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This work presents a family of parsimonious Gaussian process models which allow

to build, from a finite sample, a model-based classifier in an infinite dimensional

space. The proposed parsimonious models are obtained by constraining the eigen-

decomposition of the Gaussian processes modeling each class. This allows in

particular to use non-linear mapping functions which project the observations into

infinite dimensional spaces. It is also demonstrated that the building of the classifier

can be directly done from the observation space through a kernel function. The

proposed classification method is thus able to classify data of various types such

as categorical data, functional data or networks. Furthermore, it is possible to

classify mixed data by combining different kernels. The methodology is as well

extended to the unsupervised classification case. Experimental results on various

data sets demonstrate the effectiveness of the proposed method.

1 Introduction

Classification is an important and useful statistical tool in all scientific fields where decisions

have to be made. Depending on the availability of a learning data set, two main situations

may happen: supervised classification (also known as discriminant analysis) and unsupervised

classification (also known as clustering). Discriminant analysis aims to build a classifier (or

a decision rule) able to assign an observation x in an arbitrary space E with unknown class

membership to one of k known classes C1, ..., Ck. For building this supervised classifier,

a learning dataset {(x1, z1), ..., (xn, zn)} is used, where the observation xℓ ∈ E and zℓ ∈
{1, ..., k} indicates the class belonging of the observation xℓ. In a slightly different context,

clustering aims to directly partition an incomplete dataset {x1, ..., xn} into k homogeneous

groups without any other information, i.e., assign to each observation xℓ ∈ E its group

membership zℓ ∈ {1, ..., k}. Several intermediate situations exist, such as semi-supervised or

weakly-supervised classifications [6], but they will not be considered here.
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Since the pioneer work of Fisher [10], a huge number of supervised and unsupervised classifi-

cation methods have been proposed in order to deal with different types of data. Indeed, there

exist a wide variety of data such as quantitative, categorical and binary data but also texts,

functions, sequences, images and more recently networks. As a practical example, biologists are

frequently interested in classifying biological sequences (DNA sequences, protein sequences),

natural language expressions (abstracts, gene mentioning), networks (gene interactions, gene

co-expression), images (cell imaging, tissue classification) or structured data (gene structures,

patient information). The observation space E can be therefore R
p if quantitative data are

considered, L2([0, 1]) if functional data are considered (time series for example) or Ap, where

A is a finite alphabet, if the data at hand are categorical (DNA sequences for example).

Furthermore, the data to classify can be a mixture of different data types: categorical and

quantitative data or categorical and network data for instance.

Classification methods can be split into two main families: generative and discriminative

techniques. On the one hand, generative techniques model the data of each class with a

probability distribution and deduce the classification rule from this modeling. Model-based

discriminant analysis assumes that {x1, ..., xn} are independent realizations of a random vector

X on E and that the class conditional distribution of X is parametric, i.e. f(x|z = i) =

fi(x; θi). When E = R
p, among the possible parametric distributions for fi, the Gaussian

distribution is often preferred and, in this case, the marginal distribution of X is therefore a

mixture of Gaussians:

f(x) =
k∑

i=1

πiφ(x; µi, Σi),

where φ is the Gaussian density, πi is the prior probability of the ith class, µi is the mean

of the ith class and Σi is its covariance matrix. In such a case, the optimal decision rule is

called the maximum a posteriori (MAP) rule which assigns a new observation x to the class

which has the largest posterior probability. Introducing the classification function Di(x) =

log |Σi| + (x − µi)
tΣ−1

i (x − µi) − 2 log(πi), which can be rewritten as:

Di(x) =
p
∑

j=1

1

λij

< x − µi, qij >2
Rp +

p
∑

j=1

log(λij) − 2 log(πi), (1)

where qij and λij are respectively the jth eigenvector and eigenvalue of Σi, it can be easily

shown that the MAP rule reduces to finding the label i ∈ {1, . . . , k} for which Di(x) is the

smallest. Estimation of model parameters is usually done by maximum likelihood. This method

is known as the quadratic discriminant analysis (QDA), and, under the additional assumption

that Σi = Σ for all i ∈ {1, . . . , k}, it corresponds to the linear discriminant analysis (LDA). A

detailed overview on this topic can be found in [15]. Recent extensions allowing to deal with

high-dimensional data include [1, 2, 3, 16, 17, 20, 21]. Although model-based classification is

usually enjoyed for its multiple advantages, model-based discriminant analysis methods have

however two limiting characteristics. First, they are limited to quantitative data and cannot

process for instance qualitative or functional data. Second, even in the case of quantitative
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data, the Gaussian assumption may not be well-suited for the data at hand.

On the other hand, discriminative techniques directly build the classification rule from the

learning dataset. Among the discriminative classification methods, kernel methods [13] are

probably the most popular and overcome some of the shortcomings of generative techniques.

Kernel methods are non-parametric algorithm and can be applied to any data for which a

kernel function can be defined. A kernel K : E × E → R is a positive definite function such

as every evaluation can be written as K(xi, xj) =< ϕ(xi), ϕ(xj) >H, with xi, xj ∈ E, ϕ a

mapping function (called the feature map), H a finite or infinite dimensional reproducing kernel

Hilbert space (the feature space) and < ·, · >H the dot product in H. An advantage of using

kernels is the possibility of computing the dot product in the feature space from the original

input space without explicitly knowing ϕ (kernel trick) [13]. Turning conventional learning

algorithms into kernel learning algorithms can be easily done if the algorithms operate on the

data only in terms of dot product. In particular, the kernel trick is used to transform linear

algorithms to non-linear ones. Additionally, a nice property of kernel learning algorithms is the

possibility to deal with any kind of data. The only condition is to be able to define a positive

definite function over pairs of elements to be classified [13]. For instance, kernel functions

can be defined on strings [27, Chap. 10 and 11], graphs [29] or trees [26, Chap. 5]. Many

conventional linear algorithms have been turned to non-linear algorithms thanks to kernels [24].

For instance, a kernelized version of principal component analysis (KPCA) has been proposed

in [25]. Mika et al. have also proposed kernel Fisher discriminant (KFD) as a non-linear

version of FDA which only relies on kernel evaluations [19]. A kernelized Gaussian mixture

model (KGMM) has been proposed in [9] for the supervised classification of hyperspectral data.

But, due to computational considerations, the authors have introduced a strong assumption:

the classes share the same covariance matrix in the feature space. However, the method still

needs to be regularized. Recently, pseudo-inverse and ridge regularization have been proposed

to define a kernel quadratic classifier where classes have their own covariance matrices [22].

In all these cases, a benefit is found by using the kernel version rather than the original

algorithm. KPCA shows better results results than PCA in terms of reconstruction errors for

image denoising [14]. Kernel GMM provides better accuracy than conventional GMM for the

classification of hyperspectral images [9]. Let us however highlight that the kernel version

involves the inversion of a kernel matrix, i.e., a n × n matrix estimated with only n samples.

Usually, the kernel matrix is ill-conditioned and regularization is needed, while sometimes a

simplified model is required too. Thus, it may limit the effectiveness of the kernel version.

In addition, and conversely to model-based techniques, the classification results provided by

kernel methods are unfortunately difficult to interpret which would be useful in many application

domains.

In this work, we propose to adapt model-based methods for the classification of any kind

of data by working in a feature space of high or even infinite dimensional space. To this end,

we propose a family of parsimonious Gaussian process models which allow to build, from a

finite sample, a model-based classifier in a infinite dimensional space. It will be demonstrated

that the building of the classifier can be directly done from the observation space through the
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so-called “kernel trick”. The proposed classification method will be thus able to classify data of

various types (categorical data, mixed data, functional data, networks, ...). The methodology

is as well extended to the unsupervised classification case (clustering).

The paper is organized as follows. Section 2 presents the context of our study and introduces

the family of parsimonious Gaussian process models. The inference aspects are addressed in

Section 3. It is also demonstrated in this section that the proposed method can work directly

from the observation space through a kernel. Section 4 is dedicated to some special cases

and to the extension to the unsupervised framework. Experimental comparisons with state-

of-the-art kernel methods are presented in Section 5 as well as applications of the proposed

methodologies to various types of data including functional, categorical, mixed and network

data. Some concluding remarks are given in Section 6 and proofs are postponed to the

appendix.

2 Classification with parsimonious Gaussian process models

In this section, we first define the context of our approach and exhibit the associated compu-

tational problems. Then, a parsimonious parameterization of Gaussian processes is proposed

in order to overcome the highlighted computational issues.

2.1 Classification with Gaussian processes

Let us consider a learning set {(x1, z1), ..., (xn, zn)} where {x1, ..., xn} ⊂ E are assumed to

be independent realizations of a, possibly non-quantitative and non-Gaussian, random variable

X. The class labels {z1, ..., zn} are assumed to be realizations of a discrete random variable

Z ∈ {1, ..., k}. It indicates the memberships of the learning data to the k classes denoted by

C1, . . . , Ck, i.e., zℓ = i indicates that xℓ belongs to Ci.

Let us assume that there exists a non-linear mapping ϕ such that Y = ϕ(X) is, condition-

ally on Z = i, a Gaussian process on [0, 1] with mean µi and continuous covariance function

Σi. More specifically, one has µi(t) = E(Y (t)|Z = i) and Σi(s, t) = E(Y (s)Y (t)|Z =

i) − µi(t)µi(s). It is then well-known [28] that, for all i = 1, . . . , k, there exist positive eigen-

values (sorted in decreasing order) {λij}j≥1, together with eigenvector functions {qij(.)}j≥1

continuous on [0, 1], such that

Σi(s, t) =
∞∑

j=1

λijqij(s)qij(t),

where the series is uniformly convergent on [0, 1]2. Moreover, the eigenvector functions are

orthonomal in L2([0, 1]) for the dot product < f, g >L2
=
´ 1

0 f(t)g(t)dt. It is then easily seen,

that, for all r ≥ 1 and i ∈ {1, . . . , k}, the random vector on R
r defined by {< Y, qij >L2

}j=1,...,r is, conditionally on Z = i, Gaussian with mean {< µi, qij >}j=1,...,r and covariance

matrix diag(λi1, . . . , λir). To classify a new observation x, we therefore propose to apply the
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Gaussian classification function (1) to ϕ(x):

Di(ϕ(x)) =
r∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+
r∑

j=1

log(λij) − 2 log(πi).

From a theoretical point of view, if the Gaussian process is non degenerated, one should use

r = +∞. In practice, r has to be large in order not to loose to much information on the

Gaussian process. Unfortunately, in this case, the above quantities cannot be estimated from

a finite sample set. Indeed, only a part of the classification function can be actually computed

from a finite sample set:

Di(ϕ(x)) =
ri∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+
ri∑

j=1

log(λij) − 2 log(πi)

︸ ︷︷ ︸

computable quantity

+
r∑

j=ri+1

1

λij

< ϕ(x) − µi, qij >2
L2

+
r∑

j=ri+1

log(λij)

︸ ︷︷ ︸

non computable quantity

,

where ri = min(ni, r) and ni = Card (Ci). Consequently, the Gaussian model cannot be used

directly in the feature space to classify data if r > ni for i = 1, ..., k.

2.2 A parsimonious Gaussian process model

To overcome the computation problem highlighted above, it is proposed here to use in the

feature space a parsimonious model for the Gaussian process modeling each class. Following

the idea of [3], we constrain the eigen-decomposition of the Gaussian processes as follows.

Definition 1. A parsimonious Gaussian process model is a Gaussian process Y for which,

conditionally to Z = i, the eigen-decomposition of its covariance operator Σi is such that:

(A1) it exists a dimension r < +∞ such that λij = 0 for j ≥ r and for all i = 1, ..., k,

(A2) it exists a dimension di < min{r, ni} such that λij = λ for di < j < r and for all

i = 1, ..., k.

It is worth noticing that r can be as large as it is desired, as long it is finite, and in

particular r can be much larger than ni, for any i = 1, ..., k. From a practical point of

view, this modeling can be viewed as assuming that the data of each class live in a specific

subspace of the feature space. The variance of the actual data of the ith group is modeled by

the parameters λi1, ..., λidi
and the variance of the noise is modeled by λ. This assumption

amounts to supposing that the noise is homoscedastic and its variance is common to all the

classes. The dimension di can be considered as well as the intrinsic dimension of the latent

subspace of the ith group in the feature space. This model is referred to by pgpM0 (or M0

for short) hereafter. With these assumptions, we have the following result.
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Model
Variance inside
the subspace Fi

Variance
outside Fi

Subspace
orientation Qi

Intrinsic
dimension di

M0 Free Common Free Free
M1 Free Common Free Common
M2 Common within groups Common Free Free
M3 Common within groups Common Free Common
M4 Common between groups Common Free Common
M5 Common within and between groups Common Free Free
M6 Common within and between groups Common Free Common
M7 Common between groups Common Common Common
M8 Common within and between groups Common Common Common

Table 1: List of the submodels of the parsimonious Gaussian process model (referred to by M0

here).

Proposition 1. Letting dmax = max(d1, ..., dk), the classification function Di can be written

as follows in the case of a parsimonious Gaussian process model pgpM:

Di(ϕ(x)) =
di∑

j=1

(

1

λij

− 1

λ

)

< ϕ(x) − µi, qij >2
L2

+
1

λ
||ϕ(x) − µi||2L2

+
di∑

j=1

log(λij) + (dmax − di) log(λ) − 2 log(πi) + γ, (2)

where γ is a constant term which does not depend on the index i of the class.

At this point, it is important to notice that the classification function Di depends only

on the eigenvectors associated with the di largest eigenvalues of Σi. This estimation is now

possible due to the inequality di < ni for i = 1, ..., k. Furthermore, the computation of the

classification function does not depend any more on the parameter r. As shown in the next

section, it is possible to reformulate the classification function such that it does not depend

either on the mapping function ϕ.

2.3 Submodels of the parsimonious model

By fixing some parameters to be common within or between classes, it is possible to obtain

particular models which correspond to different regularizations. Table 1 presents the 8 ad-

ditional models which can be obtained by constraining the parameters of model M0. For

instance, fixing the dimensions di to be common between the classes yields the model M1.

Similarly, fixing the first di eigenvalues to be common within each class, we obtain the more

restricted model M2. It is also possible to constrain the first di eigenvalues to be common

between the classes (models M4 and M7), and within and between the classes (models M5,

M6 and M8). This family of 9 parsimonious models should allow the proposed classification

method to fit into various situations.
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3 Model inference and classification with a kernel

This section focuses on the inference of the parsimonious models proposed above and on the

classification of new observations through a kernel. Model inference is only presented for the

model M0 since inference for the other parsimonious models is similar. Estimation of intrinsic

dimensions and visualization in the feature subspaces are also discussed.

3.1 Estimation of model parameters

In the model-based classification context, parameters are usually estimated by their empirical

counterparts [15] which conduces, in the present case, to estimate the proportions πi by

π̂i = ni/n and the mean function µi by µ̂i(t) =
1

ni

∑

xj∈Ci

ϕ(xj)(t). Regarding the covariance

operator, the eigenvalue λij and the eigenvector qij are respectively estimated by the jth

largest eigenvalue λ̂ij and its associated eigenvector function q̂ij of the empirical covariance

operator Σ̂i:

Σ̂i(s, t) =
1

ni

∑

xℓ∈Ci

ϕ(xℓ)(s)ϕ(xℓ)(t) − µ̂i(s)µ̂i(t).

Finally, the estimator of λ is:

λ̂ =
1

∑k
i=1 π̂i (r − di)

k∑

i=1

π̂i



trace(Σ̂i) −
di∑

j=1

λ̂ij



 . (3)

Using the plug-in method, the estimated classification function D̂i can be written as follows:

D̂i(ϕ(x)) =
di∑

j=1

(

1

λ̂ij

− 1

λ̂

)

< ϕ(x) − µ̂i, q̂ij >2
L2

+
1

λ̂
||ϕ(x) − µ̂i||2L2

+
di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i). (4)

However, as we can see, the estimated classification function D̂i still depends on the func-

tion ϕ and therefore requires computations in the feature space. However, since all these

computations involve dot products, it will be shown in the next paragraph that the estimated

classification function can be computed without explicit knowledge of ϕ through a kernel

function.

3.2 Estimation of the classification function through a kernel

Kernel methods are all based on the so-called “kernel trick” which allows the computation

of the classifier in the observation space through a kernel K. Let us therefore introduce the

kernel K : E × E → R defined as K(x, y) =< ϕ(x), ϕ(y) >L2
and ρi : E × E → R defined

as ρi(x, y) =< ϕ(x) − µi, ϕ(y) − µi >L2
. In the following, it is shown that the classification
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Kernels K(x, y) ri

Linear < x, y >L2
min(ni, p)

Gaussian exp

(

−‖x−y‖2

L2

2σ2

)

ni

Polynomial (< x, y >L2
+1)q min

(

ni,
(p+q

p

))

Table 2: Dimension ri for several kernels.

function Di only involves ρi which can be computed using K:

ρi(x, y) =
1

n2
i

∑

xℓ,xℓ′∈Ci

< ϕ(x) − ϕ(xℓ), ϕ(y) − ϕ(xℓ′) >L2
(5)

= K(x, y) − 1

ni

∑

xℓ∈Ci

(K(xℓ, y) + K(x, xℓ)) +
1

n2
i

∑

xℓ,xℓ′∈Ci

K(xℓ, xℓ′). (6)

For each class Ci, let us introduce the ni × ni symmetric matrix Mi defined by:

(Mi)ℓ,ℓ′ =
ρi(xℓ, xℓ′)

ni

.

With these notations, we have the following result.

Proposition 2. For i = 1, . . . , k, the estimated classification function can be computed, in

the case of the model M0, as follows:

D̂i(ϕ(x)) =
1

ni

di∑

j=1

1

λ̂ij

(

1

λ̂ij

− 1

λ̂

)


∑

xℓ∈Ci

βijℓρi(x, xℓ)





2

+
1

λ̂
ρi(x, x)

+
di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i),

where, for j = 1, . . . , di, βij is the normed eigenvector associated to the jth largest eigenvalue

λ̂ij of Mi and λ̂ = 1/
∑k

i=1 π̂i(ri − di) ×∑k
i=1 π̂i

(

trace(Mi) −∑di

j=1 λ̂ij

)

.

It thus appears that each new sample point x can be assigned to the class Ci with the

smallest value of the classification function without knowledge of ϕ. The methodology based

on Proposition 2 is referred to pgpDA in the sequel. In practice, the value of ri depends on

the chosen kernel (see Table 2 for examples).

3.3 Intrinsic dimension estimation

The estimation of the intrinsic dimension of a dataset is a difficult problem which occurs

frequently in data analysis, such as in principal component analysis. A classical solution in

PCA is to look for a break in the eigenvalue scree of the covariance matrix. This strategy

relies on the fact that the jth eigenvalue of the covariance matrix corresponds to the fraction

of the full variance carried by the jth eigenvector of this matrix. Since, in our case, the class
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conditional matrix Mi shares with the empirical covariance operator of the associated class

its largest eigenvalues, we propose to use a similar strategy based on the eigenvalue scree of

the matrices Mi to estimate di, i = 1, ..., k. More precisely, we propose to make use of the

scree-test of Cattell [5] for estimating the class specific dimension di, i = 1, ..., k. For each

class, the selected dimension is the one for which the subsequent eigenvalues differences are

smaller than a threshold which can be tuned by cross-validation for instance.

3.4 Visualization in the feature subspaces

An interesting advantage of the approach is to allow the visualization of the data in subspaces

of the feature space. Indeed, even though the chosen mapping function is associated with a

space of very high or infinite dimension, the proposed methodology models and classifies the

data in low-dimensional subspaces of the feature space. It is therefore possible to visualize the

projection of the mapped data on the feature subspaces of each class using Equation (11) of

the appendix. The projection of ϕ(x) on the jth axis of the class Ci is therefore given by:

Pij(ϕ(x)) :=< ϕ(x) − µ̂i, q̂ij >=
1

√

niλ̂ij

∑

xℓ∈Ci

βijℓρi(x, xℓ).

Thus, even if the observations are non quantitative, it is possible to visualize their projections

in the feature subspaces of the classes which are quantitative spaces.

4 Particular cases and extension to clustering

The methodology proposed in the previous section is made very general by the large choice

for the mapping function ϕ(x). We focus in this section on two specific choices for ϕ(x) for

which the direct calculation of the classification rule is possible. An extension to unsupervised

classification is also considered through the use of an EM algorithm.

4.1 Case of the linear kernel for quantitative data

In the case of quantitative data, E = R
p and one can choose ϕ(x) = x associated to

the standard scalar product which gives rise to the linear kernel K(x, y) = xty. In such a

framework, the estimated classification function can be simplified as follows:

Proposition 3. If E = R
p and K(x, y) = xty then, for i = 1, . . . , k, the estimated classifica-

tion function reduces to

D̂i(x) =
di∑

j=1

(

1

λ̂ij

− 1

λ̂

)
(

q̂t
ij(x − µ̂i)

)2
+

1

λ̂
||x − µ̂i||2Rp

+
di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i).
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where µ̂i is the empirical mean of the class Ci, q̂ij is the eigenvector of the empirical covariance

matrix Σ̂i associated to the jth largest eigenvalue λ̂ij and λ̂ is given by (3).

It appears that the estimated classification function reduces to the one of the HDDA

method [3] with the model [aijbQid] which has constraints similar to M0. Therefore, the

methodology proposed in this work partially encompasses the method HDDA.

4.2 Case of functional data

Let us consider now functional data observed in E = L2([0, 1]). Let (bj)j≥1 be a basis of

L2([0, 1]) and F = R
L where L is a given integer. For all ℓ = 1, . . . , L, the projection of a

function x on the jth basis function is computed as

γj(x) =

ˆ 1

0
x(t)bj(t)dt

and γ(x) := (γj(x))j=1,...,L. Let B the L × L Gram matrix associated to the basis:

Bjℓ =

ˆ 1

0
bj(t)bℓ(t)dt,

and consider the associated scalar product defined by < u, v >= utBv for all u, v ∈ R
L. One

can then choose ϕ(x) = B−1γ(x) and K(x, y) = γ(x)tB−1γ(y) leading to a simple estimated

classification function.

Proposition 4. Let E = L2([0, 1]) and K(x, y) = γ(x)tB−1γ(y). Introduce, for i = 1, . . . , k,

the L × L covariance matrix of the γ(xj) when xj ∈ Ci:

Σ̂i =
1

ni

∑

xℓ∈Ci

(γ(xℓ) − γ̄i)(γ(xℓ) − γ̄i)
t where γ̄i =

1

ni

∑

xj∈Ci

γ(xj)

Then, for i = 1, . . . , k, the estimated classification function reduces to

D̂i(ϕ(x)) =
di∑

j=1

(

1

λ̂ij

− 1

λ̂

)
(

q̂t
ij(γ(x) − γ̄i)

)2
+

1

λ̂
(γ(x) − γ̄i)

tB−1(γ(x) − γ̄i)

+
di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i),

where q̂ij and λ̂ij are respectively the jth normed eigenvector and eigenvalue of the matrix

B−1Σ̂i and λ̂ is given by (3).

Remark that B−1Σ̂i coincides with the matrix of interest in functional PCA [23, Chap. 8.4]

and that, if the basis is orthogonal, then B is the identity matrix. Notice that the proposed

method therefore encompasses as well the model proposed in [4] for the clustering of functional

data.
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4.3 Extension to unsupervised classification

Since the previous section has demonstrated the possibility to use the Gaussian classification

function in the feature space, it is also possible to extend its use to unsupervised classification

(also known as clustering). Indeed, in the model-based classification context, the unsuper-

vised and supervised cases mainly differ in the manner to estimate the parameters of the

model. The clustering task aims to form k homogeneous groups from a set of n observations

{x1, ..., xn} without any prior information about their group memberships. Since the labels

are not available, it is not possible in this case to directly estimate the model parameters.

In such a context, the expectation-maximization (EM) algorithm [8] is frequently used. As a

consequence, the use of the EM algorithm allows to both estimate the model parameters and

predict the class memberships of the observations at hand. In the case of the parsimonious

model M0 introduced above, the EM algorithm takes the following form:

The E step This first step reduces, at iteration q, to the computation of t
(q)
ij = E(Zj =

i|xj , θ(q−1)), for j = 1, . . . , n and i = 1, . . . , k, conditionally on the current value of the model

parameter θ(q−1):

t
(q)
ij = 1/

k∑

ℓ=1

exp
(

D
(q−1)
i (ϕ(xj)) − D

(q−1)
ℓ (ϕ(xj))

)

, (7)

where

D
(q−1)
i (ϕ(x)) =

1

ni

di∑

j=1

1

λ̂
(q−1)
ij




1

λ̂
(q−1)
ij

− 1

λ̂(q−1)





(
n∑

ℓ=1

βijℓ

√
tiℓρ

(q−1)
i (x, xℓ)

)2

+
1

λ̂(q−1)
ρ

(q−1)
i (x, x) +

di∑

j=1

log(λ̂
(q−1)
ij ) + (dmax − di) log(λ̂(q−1)) − 2 log(π̂

(q−1)
i ).

is the Gaussian classification function associated with the model parameters estimated in the

M step at iteration q − 1. This result can be proved by substituting Equation (10) in the proof

of Proposition 2 by:

q̂ij =
1

√

niλ̂ij

∑

xℓ∈Ci

βijℓ

√
tℓi(ϕ(xℓ) − µ̂i). (8)

The M step This second step estimates the model parameters conditionally on the posterior

probabilities t
(q)
ij computed in the previous step. In practice, this step reduces to update the

estimate of model parameters according to the following formula:

• mixture proportions are estimated by π̂
(q)
i = n

(q)
i /n where n

(q)
i =

∑n
j=1 t

(q)
ij ,

• parameters λij, λ, βij and di are estimated at iteration q using the formula given in

Proposition 2 but where the matrix Mi is now a n × n matrix, recomputed at each

11



iteration q, and such that, for i = 1, ..., k and ℓ, ℓ′ = 1, ..., n:

(

M
(q)
i

)

ℓ,ℓ′

=

√

t
(q)
iℓ t

(q)
iℓ′

n
(q)
i

ρ
(q)
i (xℓ, xℓ′)

where ρ
(q)
i (xℓ, xℓ′) can be computed through the kernel K as follows:

ρ
(q)
i (xℓ, xℓ′) =K(xℓ, xℓ′) − 1

n
(q)
i

n∑

j=1

t
(q)
ji (K(xj , xℓ) + K(xℓ′ , xj))

+
1

(n
(q)
i )2

n∑

j,j′=1

t
(q)
ji t

(q)
j′i K(xj , xj′).

The clustering algorithm associated with this methodology will be denoted to by pgpEM in

the following.

5 Benchmark study and applications to non-quantitative data

In this section, numeral experiments and comparisons are conducted on real-world data sets

to highlight the main features of the pgpDA and pgpEM methods.

5.1 Benchmark study on quantitative data

We focus here on the comparison of pgpDA with state-of-the-art methods. To that end,

two kernel generative classifiers are considered, kernel Fisher discriminant analysis (KFD) [19]

and kernel QDA (KQDA) [9], and one kernel discriminative classifier, support vector machine

(SVM) [24]. The Gaussian kernel is used once again in the experiments for all methods,

including pgpDA. Since real-world problems are considered, all the hyper-parameters of the

classifiers have been tuned using 5-fold cross-validation.

Six data sets from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/)

have been selected: glass, ionosphere, iris, sonar, USPS and wine. We selected these data

sets because they represent a wide range of situations in term of number of observations n,

number of variables p and number of groups k. The USPS dataset has been modified to focus

on discriminating the three most difficult classes to classify, namely the classes of the digits

3, 5 and 8. This dataset has been called USPS 358. The main feature of the data sets are

described in Table 3.

Each data set was randomly split into training and testing sets in the hold-out ratio hr

given in Table 3. The data were scaled between -1 and 1 on each variable. The search

range for the cross-validation was for the kernel hyperparameter σ ∈ [−4, 4], for the common

intrinsic dimension d ∈ [1, 20], for the scree test threshold τ ∈ [10−7, 1], for the regularization

parameter in KFD and KQDA λ ∈ [10−13, 10−6] and for the penalty parameter of the SVM

γ ∈ [25, 29]. The global classification accuracy was computed on the testing set and the

12



Dataset n p n/p k hr

Iris 150 4 37.5 3 0.5
Glass 214 9 23.7 6 0.25
Wine 178 13 13.7 3 0.5

Ionosphere 351 34 10.3 2 0.5
Sonar 208 60 3.5 2 0.5

USPS 358 2248 256 8.8 3 0.5

Table 3: Data used in the experiments. n is the number of samples, p is the number of features,
k is the number of classes and hr is the hold-out ratio used in the experiments.

reported results have been averaged over 50 replications of the whole process. The average

classification accuracies and the standard deviations are given in Table 4.

Regarding the competitive methods, KFD and SVM provide often better results than KQDA.

The model used in KQDA only fits “ionosphere”, ”iris” and “wine” data, for which classification

accuracies are similar to or better than those obtain with KFD and SVM. For the parsimonious

pgpDA models, except for M7 and M8, the classification accuracies are globally good. Models

M1 and M4 provide the best results in terms of average correct classification rates. In

particular, for the “USPS 358” and “wine” data sets, they provide the best overall accuracies.

Let us remark that pgpDA performs significantly better than SVM (for the Gaussian kernel)

on high-dimensional data (USPS 358).

In conclusion of these experiments, by relying on parsimonious models rather than regular-

ization, pgpDA provides good classification accuracies and it is robust to the situation where

few samples are available in regards to the number of variables in the original space. In prac-

tice, models M1 and M4 should be recommended: intrinsic dimension is common between

the classes and the variance inside the class intrinsic subspace is either free or common. Con-

versely, models M7 and M8 must be avoided since they appeared to be too constrained to

handle real classification situations.

5.2 Classification of functional data: the Canadian temperatures

We now focus on illustrating the possible range of application of the proposed methodologies

to different types of data. We consider here the clustering of functional data with pgpEM for

which the mapping function ϕ is explicit (see Section 4.2). The Canadian temperature data

used in this study, presented in details in [23], consist in the daily measured temperatures at

35 Canadian weather stations across the country. The pgpEM algorithm was applied here with

the model M0, which is the most general parsimonious Gaussian process model proposed in

this work, with a fixed number k of groups set to 4. The mapping function ϕ consists in the

projection of the observed curves on a basis of 20 natural cubic splines. Once the pgpEM

algorithm has converged, various informations are available and some of them are of particular

interest. Group means, intrinsic dimensions of the group-specific subspaces and functional

principal components of each group could in particular help the practitioner in understanding

the clustering of the dataset at hand. The left panel of Figure 1 presents the clustering of the
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Method Iris Glass Wine Ionosphere Sonar USPS 358 Mean (rank)

pgpDA M0 95.9± 2.1 64.9 ± 6.3 96.8 ± 1.7 90.5 ± 2.3 77.9 ± .9 92.2 ± 1.0 86.4 (5)
pgpDA M1 95.2± 2.1 62.6 ± 12.5 96.7 ± 2.3 93.7 ± 1.6 81.8 ± 4.9 96.6 ± 0.4 87.8 (2)
pgpDA M2 94.4± 6.2 64.4 ± 6.7 96.8 ± 1.8 91.0 ± 2.8 71.6 ± 13.4 95.4 ± 0.8 85.6 (7)
pgpDA M3 95.8± 2.3 64.3 ± 6.8 96.9 ± 2.0 93.2 ± 2.1 79.3 ± 4.9 96.2 ± 0.5 87.6 (3)
pgpDA M4 94.4± 2.2 65.3 ± 6.4 97.2 ± 1.8 93.4 ± 2.0 81.6 ± 4.5 96.3 ± 0.7 88.0 (1)
pgpDA M5 94.2± 7.1 59.8 ± 10.9 96.4 ± 2.0 92.0 ± 1.8 72.5 ± 12.6 96.0 ± 0.5 85.2 (8)
pgpDA M6 94.8± 2.1 65.2 ± 5.6 97.2 ± 1.8 92.5 ± 2.1 79.8 ± 4.9 96.1 ± 0.5 87.6 (3)
pgpDA M7 41.3± 16.5 40.0 ± 5.4 75.2 ± 8.3 64.6 ± 2.6 48.8 ± 5.7 63.5 ± 1.5 55.5 (11)
pgpDA M8 29.2± 17.4 35.4 ± 7.9 64.2 ± 26.8 64.3 ± 2.5 50.5 ± 5.5 36.8 ± 1.2 46.7 (12)

KFD 93.4± 3.7 47.3 ± 10.1 95.9 ± 2.3 94.1 ± 1.7 82.9 ± 3.1 93.6 ± 0.5 84.5 (9)
KQDA 96.6± 2.3 64.5 ± 6.3 96.6 ± 1.7 88.1 ± 2.3 68.9±18.1 64.7 ± 37.5 79.9 (10)
SVM 95.7± 2.0 69.1 ± 5.5 96.8 ± 1.4 92.8 ± 1.8 84.8 ± 4.0 77.6 ± 5.4 86.1 (6)

Table 4: Classification results on real-world datasets: reported values are average correct classification rates and standard deviation computed on
validation sets.
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Figure 1: Clustering of the 35 times series of the Canadian temperature data set into 4 groups
with pgpEM (left) and geographical positions of the weather stations according to
their group belonging (right). The colors indicate the group memberships: group 1
in black, group 2 in red, group 3 in green and group 4 in blue.

temperature data set into 4 groups with pgpEM.

It is first interesting to have a look at the name of the weather stations gathered in the

different groups formed by pgpEM. It appears that group 1 (black solid curves) is mostly

made of continental stations, group 2 (red dashed curves) mostly gathers the stations of

the North of Canada, group 3 (green dotted curves) mostly contains the stations of the

Atlantic coast whereas the Pacific stations are mostly gathered in group 4 (blue dot-dashed

curves). For instance, group 3 contains stations such as Halifax (Nova Scotia) and St Johns

(Newfoundland) whereas group 4 has stations such as Vancouver and Victoria (both in British

Columbia). The right panel of Figure 1 provides a map of the weather stations where the colors

indicate their group membership. This figure shows that the obtained clustering with pgpEM

is very satisfying and rather coherent with the actual geographical positions of the stations

(the clustering accuracy is 71% here compared with the geographical classification provided by

[23]). We recall that the geographical positions of the stations have not been used by pgpEM

to provide the partition into 4 groups.

An important characteristic of the groups, but not necessarily easy to visualize, is the specific

functional subspace of each group. A classical way to observe principal component functions

is to plot the group mean function µ̂i(t) as well as the functions µ̂i(t) ± 2
√

λ̂ij q̂ij(t) (see [23]

for more details). Figure 2 shows such a plot for the 4 groups of weather stations formed by

pgpEM. It first appears on the first functional principal component of each group that there

is more variance between the weather stations in winter than in summer. In particular, the

first principal component of group 4 (blue curves, mostly Pacific stations) reveals a specific

phenomenon which occurs at the beginning and the end of the winter. Indeed, we can observe

a high variance in the temperatures of the Pacific coast stations at these periods of time

which can be explained by the presence of mountain stations in this group. The analysis of
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(a) Group 1 (mostly continental stations)

0 100 200 300

−
40

−
20

0
20

40

time

1

0 100 200 300

−
40

−
20

0
20

40

PCA function 1 (Percentage of variability 98.2 )

Time

H
ar

m
on

ic
 1

+++++++++++++++++++
++++++

++++
+++
++
+++
++++

+++++
++++

++++
++++++

+++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

−−−−−−−−−−−−−−−
−−−−−

−−−−
−−−−

−−−−
−−−
−−−
−−
−−
−−
−−−
−−−
−−−
−−−
−−−
−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 100 200 300

−
40

−
20

0
20

40

PCA function 2 (Percentage of variability 2.4 )

Time
H

ar
m

on
ic

 2

++++++++++++++++
+++++

++++
++++

+++
++
++
+++
+++
+++
+++
+++
++++

++++
+++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++−−−−−−−−−−−−−−−−−−−
−−−−−

−−−−−
−−−
−−−
−−−
−−−
−−−
−−−
−−−
−−−−

−−−−
−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(b) Group 2 (mostly Arctic stations)
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(c) Group 3 (mostly Atlantic stations)
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(d) Group 4 (mostly Pacific stations)

Figure 2: The group means of the Canadian temperature data obtained with pgpEM and
the effects of adding (+) and subtracting (−) twice the square root of the feature
subspace variance (see text for details).
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Figure 3: Regularized Laplacian kernel associated to the Add Health network for ν = 4: blue
pixels correspond to low values (low similarity between nodes) and red pixels corre-
spond to high values (high similarity between nodes).

the second principal components reveals finer phenomena. For instance, the second principal

component of group 1 (black curves, mostly continental stations) shows a slight shift between

the + and − along the year which indicates a time-shift effect. This may mean that some

cities of this group have their seasons shifted, e.g. late entry and exit in the winter. Similarly,

the inversion of the + and − on the second principal component of the Pacific and Atlantic

groups (blue and green curves) suggests that, for these groups, the coldest cities in winter are

also the warmest cities in summer. On the second principal component of group 2 (red curves,

mostly Arctic stations), the fact that the + and − curves are almost superimposed shows that

the North stations have very similar temperature variations (different temperature means but

same amplitude) along the year.

5.3 Classification of networks: the Add Health dataset

We now consider network data which are nowadays widely used to represent relationships

between persons in organizations or communities. Recently, the need of classifying and visu-

alizing such data has suddenly grown due to the emergence of Internet and of a large number

of social network websites. Indeed, increasingly, it is becoming possible to observe “network

informations” in a variety of contexts, such as email transactions, connectivity of web pages,

protein-protein interactions and social networking. A number of scientific goals can apply to

such networks, ranging from unsupervised problems such as describing network structure, to

supervised problems such as predicting node labels with information on their relationships.

We investigate here the use of pgpDA to classify the nodes of a network. To our knowledge,

only a few kernels (see [29] for more details) have been proposed for network data and the

regularized Laplacian kernel is probably the most used. This kernel is defined as follows: let

X be a symmetric n × n socio-matrix where Xij = 1 if a relationship is observed between the
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Figure 4: Visualisation of the Add Health network with pgpDA in the feature subspace of the
2nd and the 4th class (grade 8 and 10 respectively).

nodes i and j and Xij = 0 in the opposite case. Let D be the diagonal matrix where Dii

indicates the number of relationships for the node i, i.e., Dii =
∑n

j=1 Xij . The regularized

Laplacian kernel K is then defined by:

K =
[

L̃ + νIn

]−1
,

where L̃ = In − D− 1

2 XD− 1

2 is the normalized Laplacian of the network, ν is a positive value

and In is the identity matrix of size n.

The social network studied here is from the National Longitudinal Study of Adolescent

Health and it is a part of a big dataset, usually called the “Add Health” dataset. The data

were collected in 1994-95 within 80 high-schools and 52 middle schools in the USA. The whole

study is detailed in [12]. In addition to personal and social information, each student was asked

to nominate his best friends. We consider here the social network based on the answers of 67

students from a single school, treating the grade of each student as the class variable. Two

adolescents who nominated nobody were removed from the network. We therefore consider a

whole dataset made of 65 students distributed into 5 classes: grade 7 to grade 11.

We first selected by cross-validation the kernel parameter on a learning sample and the

threshold parameter for the intrinsic dimensions was set to 0.2. The most adapted value for

ν was 4 and this gives on average 96.92% of correct classification for the test nodes. Remark

that ν turned out not to be a sensitive parameter and we obtain satisfying results for a large

range of values of ν. Figure 3 presents the kernel associated with the selected value of ν. Since

network visualization is an important issue in network analysis, we then kept these parameters

to visualize the whole network in the feature subspace of each class. Figure 4 presents the

visualization of the network into the feature subspace of the classes 2 and 4. Both visualizations

turn out to be very informative and, in particular, the visualization on the feature subspace

of the 4th class (grade 10) is particularly useful to understand the network. It is interesting

to notice that the network is almost organized along a 1-dimensional manifold (an half-circle
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Figure 5: Votes (yea, nay or unknown) for each of the U.S. House of Representatives con-
gressmen on 16 key votes in 1984. Yeas are in indicated in white, nays in gray and
missing values in black. The first 168 congressmen are republicans whereas the 267
last ones are democrats.

here) which is consistent with the nature of the network: students of different classes. The

specific form of the representation is due here to some relations between students of grade

7 and 10 (students of the same family perhaps). We also remark that the classes are quite

well separated and most of the relationships between students of different classes are between

consecutive grades. This suggests that relationships between classes are due to students who

failed to move to the upper grade and who may keep contact with old friends. It is in addition

interesting to notice that this visualization is very close to the one obtained on the same

network by Hoff, Handcock and Raftery in [11] using the so-called “latent space model”.

5.4 Classification of categoretical data: the house-vote dataset

We focus now on categorical data which are also very frequent in scientific fields. We consider

here the task of clustering (unsupervised classification) and therefore the pgpEM algorithm.

To evaluate the ability of pgpEM to classify categorical data, we used the U.S. House Votes

data set from the UCI repository. This data set is a record of the votes (yea, nay or unknown)

for each of the U.S. House of Representatives congressmen on 16 key votes in 1984. These

data were recorded during the during the third and fourth years of Ronald Reagan’s Presidency.

At this time, the republicans controlled the Senate, while the democrats controlled the House

of Representatives. Figure 5 shows the database where yeas are in indicated in white, nays

in gray and missing values in black. The first 168 congressmen are republicans whereas the

267 last ones are democrats. As we can see, the considered votes are very discriminative since

republicans and democrats vote differently in almost all cases while most of the congressmen

follow the majority vote in their group. We can however notice that a significant part (around

50 congressmen) of the democrats tend to vote differently from the other democrats.

To cluster this dataset, we first build a kernel from the categorical observations (16 qualita-
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Figure 6: Kernel based on the Hamming distance (left) computed on the house-vote dataset
and clustering results (right) obtained with pgpEM. For the kernel, blue and red pixels
correspond respectively to low and high values. The clustering results are presented
through a binary matrix where a black pixel indicates a common membership between
two senators.

tive variables with 3 possible values: yea, nay or ?). We chose a kernel, proposed in [7], based

on the Hamming distance which measures the minimum number of substitutions required to

change one observation into another one. Figure 6 presents the resulting kernel (left panel)

and the clustering result obtained with the pgpEM algorithm. The clustering results are pre-

sented through a binary matrix where a black pixel indicates a common membership between

two senators and a white pixel means different memberships for the two senators. The pgpEM

algorithm was used with the model M0, with a number of group equals to 2 and the Cattell’s

threshold was set to 0.2. The clustering accuracy between the obtained partition of the data

and the democrat/republican partition was 84.37% on this example. As one can observe, the

pgpEM algorithm globally succeeds in recovering the partition of the House of Representa-

tives. It is also interesting to notice that most of the congressmen which are not correctly

classified are those who tend to vote differently from the majority vote in their group. Finally,

the pgpEM algorithm allows to visualize the observed categorical data into the (quantitative)

feature subspace of the two groups. Figure 7 presents these visualizations. The observation of

these two plots confirms the fact that republicans voted more homogeneously than democrats

in 1984 since there is no clear concentration of points on both plots for the democrats.

5.5 Classification of mixed data: the Thyroid dataset

In this final experiment, we consider the supervised classification of mixed data which is more

and more a frequent case. Indeed, it is usual to collect for the same individuals both quantitative

and categorical data. For instance, in Medicine, several quantitative features can be measured

for a patient (blood test results, blood pressure, morphological characteristics, ...) and these

data can be completed by answers of the patient on its general health conditions (pregnancy,

surgery, tabacco, ...). The Thyroid dataset considered here is from the UCI repository and
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Figure 7: Visualization of the house-vote data in the feature subspace of the republican (left)
and the democrat (right) groups (red crosses denote republicans and blue circles
denote democrats).
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Figure 8: Quantitative (left) and categorical (center) data kernels and the combined kernel
(right) for the Thyroid dataset (mixed data).

contains thyroid disease records supplied by the Garavan Institute, Sydney, Australia. The

dataset contains 665 records on male patients for which the answers (true of false) on 14

questions have been collected as well as 6 blood test results (quantitative measures). Among

the 665 patients of the study, 61 suffer from a thyroid disease.

To make pgpDA able to deal with such data, we built a combined kernel by mixing a kernel

based on the Hamming distance [7] (same kernel as in the previous section) for the categorical

features and a Gaussian kernel for the quantitative data. We chose to combine both kernels

simply as follows:

K(xj , xℓ) = αK1(xj , xℓ) + (1 − α)K2(xj , xℓ),

where K1 and K2 are the kernels computed respectively on the categorical and quantitative

features. Another solution would be to multiply both kernels. We refer to [18] for further

details on multiple kernel learning.

We selected the optimal set of kernel parameters by cross-validation on a learning part of

the data. The model for pgpDA was the model M0 with the Cattell’s threshold set to 0.2.

The mixing parameter α for kernels was set to 0.5 in order not to favor any kernel but it is

expected an improvement of the results if this parameter is tuned too. Kernel parameters have
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Method
pgpDA on

quantitative data
pgpDA on

categorical data
pgpDA with the
combined kernel

TP rate 74.86 96.00 75.88

FP rate 22.16 95.53 21.97

Table 5: Classification results on test sets for the Thyroid dataset (mixed data). Results are
averaged on 25 replications of the experiment.

been tuned by cross-validation on a learning sample and the kernels associated to these values

are presented in Figure 8. The rows and columns of the matrices are sorted according to the

class memberships (healthy or sick) and the sick patients are the last ones. We then compared

the performance of pgpDA with the combined kernel to pgpDA with, on the one hand, a

simple RBF kernel built only on the quantitative variables of the dataset and, on the other

hand, a Hamming kernel built only on the categorical variables. Table 5 presents both the true

positive (TP) and false positive (FP) rates obtained on 25 replications of the classification

experiment for pgpDA on quantitative data, on categorical data and on the mixed data. It

turns out that quantitative data contains most of the important information to discriminate

the patients with thyroid diseases and that categorical data, when considered alone, are not

enough to build an efficient classifier. However, it appears that the use of the categorical

features in combination with the quantitative data allows to slightly improve the prediction of

thyroid diseases (increases the TP rate and decreases the FP rate). In particular, the reduction

of the FP rate is important here since it implies an important reduction of the number of false

alarms.

6 Conclusion

This work has introduced a family of parsimonious Gaussian process models for the super-

vised and unsupervised classification of quantitative and non-quantitative data. The proposed

parsimonious models are obtained by constraining the eigen-decomposition of the Gaussian

processes modeling each class. They allow in particular to use non-linear mapping functions

which project the observations into an infinite dimensional space and to build, from a finite

sample, a model-based classifier in this space. It has been also demonstrated that the building

of the classifier can be directly done from the observation space through a kernel, avoiding the

explicit knowledge of the mapping function. It has been possible to classify data of various

nature including categorical data, functional data, networks and even mixed data by combining

different kernels. The methodology is as well extended to the unsupervised classification case.

Numerical experiments on benchmark data sets have shown that pgpDA performs similarly or

better compared to the best kernel methods of the state of the art. The possibility to examine

the model parameters and to visualize the data into the class-specific feature subspaces per-

mits a finer interpretation of the results than with conventional discriminative kernel methods.

Among the possible extensions of this work, it would be interesting to extend the methodology

to the semi-supervised case in which only a few observations are labeled.
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Appendix: Proofs

Proof of Proposition 1 Recalling that dmax = max(d1, ..., dk), the classification function

can be rewritten as:

Di(ϕ(x)) =
r∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+
di∑

j=1

log(λij) +
dmax∑

j=di+1

log(λ) − 2 log(πi) + γ,

where γ = (r − dmax) log(λ) is a constant term which does not depend on the index i of the

class. In view of the assumptions, Di(ϕ(x)) can be also rewritten as:

Di(ϕ(x)) =
di∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+
1

λ

r∑

j=di+1

< ϕ(x) − µi, qij >2
L2

+
di∑

j=1

log(λij) + (dmax − di) log(λ) − 2 log(πi) + γ.

Introducing the norm ||.||L2
associated with the scalar product < ., . >L2

and in view of

Proposition 1 of [28, p. 208], we finally obtain:

Di(ϕ(x)) =
di∑

j=1

(

1

λij

− 1

λ

)

< ϕ(x) − µi, qij >2
L2

+
1

λ
||ϕ(x) − µi||2L2

+
di∑

j=1

log(λij) + (dmax − di) log(λ) − 2 log(πi) + γ,

which is the desired result. �

Proof of Proposition 2 The proof involves three steps.

i) Computation of the projection < ϕ(x) − µ̂i, q̂ij >L2
: Since (λ̂ij , q̂ij) is solution of the

Fredholm-type equation, it follows that, for all t ∈ [0, 1],

λ̂ij q̂ij(t) =

ˆ 1

0
Σ̂i(s, t)q̂ij(s)ds

=
1

ni

∑

xℓ∈Ci

< ϕ(xℓ) − µ̂i, q̂ij >L2
(ϕ(xℓ)(t) − µ̂i(t)). (9)

This implies that q̂ij lies in the linear subspace spanned by the (ϕ(xℓ) − µ̂i), xℓ ∈ Ci. As a

consequence, the rank of the operator Σ̂i is finite and is at most ri = min(ni, r). It therefore

exists βijℓ ∈ R such that:

q̂ij =
1

√

niλ̂ij

∑

xℓ∈Ci

βijℓ(ϕ(xℓ) − µ̂i) (10)
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leading to:

< ϕ(x) − µ̂i, q̂ij >L2
=

1
√

niλ̂ij

∑

xℓ∈Ci

βijℓρi(x, xℓ), (11)

for all j = 1, . . . , ri. The estimated classification function has therefore the following form:

D̂i(ϕ(x)) =
1

ni

di∑

j=1

1

λ̂ij

(

1

λ̂ij

− 1

λ̂

)


∑

xℓ∈Ci

βijℓρi(x, xℓ)





2

+
1

λ̂
ρi(x, x)

+
di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i),

for all i = 1, . . . , k.

ii) Computation of the βijℓ and λ̂ij : Replacing (10) in the Fredholm-type equation (9) it

follows that

1

ni

∑

xℓ,xℓ′∈Ci

βijℓ′(ϕ(xℓ) − µ̂i)ρi(xℓ, xℓ′) = λ̂ij

∑

xℓ′∈Ci

βijℓ′(ϕ(xℓ′) − µ̂i).

Finally, projecting this equation on ϕ(xm) − µ̂i for xm ∈ Ci yields

1

ni

∑

xℓ,xℓ′∈Ci

βijℓ′ρi(xℓ, xm)ρi(xℓ, xℓ′) = λ̂ij

∑

xℓ′∈Ci

βijℓ′ρi(xm, xℓ′).

Recalling that Mi is the matrix ni ×ni defined by (Mi)ℓ,ℓ′ = ρi(xℓ, xℓ′)/ni and introducing βij

the vector of Rni defined by (βij)ℓ = βijℓ, the above equation can be rewritten as M2
i βij =

λ̂ijMiβij or, after simplification Miβij = λ̂ijβij . As a consequence, λ̂ij is the jth largest

eigenvalue of Mi and βij is the associated eigenvector for all 1 ≤ j ≤ di. Let us note that the

constraint ‖q̂ij‖ = 1 can be rewritten as βt
ijβij = 1.

iii) Computation of λ̂: Remarking that trace(Σ̂i) = trace(Mi) +
∑r

j=ri+1 λ̂ij, it follows:

λ̂ =
1

∑k
i=1 π̂i(ri − di)

k∑

i=1

π̂i



trace(Mi) −
di∑

j=1

λ̂ij



 ,

and the proposition is proved. �
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Proof of Proposition 3 It is sufficient to prove that q̂ij and λ̂ij are respectively the jth

normed eigenvector and eigenvalue of Σ̂i. First,

Σ̂iq̂ij =
1

√

niλ̂ij

1

ni

∑

xℓ′∈Ci

(xℓ′ − µ̄i)(xℓ′ − µ̄i)
t
∑

xℓ∈Ci

βijℓ(xℓ − µ̄i)

=
1

√

niλ̂ij

1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(xℓ′ − µ̄i)(xℓ′ − µ̄i)
t(xℓ − µ̄i)

=
1

√

niλ̂ij

1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(xℓ′ − µ̄i)ρi(xℓ, xℓ′)

=
1

√

niλ̂ij

∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓ(xℓ′ − µ̄i)

=
1

√

niλ̂ij

B−1
∑

xℓ′∈Ci

(Miβij)ℓ′(xℓ′ − µ̄i),

and remarking that βij is eigenvector of Mi, it follows:

Σ̂iq̂ij = λ̂ij
1

√

niλ̂ij

B−1
∑

xℓ′∈Ci

βijℓ′(xℓ′ − µ̄i) = λ̂ij q̂ij.

Second, straightforward algebra shows that

||q̂ij||2 =
1

niλ̂ij

∑

xℓ∈Ci

βijℓ(xℓ) − µ̄i)
t
∑

xℓ′∈Ci

βijℓ′(xℓ′ − µ̄i)

=
1

niλ̂ij

∑

xℓ′ ,xℓ∈Ci

βijℓβijℓ′(xℓ − µ̄i)
t(xℓ′ − µ̄i)

=
1

λ̂ij

∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓβijℓ′

=
1

λ̂ij

q̂t
ijMiq̂ij = 1,

and the result is proved. �

Proof of Proposition 4 For all ℓ = 1, . . . , L, the ℓth coordinate of the mapping function

ϕ(x) is defined as the ℓth coordinate of the function x expressed in the truncated basis

{b1, . . . , bL}. More specifically,

x(t) =
L∑

ℓ=1

ϕℓ(x)bℓ(t),

for all t ∈ [0, 1] and thus, for all j = 1, . . . , L, we have

γj(x) =

ˆ 1

0
x(t)bj(t)dt =

L∑

ℓ=1

ϕℓ(x)

ˆ 1

0
bj(t)bℓ(t)dt =

L∑

ℓ=1

Bjℓϕℓ(x).

25



As a consequence, ϕ(x) = B−1γ(x) and K(x, y) = γ(x)tB−1γ(y). Introducing

γ̄i =
1

ni

∑

xj∈Ci

γ(xj),

it follows that ρi(x, y) = (γ(x) − γ̄i)
tB−1(γ(y) − γ̄i). Let us first show that q̂ij is eigenvector

of B−1Σ̂i. Recalling that

q̂ij =
1

√

niλ̂ij

B−1
∑

xℓ∈Ci

βijℓ(γ(xℓ) − γ̄i),

we have

B−1Σ̂iq̂ij =
1

√

niλ̂ij

B−1 1

ni

∑

xℓ′∈Ci

(γ(xℓ′) − γ̄i)(γ(xℓ′) − γ̄i)
tB−1

∑

xℓ∈Ci

βijℓ(γ(xℓ) − γ̄i)

=
1

√

niλ̂ij

B−1 1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(γ(xℓ′) − γ̄i)(γ(xℓ′) − γ̄i)
tB−1(γ(xℓ) − γ̄i)

=
1

√

niλ̂ij

B−1 1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(γ(xℓ′) − γ̄i)ρi(xℓ, xℓ′)

=
1

√

niλ̂ij

B−1
∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓ(γ(xℓ′) − γ̄i)

=
1

√

niλ̂ij

B−1
∑

xℓ′∈Ci

(Miβij)ℓ′(γ(xℓ′) − γ̄i).

Remarking that βij is eigenvector of Mi, it follows:

B−1Σ̂iq̂ij = λ̂ij
1

√

niλ̂ij

B−1
∑

xℓ′∈Ci

βijℓ′(γ(xℓ′) − γ̄i) = λ̂ij q̂ij.

Let us finally compute the norm of q̂ij:

||q̂ij ||2 =
1

niλ̂ij

∑

xℓ∈Ci

βijℓ(γ(xℓ) − γ̄i)
tB−1

∑

xℓ′∈Ci

βijℓ′(γ(xℓ′) − γ̄i)

=
1

niλ̂ij

∑

xℓ′ ,xℓ∈Ci

βijℓβijℓ′(γ(xℓ) − γ̄i)
tB−1(γ(xℓ′) − γ̄i)

=
1

λ̂ij

∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓβijℓ′

=
1

λ̂ij

q̂t
ijMiq̂ij = 1,

and the result is proved. �
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