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ABSTRACT

In this article we propose a parameter-free method for Remote

Sensing (RS) image databases Data Mining (DM). DM of RS

images requires methodologies robust to the diversity of con-

text found in such large datasets, as well as methodologies

with low computational costs and low memory requirements.

The methodology that we propose is based on the Normal-

ized Compression Distance (NCD) over lossless compressed

data. Normalized Compression Distance is a measure of sim-

ilarity between two data files using the compression factor as

an approximation to the Kolmogorov complexity. This ap-

proach allows to directly compare information from two im-

ages using the lossless compressed original files, and avoid-

ing the feature extraction/selection process commonly used in

pattern recognition techniques. This shortcut makes the pro-

posed methodology suitable for DM applications in RS. We

provided a classification experiment with hyperspectral data

exemplarizing our methodology and comparing it with com-

mon methodologies found on the literature.

1. INTRODUCTION

Earth Observation (EO) data have increased significantly over

the last decades with orbital and suborbital sensors collecting

and transmitting several terabytes of data a day. Image infor-

mation mining (IIM) is a new field of study that has arisen

to seek solutions to automating the mining (extracting) of in-

formation from EO archives that can lead to knowledge dis-

covery and the creation of actionable intelligence (exploiting)

[1].

Hyperspectral sensors densely measure the spectral re-

sponse of the elements on the sensed scene, forming images

with rich information for thematic mapping, identification of

materials (even at subpixel resolution) or anomalies detec-

tion. However, hyperspectral image analysis poses several

issues [2] as the Hughes phenomenon, due to the small ra-

tio between the number of samples and the number of spec-

tral bands; a high spatial correlation, violating the sampling

independence assumption; and the non-stationary behavior

of the spectral signatures in the spatial domain. Also, the

lack of reference (labelled) samples with respect to the com-

plexity of the problem and the lack of inherent superiority

of any predictive learning classifier as well as data cluster-

ing algorithm, make mapping assesment and comparison a re-

ally hard problem [3]. This issues have been faced with new

promissing techniques as such implementing the Structural

Risk Minimization (SRM) inductive principle [4], semisuper-

vised learning methods or unsupervised thematic map quality

assesments.

However, Pattern Recognition techniques have to cope

with new problems when information have to be extracted

from large databases of remote sensing images. Feature ex-

traction/selection techniques and classification algorithms

are usually chosen and their parameters tuned to solve the

mapping task for an specific scene and fail to be applied to

different contexts or similar scenes taken in different con-

ditions. Moreover, Data Mining imposes another restric-

tions such as computational efficiency or memory allocation

capacity. In this work, we propose a new parameter-free

methodology suitable for data mining of large hyperspectral

image databases. The proposed methodology uses lossless

compression techniques to compress the hyperspectral data,

and defines a Normalized Compression Distance (NCD) over

the compressed data as a meassure of similarity between two

data files, using the compression factor as an approximation

to the Kolmogorov complexity.

We provide a classification experiment over a hyperspec-

tral dataset, showing an example of applicability of the pro-

posed methodology, and comparing it to other methodolo-

gies found on the literature. We show in our experiment that

the proposed parameter-free NCD-based methodology perfor-

mance is similar to other well-known approaches, while skips

the feature extraction/selection process.

The paper is structured as follow. Section 2 presents the

proposed methodology and the theorical basis on which it is

based. Section 3 shows a practical application in classification

of buildings, forest and fields over a hyperspectral dataset.

Finally, section 4 reports our conclusions.

2. PROPOSED METHODOLOGY

In this section we present the theoretical bases for the method-

ology such as the Kolmogorov complexity and the normalized



compression distance; and finally we present the methodol-

ogy itself.

2.1. Kolmogorov Complexity and Normalized Informa-

tion Distance (NID)

The Kolmogorov Complexity K (x) of an object x is de-

fined as the minimum amount of computational resources, q,

needed to represent x:

K (x) = min
q∈Qx

|q| (1)

where Qx is the set of instantaneous codes that give x as out-

put.

It is true that some dependence of the size on the descrip-

tive language we use exists, but it is not very worrying as

it is reduced to some constant, i.e., given two languages L1

and L2, and any string of symbols x, |K1 (x)−K2 (x)| < k.

This may seem surprising, but it is not, because all we need to

move from a description in L1 to another in L2 is a program

interpreter of L1 in L2 writing. The interpreter may be more

or less long, but it’s fixed, so that its size is a constant (and the

corresponding program size in L2 is the size on L1 program

plus the interpreter). Another interesting but less surprising

result is that there exists a constant k (depending on the lan-

guage) such that for any string x, K (x) < |x| + k. This is

easy to see if we think of the worst case, a program containing

the string itself as internal constant.

Within the Information Theory we can say that the Kol-

mogorov complexity or algorithmic complexity (as was top

lines) is the amount of information needed to recover x. It

is important to note that K (x) is a non-calculable function.

The conditional complexity K (x, y) of x related to y is de-

fined as the length of the shortest program with which we can

obtain an output x from y. An important application of this

notion is to estimate the shared information between two ob-

jects: The Normalized Information Distance (NID) [5]. The

NID is proportional to the length of the shortest program that

can calculate x given y. The distance calculated from these

considerations is then normalized as follows:

NID (x, y) =
K (x, y)−min {K (x) ,K (y)}

max {K (x) ,K (y)}
(2)

The NID result is a positive value r, 0 ≤ r ≤ 1, being

r = 0 if the objects are identical and r = 1 for the maximum

distance between them.

If we have a string x and a program P smaller than x

which describes it, then this program can be interpreted as

a compression (lossless information) of x. Therefore, if

K (x) < |x| we say that x is compressible.

2.2. Normalized Compression Distance (NCD)

Since the Kolmogorov Complexity, K (x), is a non-computable

function, the work in [5] defines the Normalized Compres-

sion Distance (NCD) as an approximation to the Normal-

ized Information Distance (NID) considering K (x) as the

compressed version of x, and a lower limit of what can be

achieved with the compressor C. That is, to approximate

K (x) with C (x) = K (x) + k, the length of the compressed

version of x obtained by a lossless compressor C plus an

unknown constant k. The presence of k is necessary because

it is not possible to estimate how close of K (x) this approach

is. To clarify this concept, we take two strings b and p having

the same length n, where the first is a random output of a

Bernoulli process and the second represents the first n digits

of π. The quantity K (p) would be smaller tan K (b) because

there is a natural language program of length K (p) ≪ n

which output is the number π, while a program that has as

output a random sequence of bits would have a close to n

length, so K (p) ≪ K (b). Thus, equation (2) could be

estimated by the Normalized Compression Distance (NCD):

NCD (x, y) =
C (x, y)−min {C (x) , C (y)}

max {C (x) , C (y)}
(3)

where C (x, y) represents the size of the compressed file ob-

tained by the concatenation of x and y.

The NCD can be calculated explicitly between two strings

or two files x and y, and this represents how different are these

files, facilitating the use of this result into various applications

with different data into a parameter-free approach [6, 7, 8, 9].

The NCD is a positive result 0 ≤ NCD ≤ 1 + e, being e

a representation of the imperfections of the compression al-

gorithms. It is necessary to remark that the K (x) approx-

imation by C (x) depends on the data with which to work.

Knowing that common compressors are built based on dif-

ferent hypotheses, some are more efficient than others with a

specific type of data.

2.3. Methodology

Figure 1 shows a block diagram of the proposed methodology.

The goal is to calculate a distance between two hyperspectral

images without the need of selecting/extracting features, not

tuning any parameter neither. First, hyperspectral images are

converted to strings, by concatenating the spectral response of

the pixels of each image one after another. To compare two

hyperspectral images, H1 and H2, the string representations

of each image, x1 and x2, are compressed by a lossless com-

pressor C, and their individual compression factors, C (x1)
and C (x2), are calculated. Then, x1 and x2 are concatened

and compressed to calculate C (x1, x2). Now, we can meas-

sure the distance between the two images, H1 and H2, using

the Normalized Compression Distance, NCD (x1, x2) as it

was defined in (3).

It is possible to use this methodology to calculate the ma-

trix of NCD distances between pairs of hyperspectral images

from a hyperspectral dataset. That is,

D = {dij} ; i = 1, .., N ; j = 1, .., N (4)



Fig. 1. Block diagram of the proposed methodology

Fig. 2. Subscenes of the hyperspectral image showing the

DLR facilities (Band 7).

where N is the number of images in the dataset, and dij is the

NCD distance between images Hi and Hj . Then, the matrix

D of NCD distances can be used as the input to a classifier.

Although we make emphasis here in hyperspectral imagery,

this methodology is easily modifiable for the analysis of other

RS data. It is also to be noted that the analysis of the RS im-

ages by this methodology allows to use the image as a whole,

independently of their size.

3. EXPERIMENTAL RESULTS

We realized some experiments to show the use of the pro-

posed methodology for hyperspectral classification, and we

compared the results to other methodologies found on the lit-

erature. The hyperspectral data taken by the HyMap sensor

have been provided by the German Aerospace Center (DLR).

The sensed scene corresponds to the facilities of the DLR cen-

ter in Oberpfaffenhofen and its surroundings, mostly fields,

forests and small towns. Figure 2 shows some subscenes of

the hyperspectral image used on the experiments. The data

cube has 2878 lines, 512 samples and 125 bands; and the pixel

values are represented by 2-bytes signed integers.

We took the original image and divided it into several

patches of 8 × 8 pixels, and we selected by visual inspection

130 among them corresponding to three different classes:

NCD distances Buildings Fields Forests Total

Buildings 30 0 0 30

Fields 5 32 13 50

Forests 0 13 37 50

Overall accuracy: 76.15%. KHAT: 74.81%.

Average radiance Buildings Fields Forests Total

Buildings 26 4 0 30

Fields 12 38 0 50

Forests 0 0 50 50

Overall accuracy: 87.69%. KHAT: 87.14%.

Endmembers Buildings Fields Forests Total

Buildings 28 2 0 30

Fields 12 38 0 50

Forests 0 0 50 50

Overall accuracy: 89.23%. KHAT: 88.69%.

Table 1. Results using the unsupervised K-Means algorithm

buildings (30 patches), fields (50 patches) and forests (50
patches). We transformed these patches into strings, xi, as it

has been described in section 2, and we calculated the matrix

of distances D (4), between all image pairs using the NCD

function (3). Then, we used the distance matrix D as the

input to well known classification algorithms: K-Means (un-

supervised clustering) and K-NN (supervised classification).

We compared the results obtained with the proposed

NCD-based methodology to results obtained using the aver-

age patch radiance and the induced endmembers characteri-

zation:

• The average patch radiance r̄i for a patch pi is given by

r̄i =
1
N

∑N

j=1 p
(j)
i , where p

(j)
i is the j-th pixel belong-

ing to patch i, and N is the total number of pixels in the

patch (N = 64 in our case).

• The induced endmember characterization Ei = (ei1, . . . , eimi
)

for a patch pi is a set of endmembers, eij, j =
1, . . . ,mi, where mi is the number of endmembers

for the patch pi, obtained by applying an Endmember

Induction Algorithm [10, 11] to the patch.

All the experiments have been run using a K-Fold resam-

pling with 10 folds. Experiments with the induced endmem-

ber characterization of the patches have been done using the

EIHA endmember induction algorithm [12] and the endmem-

bers distance function in [13] to calculate an endmember dis-

tance matrix analogous to the NCD distance matrix used as

input to the classifiers. Tables 1 and 2 show the confusion

matrix, the overall accuracy and the KHAT index for the K-

Means and K-NN algorithms respectively.

4. CONCLUSIONS

In this work we proposed the Normalized Compression Dis-

tance (NCD) as the base for a novel data compression tech-



NCD distances Buildings Fields Forests Total

Buildings 30 0 0 30

Fields 0 47 3 50

Forests 0 8 42 50

Overall accuracy: 91.54%. KHAT: 91.06%.

Average radiance Buildings Fields Forests Total

Buildings 26 4 0 30

Fields 2 48 0 50

Forests 0 0 50 50

Overall accuracy: 95.38%. KHAT: 95.18%.

Endmembers Buildings Fields Forests Total

Buildings 22 7 1 30

Fields 2 48 0 50

Forests 1 0 49 50

Overall accuracy: 91.53%. KHAT: 91.28%.

Table 2. Results using the supervised K-NN algorithm

nique suitable for Remote Sensing data mining. We provided

a methodology for the mining of hyperspectral datasets based

on this technique. This methodology is easily modifiable for

its use with any Remote Sensing data. The applicability of

this methodology was tested by a classification and clustering

experiments over a dataset of hyperspectral images. The re-

sults of the experiments show that the proposed methodology

performance is similar to other methodologies found on the

literature, while presents some advantadges (e.g. no need for

a feature extraction/selection process, parameter-free, adapt-

ability to any image size) that makes it suitable for RS data

mining.
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