ̈(L2,5) Coord(New York)) σ(State=NJ)USCities
)

(16)

which returns the 10 tuples {New York city-NY,Inwood CDP-NY,Harbor Hills CDP-NY,Bellerose
Terrace CDP-NY, Saddle Rock village-NY,Cliffside Park borough-NJ,Guttenberg town-NJ,
West New York town-NJ, Union City city-NJ, Hoboken city-NJ}. We can see that the result of
Equation 15 is included in the result of Equation 16.

For the traditional set difference binary operator, there are two ways to relate it with the kNN
selection operation. First, the result of the difference between the kNN selection in the first relation
and the second relation is included in the result of the kNN executed over the difference of relations.
In the second way, the result of the difference between the kNN selection in the first relation and the
second relation is included in the result of the difference executed over kNN selection operations in
both relations. These relationships are presented in Property 4.6.

Property 4.6. Let T1 and T2 be two relations, S be a complex attribute taken in domain S over
which the similarity condition is expressed, and θ̈, d, k and sq as defined in Table I. Then(

σ̈(S θ̈(d,k) sq) T1

)
− T2 ⊆ σ̈(S θ̈(d,k) sq) (T1 − T2) ; (17)

(
σ̈(S θ̈(d,k) sq) T1

)
− T2 ⊆

(
σ̈(S θ̈(d,k) sq) T1

)
−
(
σ̈(S θ̈(d,k) sq) T2

)
. (18)

In order to exemplify this property, suppose that we want to find the 5 cities nearest to “New York
city-NY” that belong to the relation of cities that have the percentage of families in poverty level
percentage smaller than or equal to 18.5 (that is, the poverty level percentage from the “New York
city-NY” – stored in the PctPovertyFam attribute) and that are not cities of the New York state.
Example 4.6 shows this query.

Example 4.6. “Select the 5 cities nearest to “New York city-NY” that have the percentage of fam-
ilies in poverty level PctPovertyFam≤ 18.5 but are not cities of the New York state, considering the
Euclidean distance L2”.

Transforming this query into a similarity algebra expression, we have:

σ̈(Coordinate θ̈(L2,5) Coord(New York))
(
σ(PctPovertyFam≤18.5)USCities − σ(State=NY)USCities

)
, (19)

returns 5 tuples {Asbury Park city-NJ, Wood Ridge borough-NJ, Newark city-NJ, Union City
city-NJ, Paterson city-NJ}. Applying the kNN selection over the first relation and executing its
difference with the second relation, we have:(
σ̈(Coordinate θ̈(L2,5) Coord(New York))σ(PctPovertyFam≤18.5)USCities

)
− σ(State=NY)USCities, (20)

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

Algebraic Properties to Optimize kNN Queries · 395

which also returns 4 tuples: {Newark city-NJ, Paterson city-NJ, Union City city-NJ, Wood
Ridge borough-NJ}. Therefore, we see that the result of Equation 20 is included in the result of
Equation 19. Moreover, applying the distributive property and executing the difference over the
kNN selection of each relation, the new expression:(

σ̈(Coordinate θ̈(L2,5) Coord(New York)) σ(PctPovertyFam≤18.5) USCities
)
−(

σ̈(Coordinate θ̈(L2,5) Coord(New York))σ(State=NY) USCities
)

, (21)

returns the 5 tuples {Kaser village-NY, Wood Ridge borough-NJ, Newark city-NJ, Paterson
city-NJ, Union City city-NJ}. In this way, we see that the result of Equation 20 is included in
the result of Equation 21 also.

Property 4.7 treats the relation of a kNN selection operation and the traditional intersection binary
operator. The result of the intersection between the kNN selection executed in both relations is
included in the result of the kNN executed over the intersection of both relations. Also, the result of
the intersection between the kNN selection on the first relation and the kNN selection on the second
relation is properly included in the result of the kNN executed over the intersection of both relations.

Property 4.7. Let T1 and T2 be two relations, S be a complex attribute taken in domain S over
which the similarity condition is expressed, and θ̈, d, k and sq as defined in Table I. Then(

σ̈(S θ̈(d,k) sq) T1

) ⋂
T2 ⊆ σ̈(S θ̈(d,k) sq) (T1 ∩ T2) ; (22)

(
σ̈(S θ̈(d,k) sq) T1

) ⋂ (
σ̈(S θ̈(d,k) sq) T2

)
⊆ σ̈(S θ̈(d,k) sq) (T1 ∩ T2) . (23)

For example, suppose that we want to show the 5 cities nearest to “New York city-NY”, which
belongs to the New York state and whose percentage of families in the poverty level percentage are
smaller than 18.5. Example 4.7 summarizes this query.

Example 4.7. “Select the 5 cities nearest to “New York city-NY” that belong to the New York
state and has the percentage of families in poverty level PctPovertyFam≤ 18.5, considering Euclidean
distance L2”.

In similarity algebra, this query is written as:

σ̈(Coordinate θ̈(L2,5) Coord(New York))
(
σ(State=NY)USCities

⋂
σ(PctPovertyFam≤18.5)USCities

)
, (24)

and returns 5 tuples {Kaser village-NY, Monsey CDP-NY, New Square village-NY, Verplanck
CDP-NY, New York city-NY}. Applying the kNN selection over the first relation and executing its
intersection with the second relation, we have:(

σ̈(Coordinate θ̈(L2,5) Coord(New York))σ(State=NY)USCities
)⋂

σ(PctPovertyFam≤18.5)USCities, (25)

which returns only the tuple {New York city-NY}. In this way, we see that the result of Equation 25
is included in the result of Equation 24. Moreover, applying the distributive property and executing
the intersection over the kNN selection of each relation, the expression is rewritten as:(

σ̈(Coordinate θ̈(L2,5) Coord(New York)) σ(State=NY) USCities
) ⋂(

σ̈(Coordinate θ̈(L2,5) Coord(New York))σ(PctPovertyFam≤18.5) USCities
)
, (26)

which also returns only tuple {New York city-NY}. Thus, we see that the result of Equation 26 is
also included in the result of Equation 24.

The relationship between kNN and the traditional cross product operator is presented in Prop-
erty 4.8. For these operators, the result of the kNN executed over the cross product of relations is

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

396 · Mônica R. P. Ferreira et al

included in the result of the cross product between the kNN selection executed in one relation and
the other relation.

Property 4.8. Let T1 and T2 be two relations, S in T1 be a complex attribute taken in domain S
over which the similarity condition is expressed, and θ̈, d, k and sq as defined in Table I. Then

σ̈(S θ̈(d,k) sq) (T1 × T2) ⊆
(
σ̈(S θ̈(d,k) sq) T1

)
× T2 . (27)

There is a special case of cross product operator to treat the conjunction of selection predicates. If
the condition is conjunctive and it can be rewritten as S1 θ̈ sq1 ∧ S2 θ̈ sq2 where Si ∈ Ti, then the
result of the conjunctions of a kNN executed over the cross product of two relations is included in
the result of the cross product between the kNN selection executed over the first relation and the
kNN selection executed over the second relation.

Property 4.8.1. Special case for the cross product: Let T1 and T2 be two relations, S1 ∈ T1 and
S2 ∈ T2 be complex attributes taken in domain S over which the similarity condition is expressed, and
θ̈, d1, d2, k1, k2, sq1 and sq2 as defined in Table I. Then

σ̈(S1 θ̈(d1,k1) sq1)∧(S2 θ̈(d2,k2) sq2) (T1 × T2) ⊆
(
σ̈(S1 θ̈(d1,k1) sq1) T1

)
×
(
σ̈(S2 θ̈(d2,k2) sq2) T2

)
. (28)

As Cartesian products are conceptually a component of the Join operators and usually have few
intuitive applications on user queries, we postpone an example of this property for the next property.

Considering the kNN selection operation and the traditional join operator, the result of the join
between the result of kNN selection operations executed in each relation is included in the result of
the kNN executed over the join of both relations, as shown in Property 4.9.

Property 4.9. Let T1 and T2 be two relations, S ∈ T1 be a complex attribute taken in domain S
over which the similarity condition is expressed, and θ̈, d, k and sq as defined in Table I. Then(

σ̈(S θ̈(d,k) sq) T1

)
1 T2 ⊆ σ̈(S θ̈(d,k) sq) (T1 1 T2) . (29)

To illustrate this property, suppose that we want to retrieve from the cities of the New York state,
the 5 cities nearest to the “New York city-NY” whose percentage of families poverty level is smaller
than or equal to 18.5. This query is summarized in Example 4.8.

Example 4.8. “Select the 5 cities nearest to “New York city-NY”, which belong to the New York
state and have the percentage of families in poverty level smaller than or equal to 18.5, considering
Euclidean distance L2”.

Algebraically, this query is expressed as:

σ̈(Coordinate θ̈(L2,5) Coord(New York))
(
σ(State=NY)USCities 1 σ(PctPovertyFam≤18.5)USCities

)
. (30)

It returns the 5 tuples {Kaser village-NY, Monsey CDP-NY, New Square village-NY, Verplanck
CDP-NY, New York city-NY}. Applying the kNN selection over the first relation and executing its
join with the second one, we have:(

σ̈(Coordinate θ̈(L2,5) Coord(New York))σ(State=NY)USCities
)

1 σ(PctPovertyFam≤18.5)USCities, (31)

which returns only the tuple {New York city-NY}. Thus we can see that the result of Equation 31
is included in the result of Equation 30.

There is also a special case of the join operator to treat the conjunction of selection predicates. If
the condition is conjunctive and can be rewritten as S1 θ̈ sq1 ∧ S2 θ̈ sq2 , where Si ∈ Ti, then the

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

Algebraic Properties to Optimize kNN Queries · 397

result of the join between the kNN selection executed over the first relation and the kNN selection
executed over the second relation is included in the result of the conjunction of the kNN executed
over the join of relations.

Property 4.9.1. Special case for the join operator: Let T1 and T2 be two relations, S1 ∈ T1 and
S2 ∈ T2 be complex attributes taken in domain S over which the similarity condition is expressed, and
θ̈, d1, d2, k1, k2, sq1 and sq2 as defined in Table I. Then(
σ̈(S1 θ̈(d1,k1) sq1) T1

)
1

(
σ̈(S2 θ̈(d2,k2) sq2) T2

)
⊆ σ̈(S1 θ̈(d1,k1) sq1)∧(S2 θ̈(d2,k2) sq2) (T1 1 T2) . (32)

5. EXPERIMENTAL EVALUATION

Our experiments were performed over SIREN, as it supports an extension of SQL to handle similarity
queries [Barioni et al. 2006]. In this section we present experiments comparing SIREN executing
queries rewritten using our proposed algebraic properties. SIREN is implemented in C++, and the
experiments were evaluated using an Intel Core 2 Quad 2.83GHz processor with 4GB of main memory,
under the Windows XP operating system. SIREN was configured to process the traditional part of
the queries in Oracle 9i. Due to space limitations, we only report here the performance regarding total
time (in milliseconds), as it summarizes the whole computational cost. As our objective here is also
to show the effect of using the set inclusion-based properties on the intuitive query results and not
only its contribution to improve query performance, we do not perform tests on synthetic, controlled
databases. Rather, we employ two real world publicly available data sets, as follows:

—USCities: a set of 25,374 American cities and their economic characteristics in Census 2000, obtained from
U.S. Census Bureau website1. They were compared using the Euclidean distance function.

—DDSM : a set of 4,612 mammography images, obtained between 1993 and 1999 from the Digital Database
for Screening Mammography (DDSM) website2 [Heath et al. 1998][Heath et al. 2000]. They were compared
using the texture distance function [Haralick et al. 1973].

In our experiments, we apply the canonical and the alternative plans to execute the following queries:

Q1: In a Geographic Information Systems: “Find the 5 cities nearest to ‘New York city-NY’, whose
distances from ‘Albany city-NY’ are not farther than 210 km, considering the Euclidean distance L2,
having the per capita income greater than 22,400 and the percentage of families in poverty level smaller
than or equal to 18.5 ”.

Q2: In a health-care information system: “Select the 3 mammographies taken in 1993 that are the
most similar to this one from my current patient (Patient X), whose patient is less then 45 years old
and the exam was done in Massachusetts General Hospital (MGH)”.

Query Q1 involves traditional, similarity range and kNN selections. It can be algebraically ex-
pressed as:

σ(PerCapita>22400 ∧ PctPovertyFam≤18.5)(σ̂(Coordinate θ̂(L2,1.9) Coord(Albany))
(σ̈Coordinate θ̈(L2,5) Coord(New York) USCities)) .

In Figures 1 and 2, we present the canonical query plan resulting from the original query and the
alternative execution plan that results from query rewriting, for Queries Q1 and Q2, respectively.
Both figures also show the number of expected (k) and returned results for each plan, and their

1U.S. Census Bureau Homepage. Last access in: 2011 May 15. Available at: http://www.census.gov/
2DDSM: Digital Database for Screening Mammography Homepage. Last access in: 2011 May 15. Available at: http:
//marathon.csee.usf.edu/Mammography/Database.html

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

398 · Mônica R. P. Ferreira et al

Le Le Le Le Le Le

Canonical
Tree

Alternative
1

Le LeLe
USCities USCities USCities USCities USCities USCities USCities USCities USCities

Alternative
2

Alternative
3

Alternative
4

Alternative
5

Alternative
6

none Property 4.4 Property 4.4/4.3 Commutative
range/traditional

Commutative
range/traditional

Property 4.3

Commutative
range/traditional

Property 4.3/4.4
Property 3 (Table II)

Alternative Plan - Property:

5 / 1 5 / 3 5 / 5 5 / 1 5 / 4 5 / 5 5 / 1

Number of expected (k) / returned results:

117 125 141 124 125 117 403

Query execution time (ms):

Fig. 1. Canonical, alternative plans and execution time
of Query Q1.

Le

Canonical
Tree

Alternative
1

Patients

Alternative
2

Le
Images

Le
Patients

Le
Images

Le
Patients

Le
Images

Alternative
3

Alternative
4

Le
Patients

Le
Images

Le
Patients

Le
Images

Alternative Plan - Properties:

3 / 1 3 / 1 3 / 3 3 / 3 3 / 1

none (T1) T2 (T1 T2)
and Property 4.9

Property 4.9 (T1) T2 (T1 T2)
Property 4.9 and

(T1) T2 (T1 T2)

126 200 117 116 136

Query execution time (ms):

Number of expected (k) / returned results:

Fig. 2. Canonical, alternative plans and execution time
of Query Q2.

evaluation time in milliseconds (ms). The time reported corresponds to the average execution of 10
queries like Q1 and Q2, respectively.

Considering Query Q1, Figure 1 shows the canonical and six alternative execution plans for this
query. Although the evaluation time of the Canonical and the Alternative 5 plan is the same, the
canonical plan can return less than k tuples, as further operations are applied over the first k tuples
selected, pruning more results. When the evaluation of the predicates of the other selections return
at least k tuples, executing the kNN as the last operation (Alternative 5) warrants that the asked
amount k of tuples are returned. Moreover, these those k tuples are always returned by the canonical
plan. In Alternative 5 of Figure 1, we rewrote the canonical plan applying the commutative property
between range and traditional operators, Property 4.3, and Property 4.4, respectively.

Query Q2 involves both traditional and kNN selection, as well as a traditional join. It can be
expressed as:(

σ(DateOfStudy≥′01/01/1993′∧DateOfStudy≤′31/12/1993′∧Hospital=′MGH′∧PatientAge<45) Cases
)

1(
σ̈(Img θ̈(Texture,3) Image(PatientX)) Mammography

)
.

The canonical and four alternative plans for this query are presented in Figure 2. Alternative
plans 3 and 2 have a gain about 8% comparing with the canonical tree. Analogous to Query Q1,
alternative plans 3 and 2 both return k tuples. In the Alternative plan 2 and 3, we apply the
σ(T1) 1 T2 = σ(T1 1 T2) property and Property 4.9 over canonical plan to query rewrite, as shown
in Figure 2.

6. DISCUSSION

It is expected that the canonical query plan generated by the DBMS interpreter has the sequence
of select operators in the same original query plan sequence. As the query optimizer module further
rearranges this ordering based on the commutative property of the traditional predicates, this is not a
issue at all. However, kNN predicates are not commutative. Thus, when SQL is extended to support
similarity queries, the corresponding interpreter must have a rule about how to position the kNN
selections regarding the other operators. It has been well-accepted that the kNN predicates should be
the first to be executed, on behalf that in this way a similarity index existing on the query predicate
attributes could be employed, thus helping to speed up the most costly part of the query execution.
This choice is a pragmatic one, as the lack of the commutative property denies that alternative
choices result in the same answer, and it is supposed that it can obtain the fastest execution. The

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

Algebraic Properties to Optimize kNN Queries · 399

experiments we showed in the previous section highlight that this choice does not stand when our new
set inclusion-based properties are taken into account.

In fact, the current choice of executing first the kNN predicates usually leads to fewer tuples in the
result than specified in the kNN arguments. This is due to the fact that executing the other predicates
after the kNN filters out part of the k tuples selected (or even all the tuples). To allow returning
the same number of tuples asked (at least when just one kNN predicate exists in the query), the
kNN predicate should be executed last. Our experiments show that the alleged lack of performance
induced by this choice does not occur in practice. In fact, empowering the query optimizer with the
set inclusion-based properties presented in this article, it is possible to find query execution plans that
are at least as fast as those that execute first the kNN predicate, yet returning the desired number
of tuples – provided they exist in the database.

A final remark about including operations in the DBMS execution core. Although similarity indexes
are not used if a kNN selection is not the first operator executed, this does not preclude executing
kNN indexed access: it remains useful to answer kNN only queries, including simple queries, when
there is no way to employ traditional attribute indexes.

7. CONCLUSION

One of the most interesting features of Relational Database Management Systems is their ability to
handle the algebraic expression of a query, in order to evaluate the costs of several access plans to
choose the one that is probably the fastest. This feature requires that the DBMS optimizer module
knows the algebraic properties of the query operators, in order to derive the alternative plans. The
kNN is one of the more costly predicates, so it should be one that better took advantage of this DBMS
feature, but unfortunately the kNN predicate has too few equivalence properties to allow good query
optimizations. It even does not meet the commutative property.

In this article we presented a complete set of properties for the kNN predicates based not on
equivalence, but in set inclusion, which greatly enlarges the collection of algebraic properties that
the DBMS can count on to optimize compound queries involving at least one kNN predicate. We
also presented several examples of how queries can be rewritten using those properties, and evaluated
compound queries involving the kNN predicate placed over two databases having relations that are
composed of attributes able to be queried by similarity. For both databases, we show that the optimizer
can in fact choose interesting alternative plans.

The lack of the commutative property for the kNN predicate has implications on how the DBMS
interpreter handles query commands that include kNN predicates. It is well accepted by several
researchers in the database community that the kNN predicates should be executed first, allowing to
employ existing similarity-based indexes, thus helping to speed up the most costly part of the query
execution. However, this predicate ordering almost always retrieves less tuples than asked in the query.
Our experiments using the set inclusion-based properties show that it is possible to execute the kNN
as the last predicate in a conjunction of select operators, and yet obtain the answer in the same time,
or even faster, than executing first the kNN predicate, allowing to obtain the asked number of tuples.

REFERENCES

Adali, S., Bonatti, P., Sapino, M., and Subrahmanian, V. A multi-similarity algebra. In Proceedings of the ACM
SIGMOD International Conference on Management of Data Conference. Seattle, USA, pp. 402–413, 1998.

Adali, S., Bufi, C., and Sapino, M.-L. Ranked relations: query languages and query processing methods for
multimedia. Multimedia Tools and Applications 24 (3): 197–214, 2004.

Adali, S., Sapino, M. L., and Marshall, B. A rank algebra to support multimedia mining applications. In
Proceedings of the International Workshop on Multimedia Data Mining. San Jose, USA, pp. 1–9, 2007.

Atnafu, S., Brunie, L., and Kosch, H. Similarity-based algebra for multimedia database systems. In Proceedings
of the Australasian Database Conference. Gold Coast, Australia, pp. 115–122, 2001.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

400 · Mônica R. P. Ferreira et al

Atnafu, S., Chbeir, R., Coquil, D., and Brunie, L. Integrating similarity-based queries in image DBMSs. In
Proceedings of the ACM Symposium on Applied Computing. Nicosia, Cyprus, pp. 735–739, 2004.

Barioni, M. C. N., Razente, H. L., Traina, A. J. M., and Traina, Caetano, J. Seamlessly integrating similarity
queries in sql. Software: Practice and Experience 39 (4): 355–384, 2009.

Barioni, M. C. N., Razente, H. L., Traina, A. J. M., and Traina-Jr., C. SIREN: A similarity retrieval engine
for complex data. In Proceedings of the International Conference on Very Large Data Bases. Seoul, South Korea,
pp. 1155–1158, 2006.

Bartolini, I. Efficient and Effective Similarity Search in Image Databases. Ph.D. thesis, University of Bologna, 2002.
Belohlávek, R., Opichal, S., and Vychodil., V. Relational algebra for ranked tables with similarity: properties and
implementation. In Proceedings of the International Symposium on Intelligent Data Analysis. Ljubljana, Slovenia,
pp. 140–151, 2007.

Berchtold, S., Böhm, C., Keim, D. A., Krebs, F., and Kriegel, H.-P. On optimizing nearest neighbor queries
in high-dimensional data spaces. In Proceedings of the International Conference on Database Theory. London, UK,
pp. 435–449, 2001.

Böhm, C., Braunmüller, B., and Kriegel, H.-P. The pruning power: A theory of scheduling strategies for multiple
k-nearest neighbor queries. In Proceedings of the Data Warehousing and Knowledge Discovery. Greenwich, UK, pp.
372–381, 2000.

Chbeir, R. and Laurent, D. Towards a novel approach to multimedia data mixed fragmentation. In Proceedings
of the International ACM Conference on Management of Emergent Digital EcoSystems. Lyon, France, pp. 200–204,
2009.

Ciaccia, P., Montesi, D., Penzo, W., and Trombetta, A. Imprecision and user preferences in multimedia queries:
a generic algebraic approach. In Proceedings of the International Symposium on Foundations of Information and
Knowledge Systems. Burg, Germany, pp. 50–71, 2000.

Falchi, F., Lucchese, C., Orlando, S., Perego, R., and Rabitti, F. A metric cache for similarity search. In
Proceedings of the ACM Workshop on Large-Scale Distributed Systems for Information Retrieval. Napa Valley, USA,
pp. 43–50, 2008.

Faloutsos, C. Indexing of multimedia data. In Multimedia Databases in Perspective. Lecture Notes in Computer
Science. Indexing of Multimedia Data, pp. 219–245, 1997.

Ferreira, M. R. P., Traina, A. J. M., Dias, I., Chbeir, R., and Traina Jr., C. Identifying algebraic properties
to support optimization of unary similarity queries. In Proceedings of the Alberto Mendelzon International Workshop
on Foundations of Data Management. Vol. 450. Arequipa, Peru, pp. 1–10, 2009.

Haralick, R. M., Shanmugam, K., and Dinstein, I. Textural features for image classification. IEEE Transactions
on Systems, Man, and Cybernetics 3 (6): 610–621, 1973.

Heath, M., Bowyer, K., Kopans, D., Kegelmeyer-Jr., P., Moore, R., Chang, K., and Munishkumaran, S.
Current status of the digital database for screening mammography. In Proceedings of the International Workshop on
Digital Mammography. Nijmegen, Netherlands, pp. 457–460, 1998.

Heath, M., Bowyer, K., Kopans, D., Moore, R., and Kegelmeyer-Jr., P. The digital database for screening
mammography. In Proceedings of the International Workshop on Digital Mammography. Toronto, Canada, pp. 212–
218, 2000.

Li, C., Chang, K. C.-C., Ilyas, I. F., and Song, S. RankSQL: query algebra and optimization for relational
top-k queries. In Proceedings of the ACM SIGMOD International Conference on Management of Data Conference.
Baltimore, USA, pp. 131–142, 2005.

Montesi, D. and Trombetta, A. Similarity search through fuzzy relational algebra. In Proceedings of the Interna-
tional Conference on Database and Expert Systems Applications. Florence, Italy, pp. 235–239, 1999.

Montesi, D., Trombetta, A., and Dearnley, P. A. A similarity based relational algebra for web and multimedia
data. Information Processing and Management 39 (2): 307–322, 2003.

Picariello, A. and Sapino, M. L. A fuzzy algebra for image data bases. In Proceedings of International Workshop
on Multimedia Information Systems. Tempe, USA, pp. 86–95, 2002.

Schmitt, I. and Schulz, N. Similarity relational calculus and its reduction to a similarity algebra. In Proceedings
of the International Symposium on Foundations of Information and Knowledge Systems. Wilhelminenburg Castle,
Austria, pp. 252–272, 2004.

Silva, Y. N. and Aref, W. G. Similarity-aware query processing and optimization. In Proceedings of the International
Conference on Very Large Data Bases PhD Workshop. Lyon, France, pp. 1–6, 2009.

Traina-Jr., C., Traina, A. J. M., Vieira, M. R., Arantes, A. S., and Faloutsos, C. Efficient processing of
complex similarity queries in RDBMS through query rewriting. In Proceedings of the International Conference on
Information and Knowledge Engineering. Arlington, USA, pp. 4–13, 2006.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.

