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Abstract

This work presents a family of parsimonious Gaussian process models which al-

low to build, from a finite sample, a model-based classifier in an infinite dimensional

space. The proposed parsimonious models are obtained by constraining the eigen-

decomposition of the Gaussian processes modeling each class. This allows in partic-

ular to use non-linear mapping functions which project the observations into infinite

dimensional spaces. It is also demonstrated that the building of the classifier can be

directly done from the observation space through a kernel function. The proposed

classification method is thus able to classify data of various types such as categorical

data, functional data or networks. Furthermore, it is possible to classify mixed data

by combining different kernels. The methodology is as well extended to the unsuper-

vised classification case. Experimental results on various data sets demonstrate the

effectiveness of the proposed method.

1 Introduction

Classification is an important and useful statistical tool in all scientific fields where deci-

sions have to be made. Depending on the availability of a learning data set, two situations

may happen: supervised classification (also known as discriminant analysis) and unsu-

pervised classification (also known as clustering). Discriminant analysis aims to build a

classifier (or a decision rule) able to assign an observation x in an arbitrary space E with

unknown class membership to one of k known classes C1, ..., Ck. For building this su-

pervised classifier, a learning dataset {(x1, z1), ..., (xn, zn)} is used, where the observation

xℓ ∈ E and zℓ ∈ {1, ..., k} indicates the class belonging of the observation xℓ. In a slightly

different context, clustering aims to directly partition an incomplete dataset {x1, ..., xn}
into k homogeneous groups without any other information, i.e., assign to each observation

xℓ ∈ E its group membership zℓ ∈ {1, ..., k}. Several intermediate situations exist, such
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as semi-supervised or weakly-supervised classifications [7], but they will not be considered

here.

Since the pioneer work of Fisher [12], a huge number of supervised and unsupervised

classification methods have been proposed in order to deal with different types of data.

Indeed, there exist a wide variety of data such as quantitative, categorical and binary data

but also texts, functions, sequences, images and more recently networks. As a practical

example, biologists are frequently interested in classifying biological sequences (DNA se-

quences, protein sequences), natural language expressions (abstracts, gene mentioning),

networks (gene interactions, gene co-expression), images (cell imaging, tissue classifica-

tion) or structured data (gene structures, patient information). The observation space E

can be therefore R
p if quantitative data are considered, L2([0, 1]) if functional data are

considered (time series for example) or Ap, where A is a finite alphabet, if the data at

hand are categorical (DNA sequences for example). Furthermore, the data to classify can

be a mixture of different data types: categorical and quantitative data or categorical and

network data for instance.

Classification methods can be split into two main families: generative and discrimi-

native techniques. Generative techniques model the data of each class with a probability

distribution and deduce the classification rule from this modeling. Conversely, discrimina-

tive techniques directly build the classification rule from the learning dataset. Among the

discriminative classification methods, kernel methods [19] are probably the most efficient

and the most used.

1.1 Model-based techniques for classification

On the one hand, model-based discriminant analysis assumes that {x1, ..., xn} are inde-

pendent realizations of a random vector X on E and that the class conditional distribution

of X is parametric:

f(x|z = i) = fi(x; θi).

When E = R
p, among the possible parametric distributions for fi, the Gaussian distri-

bution is often preferred and, in this case, the marginal distribution of X is therefore a

mixture of Gaussians:

f(x) =
k∑

i=1

πiφ(x; µi, Σi),

where φ is the Gaussian density, πi is the prior probability of the ith class, µi is the mean

of the ith class and Σi is its covariance matrix. In such a case, the optimal decision rule

is called the maximum a posteriori (MAP) rule which assigns a new observation x to the

class which has the largest posterior probability. Introducing the classification function
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Di defined as:

Di(x) = −2 log(πiφ(x; µi, Σi))

= log |Σi| + (x − µi)
tΣ−1

i (x − µi) − 2 log(πi) + p log(2π)

=
p
∑

j=1

1

λij

< x − µi, qij >2
Rp +

p
∑

j=1

log(λij) − 2 log(πi) + p log(2π), (1)

where qij and λij are respectively the jth eigenvector and eigenvalue of Σi, it can be easily

shown that the MAP rule reduces to finding the label i ∈ {1, . . . , k} for which Di(x) is the

smallest. Estimation of model parameters is usually done by maximum likelihood. This

method is known as the quadratic discriminant analysis (QDA), and, under the additional

assumption that Σi = Σ for all i ∈ {1, . . . , k}, it corresponds to the linear discriminant

analysis (LDA). A detailed overview on this topic can be found in [22].

Model-based clustering differs from the previous case in the goal (form k homogeneous

groups in the data at hand instead of learning a predictor for future observations) and in

the estimation procedure. Indeed, since the data at hand are unlabeled in the unsupervised

case, it is not possible to directly maximize the likelihood and an iterative procedure has

to be considered. Traditionally, the EM algorithm [10] is used to iteratively maximize the

likelihood. Once the model parameters are estimated, the MAP rule provides the partition

of the data into k groups.

Although model-based classification is usually enjoyed for its multiple advantages, it

suffers from the curse of dimensionality when dealing with high-dimensional data, i.e.,

when p is large. The weakness of model-based methods in high-dimensional spaces comes

from the need to invert the covariance matrices for the computation of the classification

function Di. Early solutions to avoid these numerical problems include dimension reduc-

tion [9, 12, 13, 29, 36, 41], parsimonious models [1, 14] or regularization [15, 18]. More

recently, several authors [2, 3, 4, 23, 24, 28] have proposed to classify high-dimensional

data in low-dimensional subspaces without reducing the data dimensionality. A review on

subspace classification is given by [30].

In particular, the subspace classification methods HDDA [4] and HDDC [3] present

the advantage of being directly derived from the classical Gaussian mixture model. Unlike

conventional generative methods working with high-dimensional data, HDDA and HDDC

do not reduce the dimension of the data but rather consider for each class a parsimonious

Gaussian model that takes into account its intrinsic subspace. This model assumes that

the data live in a lower dimensional subspace, where the density is Gaussian, and the

supplementary subspace contains only white noise. In particular, HDDA exhibits high

performances on various data sets, providing for instance higher classification accuracies

than Support Vector Machines (SVM) on very high-dimensional spectroscopic data [20].

However, HDDA and HDDC share two limiting characteristics with other model-based
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classification methods. First, they are limited to quantitative data and cannot process for

instance qualitative or functional data. Second, even in the case of quantitative data, the

Gaussian assumption may not be well-suited for the data at hand.

1.2 Kernel methods for classification

On the other hand, kernel methods overcome some of the shortcomings of generative

techniques. They are non-parametric algorithm and can be applied to any data for which

a kernel function can be defined. A kernel K : E×E → R is a positive definite function such

as every evaluation can be written as K(xi, xj) =< ϕ(xi), ϕ(xj) >H, with xi, xj ∈ E, ϕ a

mapping function (called the feature map), H a finite or infinite dimensional reproducing

kernel Hilbert space (the feature space) and < ·, · >H the dot product in H. An advantage

of using kernels is the possibility of computing the dot product in the feature space from the

original input space without explicitly knowing ϕ (kernel trick) [19]. Turning conventional

learning algorithms into kernel learning algorithms can be easily done if the algorithms

operate on the data only in terms of dot product. In particular, the kernel trick is used

to transform linear algorithms to non-linear ones. Additionally, a nice property of kernel

learning algorithms is the possibility to deal with any kind of data. The only condition is

to be able to define a positive definite function over pairs of elements to be classified [19].

For instance, kernel functions can be defined on strings [37, Chap. 10 and 11], graphs [39]

or trees [35, Chap. 5].

Many conventional linear algorithms have been turned to non-linear algorithms thanks

to kernels [33]. For generative models, a non exhaustive list could include:

• A kernelized version of principal component analysis (PCA) has been proposed

in [34]. The authors have expressed PCA in the feature space in terms of dot

product and then defined kernel PCA (KPCA). Similar to PCA, KPCA involves the

computation of the eigenvectors of the kernel matrix (the Gram matrix of all kernel

evaluations). Obviously, when using a linear kernel, KPCA is equivalent to PCA.

• Mika et al. have proposed kernel Fisher discriminant (KFD) as a non-linear version

of FDA which only relies on kernel evaluations [27]. However, to work properly,

KFD needs to be regularized. In [27], a ridge regularization is employed. Later, the

authors have reformulated KFD as a mathematical programming problem with a ℓ1

regularization that yields a sparse KFD (SKFD) [26].

• A kernelized Gaussian mixture model (KGMM) has been proposed in [11] for the

supervised classification of hyperspectral data. But, due to computational consider-

ation (ill-posed problem, as in FDA) the authors have introduced a strong assump-

tion: The classes share the same covariance matrix in the feature space. However,

the method still needs to be regularized. Recently, pseudo-inverse and ridge regular-
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ization have been proposed to define a kernel quadratic classifier where classes have

their own covariance matrices [31].

In all cases discussed above, a benefit is found by using the kernel version rather than the

original algorithm. KPCA shows better results results than PCA in terms of reconstruction

errors for image denoising [21]. Kernel GMM provides better accuracy than conventional

GMM for the classification of hyperspectral images [11]. Let us however highlight that the

kernel version involves the inversion of a kernel matrix, i.e., a n×n matrix estimated with

only n samples. Usually, the kernel matrix is ill-conditioned and regularization is needed,

while sometimes a simplified model is required too. Thus, it may limit the effectiveness of

the kernel version. In addition, and conversely to model-based techniques, the classification

results provided by kernel methods are unfortunately difficult to interpret which would be

useful in many application domains.

1.3 Aim and organization of the paper

In this work, we propose to adapt model-based methods for the classification of any kind

of data by working in a feature space of high or even infinite dimensional space. To this

end, we propose a family of parsimonious Gaussian process models which allow to build,

from a finite sample, a model-based classifier in a infinite dimensional space. It will be

demonstrated that the building of the classifier can be directly done from the observation

space through the so called “kernel trick”. The proposed classification method will be

thus able to classify data of various types (categorical data, mixed data, functional data,

networks, ...). The methodology is as well extended to the unsupervised classification case

(clustering).

The paper is organized as follows. Section 2 presents the context of our study and

introduces the family of parsimonious Gaussian process models. The inference aspects are

addressed in Section 3. It is also demonstrated in this section that the proposed method

can work directly from the observation space through a kernel. Section 4 is dedicated to

some special cases and to the extension to the unsupervised framework. Experimental

comparisons with state-of-the-art kernel methods are presented in Section 5 on simulated

and real data sets. Section 6 presents applications of the proposed methodology to various

types of data including functional, categorical, mixed and network data. Some concluding

remarks are given in Section 7 and proofs are postponed to the appendix.

2 Classification with parsimonious Gaussian process models

In this section, it is first explained why the classical Gaussian classification function cannot

be directly used in the feature space to classify data. Then, a parsimonious parameteri-

zation of Gaussian processes is proposed in order to overcome this limitation.

5



2.1 Why the Gaussian classification rule cannot be directly used in the

feature space?

Let us consider a learning set {(x1, z1), ..., (xn, zn)} where {x1, ..., xn} ⊂ E are assumed

to be independent realizations of a, possibly non-quantitative and non-Gaussian, random

variable X. The class labels {z1, ..., zn} are assumed to be realizations of a discrete random

variable Z ∈ {1, ..., k}. It indicates the memberships of the learning data to the k classes

denoted by C1, . . . , Ck, i.e., zℓ = i indicates that xℓ belongs to Ci.

A natural idea for classifying such data is to suppose the existence of a non-linear

mapping ϕ such that Y = ϕ(X) is, conditionally on Z = i, a Gaussian process on [0, 1]

with mean µi and continuous covariance function Σi. More specifically, one has µi(t) =

E(Y (t)|Z = i) and Σi(s, t) = E(Y (s)Y (t)|Z = i) − µi(t)µi(s). It is then well-known [38]

that, for all i = 1, . . . , k, there exist positive eigenvalues (sorted in decreasing order)

{λij}j≥1, together with eigenvector functions {qij(.)}j≥1 continuous on [0, 1], such that

Σi(s, t) =
∞∑

j=1

λijqij(s)qij(t),

where the series is uniformly convergent on [0, 1]2. Moreover, the eigenvector functions

are orthonomal in L2([0, 1]) for the dot product < f, g >L2
=
´ 1

0 f(t)g(t)dt. It is then

easily seen, that, for all r ≥ 1 and i ∈ {1, . . . , k}, the random vector on R
r defined by

{< Y, qij >L2
}j=1,...,r is, conditionally on Z = i, Gaussian with mean {< µi, qij >}j=1,...,r

and covariance matrix diag(λi1, . . . , λir). To classify a new observation x, we therefore

propose to apply the Gaussian classification function (1) to ϕ(x):

Di(ϕ(x)) =
r∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+
r∑

j=1

log(λij) − 2 log(πi).

From a theoretical point of view, if the Gaussian process is non degenerated, one should

use r = +∞. In practice, r has to be large in order not to loose to much information on

the Gaussian process. Unfortunately, in this case the above quantities cannot be estimated

from a finite sample set. Indeed, only a part of the classification function can be actually

computed from a finite sample set:

Di(ϕ(x)) =
ri∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+
ri∑

j=1

log(λij) − 2 log(πi)

︸ ︷︷ ︸

computable quantity

+
r∑

j=ri+1

1

λij

< ϕ(x) − µi, qij >2
L2

+
r∑

j=ri+1

log(λij)

︸ ︷︷ ︸

non computable quantity

,
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Figure 1: Parameters of the parsimonious Gaussian process model for the case of 2 classes.
Fi denotes the feature subspace of the class Ci.

where ri = min(ni, r) and ni = Card (Ci). Consequently, the Gaussian model cannot be

used directly in the feature space to classify data if r > ni for i = 1, ..., k.

2.2 A parsimonious Gaussian process model in the feature space

To overcome the computation problem highlighted above, it is proposed here to use in

the feature space a parsimonious model for the Gaussian process modeling each class.

Following the idea of [4], we constrain the eigen-decomposition of the Gaussian processes

as follows.

Definition 1. A parsimonious Gaussian process model (pgpM) is a Gaussian process Y

for which, conditionally to Z = i, the eigen-decomposition of its covariance operator Σi is

such that:

(A1) there exists a dimension di < ri such that λij = λi for j > di,

(A2) and, for all i = 1, ..., k, λi = λ.

From a practical point of view, this modeling can be viewed as assuming that the data

of each class live in a specific subspace of the feature space. The variance of the actual data

of the ith group is modeled by the parameters λi1, ..., λidi
and the variance of the noise

is modeled by λ. This assumption amounts to supposing that the noise is homoscedastic

and its variance is common to all the classes. The dimension di can be considered as well

as the intrinsic dimension of the latent subspace of the ith group in the feature space.

Figure 1 illustrates such a modeling. This model is referred to by pgpM0 (or M0 for

short) hereafter. With these assumptions, we have the following result.
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Proposition 1. Letting dmax = max(d1, ..., dk), the classification function Di can be writ-

ten as follows in the case of a parsimonious Gaussian process model pgpM:

Di(ϕ(x)) =
di∑

j=1

(

1

λij

− 1

λ

)

< ϕ(x) − µi, qij >2
L2

+
1

λ
||ϕ(x) − µi||2L2

+
di∑

j=1

log(λij) + (dmax − di) log(λ) − 2 log(πi) + γ, (2)

where γ is a constant term which does not depend on the index i of the class.

At this point, it is important to notice that the classification function Di depends only

on the eigenvectors associated with the di largest eigenvalues of Σi. This estimation is

now possible due to the inequality di < ni for i = 1, ..., k. Furthermore, the computation

of the classification function does not depend any more on the parameter r. As shown in

the next section, it is possible to reformulate the classification function such that it does

not depend either on the mapping function ϕ.

2.3 Submodels of the parsimonious model

By fixing some parameters to be common within or between classes, it is possible to

obtain particular models which correspond to different regularizations. Table 1 presents

the 8 additional models which can be obtained by constraining the parameters of model

M0. For instance, fixing the dimensions di to be common between the classes yields the

model M1. Similarly, fixing the first di eigenvalues to be common within each class, we

obtain the more restricted model M2. It is also possible to constrain the first di eigenvalues

to be common between the classes (models M4 and M7), and within and between the

classes (models M5, M6 and M8). This family of 9 parsimonious models should allow the

proposed classification method to fit into various situations. Let us finally remark that

if the mapping function is ϕ(x) = x and if we constrain di to be equal to (p − 1) for all

i = 1, ..., k, the model M0 presented above reduces to the classical Gaussian mixture model

with full covariance matrices. This model yields the well-known quadratic discriminant

analysis (QDA) technique in the supervised classification framework. Similarly, if ϕ(x) = x

and di = p − 1 for all i = 1, ..., k, then the model M3 is the model of linear discriminant

analysis (LDA).

3 Model inference and classification with a kernel

This section focuses on the inference of the parsimonious models proposed above and on

the classification of new observations through a kernel. Model inference is only presented
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Model
Variance inside

the subspace Fi

Variance

outside Fi

Subspace

orientation Qi

Intrinsic

dimension di

M0 Free Common Free Free

M1 Free Common Free Common

M2 Common within groups Common Free Free

M3 Common within groups Common Free Common

M4 Common between groups Common Free Common

M5 Common within and between groups Common Free Free

M6 Common within and between groups Common Free Common

M7 Common between groups Common Common Common

M8 Common within and between groups Common Common Common

Table 1: List of the submodels of the parsimonious Gaussian process model (referred to
by M0 here).

for the model M0 since inference for the other parsimonious models is similar. Estimation

of intrinsic dimensions and visualization in the feature subspaces are also discussed.

3.1 Estimation of model parameters

In the model-based classification context, parameters are usually estimated by their em-

pirical counterparts [22] which conduces, in the present case, to the following estimators:

• πi is estimated by π̂i = ni/n,

• µi is estimated by µ̂i(t) =
1

ni

∑

xj∈Ci

ϕ(xj)(t),

• λij and qij are respectively estimated by the jth largest eigenvalue λ̂ij and its asso-

ciated eigenvector function q̂ij of the empirical covariance operator Σ̂i:

Σ̂i(s, t) =
1

ni

∑

xℓ∈Ci

ϕ(xℓ)(s)ϕ(xℓ)(t) − µ̂i(s)µ̂i(t),

• finally, the estimator of λ is:

λ̂ =
1

∑k
i=1 π̂i (r − di)

k∑

i=1

π̂i



trace(Σ̂i) −
di∑

j=1

λ̂ij



 . (3)

Using the plug-in method, the estimated classification function D̂i can be written as

follows:

D̂i(ϕ(x)) =
di∑

j=1

(

1

λ̂ij

− 1

λ̂

)

< ϕ(x) − µ̂i, q̂ij >2
L2

+
1

λ̂
||ϕ(x) − µ̂i||2L2

+
di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i). (4)
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However, as we can see, the estimated classification function D̂i still depends on the

function ϕ and therefore requires computations in the feature space. However, since all

these computations involve dot products, it will be shown in the next paragraph that the

estimated classification function can be computed without explicit knowledge of ϕ through

a kernel function.

3.2 Estimation of the classification function through a kernel

Kernel methods are all based on the so-called “kernel trick” which allows the computation

of the classifier in the observation space through a kernel K. Let us therefore introduce

the kernel K : E × E → R defined as K(x, y) =< ϕ(x), ϕ(y) >L2
and ρi : E × E → R

defined as ρi(x, y) =< ϕ(x) − µi, ϕ(y) − µi >L2
. In the following, it is shown that the

classification function Di only involves ρi which can be computed using K:

ρi(x, y) =
1

n2
i

∑

xℓ,xℓ′∈Ci

< ϕ(x) − ϕ(xℓ), ϕ(y) − ϕ(xℓ′) >L2
(5)

= K(x, y) − 1

ni

∑

xℓ∈Ci

(K(xℓ, y) + K(x, xℓ)) +
1

n2
i

∑

xℓ,xℓ′∈Ci

K(xℓ, xℓ′). (6)

For each class Ci, let us introduce the ni × ni symmetric matrix Mi defined by:

(Mi)ℓ,ℓ′ =
ρi(xℓ, xℓ′)

ni

.

With these notations, we have the following result.

Proposition 2. For i = 1, . . . , k, the estimated classification function can be computed,

in the case of the model M0, as follows:

D̂i(ϕ(x)) =
1

ni

di∑

j=1

1

λ̂ij

(

1

λ̂ij

− 1

λ̂

)


∑

xℓ∈Ci

βijℓρi(x, xℓ)





2

+
1

λ̂
ρi(x, x)

+
di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i),

where, for j = 1, . . . , di, βij is the normed eigenvector associated to the jth largest eigen-

value λ̂ij of Mi and λ̂ = 1/
∑k

i=1 π̂i(ri − di) ×∑k
i=1 π̂i

(

trace(Mi) −∑di

j=1 λ̂ij

)

.

It thus appears that each new sample point x can be assigned to the class Ci with the

smallest value of the classification function without knowledge of ϕ. The methodology

based on Proposition 2 is referred to pgpDA in the sequel. In practice, the value of ri

depends on the chosen kernel (see Table 2 for examples).
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Kernels K(x, y) ri

Linear < x, y >L2
min(ni, p)

Gaussian exp

(

−‖x−y‖2

L2

2σ2

)

ni

Polynomial (< x, y >L2
+1)q min

(

ni,
(p+q

p

))

Table 2: Dimension ri for several kernels.

3.3 Intrinsic dimension estimation and visualization

The choice of the intrinsic dimensions di and the visualization in the feature subspaces are

now discussed.

Estimation of the intrinsic dimensions di The estimation of the intrinsic dimension

of a dataset is a difficult problem with no unique technique to use. In [4], the authors

proposed a strategy based on the eigenvalues of the class conditional covariance matrix of

the ith class. The jth eigenvalue of the class conditional covariance matrix corresponds

to the fraction of the full variance carried by the jth eigenvector of this matrix. The class

specific dimension di, i = 1, ..., k is estimated through the scree-test of Cattell [6] which

looks for a break in the eigenvalues scree. The selected dimension is the one for which the

subsequent eigenvalues differences are smaller than a threshold. We recommend to set the

threshold to 0.2 times the largest difference between consecutive eigenvalues.

Visualization in the feature subspaces An interesting advantage of the approach

is to allow the visualization of the data in subspaces of the feature space. Indeed, even

though the chosen mapping function is associated with a space of very high or infinite

dimension, the proposed methodology models and classifies the data in low-dimensional

subspaces of the feature space. It is therefore possible to visualize the projection of the

mapped data on the feature subspaces of each class using Equation (11) of the appendix.

The projection of ϕ(x) on the jth axis of the class Ci is therefore given by:

Pij(ϕ(x)) :=< ϕ(x) − µ̂i, q̂ij >=
1

√

niλ̂ij

∑

xℓ∈Ci

βijℓρi(x, xℓ).

Thus, even if the observations are non quantitative, it is possible to visualize their projec-

tions in the feature subspaces of the classes which are quantitative spaces.

4 Particular cases and extension to clustering

The methodology proposed in the previous section is made very general by the large choice

for the mapping function ϕ(x). We focus in this section on two specific choices for ϕ(x)
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for which the direct calculation of the classification rule is possible. An extension to

unsupervised classification is also considered through the use of an EM algorithm.

4.1 Case of the linear kernel for quantitative data

In the case of quantitative data, E = R
p and one can choose ϕ(x) = x associated to the

standard scalar product which gives rise to the linear kernel K(x, y) = xty. In such a

framework, the estimated classification function can be simplified as follows:

Proposition 3. If E = R
p and K(x, y) = xty then, for i = 1, . . . , k, the estimated

classification function reduces to

D̂i(x) =
di∑

j=1

(

1

λ̂ij

− 1

λ̂

)
(

q̂t
ij(x − µ̂i)

)2
+

1

λ̂
||x − µ̂i||2Rp

+
di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i).

where µ̂i is the empirical mean of the class Ci, q̂ij is the eigenvector of the empirical

covariance matrix Σ̂i associated to the jth largest eigenvalue λ̂ij and λ̂ is given by (3).

It appears that the estimated classification function reduces to the one of the HDDA

method [4] with the model [aijbQid] which has constraints similar to M0. Therefore, the

methodology proposed in this work partially encompasses the method HDDA.

4.2 Case of functional data

Let us consider now functional data observed in E = L2([0, 1]). Let (bj)j≥1 be a basis of

L2([0, 1]) and F = R
L where L is a given integer. For all ℓ = 1, . . . , L, the projection of a

function x on the jth basis function is computed as

γj(x) =

ˆ 1

0
x(t)bj(t)dt

and γ(x) := (γj(x))j=1,...,L. Let B the L × L Gram matrix associated to the basis:

Bjℓ =

ˆ 1

0
bj(t)bℓ(t)dt,

and consider the associated scalar product defined by < u, v >= utBv for all u, v ∈ R
L.

One can then choose ϕ(x) = B−1γ(x) and K(x, y) = γ(x)tB−1γ(y) leading to a simple

estimated classification function.

Proposition 4. Let E = L2([0, 1]) and K(x, y) = γ(x)tB−1γ(y). Introduce, for i =
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1, . . . , k, the L × L covariance matrix of the γ(xj) when xj ∈ Ci:

Σ̂i =
1

ni

∑

xℓ∈Ci

(γ(xℓ) − γ̄i)(γ(xℓ) − γ̄i)
t where γ̄i =

1

ni

∑

xj∈Ci

γ(xj)

Then, for i = 1, . . . , k, the estimated classification function reduces to

D̂i(ϕ(x)) =
di∑

j=1

(

1

λ̂ij

− 1

λ̂

)
(

q̂t
ij(γ(x) − γ̄i)

)2
+

1

λ̂
(γ(x) − γ̄i)

tB−1(γ(x) − γ̄i)

+
di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i),

where q̂ij and λ̂ij are respectively the jth normed eigenvector and eigenvalue of the matrix

B−1Σ̂i and λ̂ is given by (3).

Remark that B−1Σ̂i coincides with the matrix of interest in functional PCA [32, Chap. 8.4]

and that, if the basis is orthogonal, then B is the identity matrix. Notice that the proposed

method therefore encompasses as well the model proposed in [5] for the clustering of

functional data.

4.3 Extension to unsupervised classification

Since the previous section has demonstrated the possibility to use the Gaussian classifi-

cation function in the feature space, it is also possible to extend its use to unsupervised

classification (also known as clustering). Indeed, in the model-based classification context,

the unsupervised and supervised cases mainly differ in the manner to estimate the param-

eters of the model. The clustering task aims to form k homogeneous groups from a set of

n observations {x1, ..., xn} without any prior information about their group memberships.

Since the labels are not available, it is not possible in this case to directly estimate the

model parameters. In such a context, the expectation-maximization (EM) algorithm [10]

is frequently used. As a consequence, the use of the EM algorithm allows to both estimate

the model parameters and predict the class memberships of the observations at hand. In

the case of the parsimonious model M0 introduced above, the EM algorithm takes the

following form:

The E step This first step reduces, at iteration q, to the computation of t
(q)
ij = E(Zj =

i|xj , θ(q−1)), for j = 1, . . . , n and i = 1, . . . , k, conditionally on the current value of the

model parameter θ(q−1):

t
(q)
ij = 1/

k∑

ℓ=1

exp
(

D
(q−1)
i (ϕ(xj)) − D

(q−1)
ℓ (ϕ(xj))

)

, (7)

13



where

D
(q−1)
i (ϕ(x)) =

1

ni

di∑

j=1

1

λ̂
(q−1)
ij




1

λ̂
(q−1)
ij

− 1

λ̂(q−1)





(
n∑

ℓ=1

βijℓ

√
tiℓρ

(q−1)
i (x, xℓ)

)2

+
1

λ̂(q−1)
ρ

(q−1)
i (x, x) +

di∑

j=1

log(λ̂
(q−1)
ij ) + (dmax − di) log(λ̂(q−1)) − 2 log(π̂

(q−1)
i ).

is the Gaussian classification function associated with the model parameters estimated in

the M step at iteration q − 1. This result can be proved by substituting Equation (10) in

the proof of Proposition 2 by:

q̂ij =
1

√

niλ̂ij

∑

xℓ∈Ci

βijℓ

√
tℓi(ϕ(xℓ) − µ̂i). (8)

The M step This second step estimates the model parameters conditionally on the

posterior probabilities t
(q)
ij computed in the previous step. In practice, this step reduces

to update the estimate of model parameters according to the following formula:

• mixture proportions are estimated by π̂
(q)
i = n

(q)
i /n where n

(q)
i =

∑n
j=1 t

(q)
ij ,

• parameters λij , λ, βij and di are estimated at iteration q using the formula given in

Proposition 2 but where the matrix Mi is now a n × n matrix, recomputed at each

iteration q, and such that, for i = 1, ..., k and ℓ, ℓ′ = 1, ..., n:

(

M
(q)
i

)

ℓ,ℓ′

=

√

t
(q)
iℓ t

(q)
iℓ′

n
(q)
i

ρ
(q)
i (xℓ, xℓ′)

where ρ
(q)
i (xℓ, xℓ′) can be computed through the kernel K as follows:

ρ
(q)
i (xℓ, xℓ′) =K(xℓ, xℓ′) − 1

n
(q)
i

n∑

j=1

t
(q)
ji (K(xj , xℓ) + K(xℓ′ , xj))

+
1

(n
(q)
i )2

n∑

j,j′=1

t
(q)
ji t

(q)
j′i K(xj , xj′).

The clustering algorithm associated with this methodology will be denoted to by pgpEM

in the following.

5 Numerical comparisons on quantitative data

In this section, numeral experiments and comparisons are conducted on simulated and

real-world data sets to highlight the main features of the pgpDA method.
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Figure 2: Simulated classification problem. The decision boundaries are depicted in color.
(a) represents the decision boundary for models M0, M1 and M2, (b) represents the
decision boundary for models M3, M4 and M5, (c) represents the decision boundary
for models M6, M7 and M8, and (d) represents the decision boundary for HDDA (or
equivalently M0 with a linear kernel), QDA and LDA.

5.1 An introductory example: non linear simulated data

A two-class non linear classification problem is first considered, see Figure 2. The data

have been simulated according to:

X|Z=1 =
(

− 1 + t + η, 2 − t2

2
+ η

)

,

X|Z=2 =
(

1 + t + η, −2 +
t2

2
+ η

)

,

where t ∼ U[−4,4] and η ∼ N (0, 0.25). The first class is depicted by the circles on Figure 2

whereas the crosses correspond to observations of the second class.

For all the experiments, the Gaussian kernel was used and the kernel hyper-parameter

was set to 0.5. For models M0, M2 and M5, the scree test threshold was fixed to 0.05. For

the other models with common intrinsic dimension, d was set to 15 which corresponds to

the mean di value obtained with the above scree test threshold. The decision boundaries

for each pgpDA models are reported in Figure 2. For comparison, the decision boundaries

for HDDA, QDA and LDA are also provided. From Figures 2.(a)-(c), we can observe that

all the pgpDA models perform a non linear classification of the samples. For this toy data

set, except M7 and M8, all the models perform similarly and the decision boundaries are
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Figure 3: Simulated classification problem. (a) Influence of the intrinsic dimension for the
model M1. In blue d = 1, in red d = 5, in black d = 10, in magenta d = 20, in yellow
d = 40 and in green d = 80. (b) Differences between consecutive eigenvalues of Mi. The
red and black lines correspond respectively to a threshold value of 0.1 and 0.05.

(a) (b)

Figure 4: Visualization of the feature space. (a) for the first class (circle) and (b) for the
second class (cross) for the model M0.

very similar. As expected, conventional Gaussian model and associated sub-models are

not able to separate correctly the samples.

The influence of the intrinsic dimension d is illustrated in Figure 3. For this toy data

set, the parameter d seems not to have a strong influence since the decision boundaries

are similar whatever the value of d. However, it can be seen that when d is set to a

low value, the decision boundary is slightly smoother than when it is set to a high value.

Hence, in practice, low values of d must be favored to prevent over-fitting. The feature

subspaces associated to each class are displayed in Figure 4 for the first two kernel principal

components. For the model M0, a clear separation between both classes is visible in the

feature space. In particular, the data of the second class are orthogonal to the space

defined by the feature subspace of the first class and vice-versa. Let us recall that pgpDA

performs the classification in the whole feature space and not only in the subspace depicted

by Figure 4.
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Dataset n p n/p k hr

Iris 150 4 37.5 3 0.5
Glass 214 9 23.7 6 0.25
Wine 178 13 13.7 3 0.5

Ionosphere 351 34 10.3 2 0.5
Sonar 208 60 3.5 2 0.5

USPS 358 2248 256 8.8 3 0.5

Table 3: Data used in the experiments. n is the number of samples, p is the number of
features, k is the number of classes and hr is the hold-out ratio used in the experiments.

5.2 Benchmark study

We now focus on the comparison of pgpDA with state-of-the-art methods. To that end, two

kernel generative classifiers are considered, kernel Fisher discriminant analysis (KFD) [27]

and kernel QDA (KQDA) [11], and one kernel discriminative classifier, support vector

machine (SVM) [33]. The Gaussian kernel is used once again in the experiments for

all methods, including pgpDA. Since real-world problems are considered, all the hyper-

parameters of the classifiers have been tuned using 5-fold cross-validation.

Six data sets from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/ )

have been selected: glass, ionosphere, iris, sonar, USPS and wine. We selected these data

sets because they represent a wide range of situations in term of number of observations

n, number of variables p and number of groups k. The USPS dataset has been modified

to focus on discriminating the three most difficult classes to classify, namely the classes

of the digits 3, 5 and 8. This dataset has been called USPS 358. The main feature of the

data sets are described in Table 3.

Each data set was randomly split into training and testing sets in the hold-out ratio

hr given in Table 3. The data were scaled between -1 and 1 on each variable. The

search range for the cross-validation was for the kernel hyperparameter σ ∈ [−4, 4], for

the common intrinsic dimension d ∈ [1, 20], for the scree test threshold τ ∈ [10−7, 1], for

the regularization parameter in KFD and KQDA λ ∈ [10−13, 10−6] and for the penalty

parameter of the SVM γ ∈ [25, 29]. The global classification accuracy was computed on

the testing set and the reported results have been averaged over 50 replications of the

whole process. The average classification accuracies and the standard deviations are given

in Table 4.

Regarding the competitive methods, KFD and SVM provide often better results than

KQDA. The model used in KQDA only fits “ionosphere”, ”iris” and “wine” data, for which

classification accuracies are similar to or better than those obtain with KFD and SVM.

For the parsimonious pgpDA models, except for M7 and M8, the classification accuracies

are globally good. Models M1 and M4 provide the best results in terms of average correct

classification rates. In particular, for the “USPS 358” and “wine” data sets, they provide
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Method Iris Glass Wine Ionosphere Sonar USPS 358 Mean (rank)

pgpDA M0 95.9± 2.1 64.9 ± 6.3 96.8 ± 1.7 90.5 ± 2.3 77.9 ± .9 92.2 ± 1.0 86.4 (5)
pgpDA M1 95.2± 2.1 62.6 ± 12.5 96.7 ± 2.3 93.7 ± 1.6 81.8 ± 4.9 96.6 ± 0.4 87.8 (2)
pgpDA M2 94.4± 6.2 64.4 ± 6.7 96.8 ± 1.8 91.0 ± 2.8 71.6 ± 13.4 95.4 ± 0.8 85.6 (7)
pgpDA M3 95.8± 2.3 64.3 ± 6.8 96.9 ± 2.0 93.2 ± 2.1 79.3 ± 4.9 96.2 ± 0.5 87.6 (3)
pgpDA M4 94.4± 2.2 65.3 ± 6.4 97.2 ± 1.8 93.4 ± 2.0 81.6 ± 4.5 96.3 ± 0.7 88.0 (1)
pgpDA M5 94.2± 7.1 59.8 ± 10.9 96.4 ± 2.0 92.0 ± 1.8 72.5 ± 12.6 96.0 ± 0.5 85.2 (8)
pgpDA M6 94.8± 2.1 65.2 ± 5.6 97.2 ± 1.8 92.5 ± 2.1 79.8 ± 4.9 96.1 ± 0.5 87.6 (3)
pgpDA M7 41.3± 16.5 40.0 ± 5.4 75.2 ± 8.3 64.6 ± 2.6 48.8 ± 5.7 63.5 ± 1.5 55.5 (11)
pgpDA M8 29.2± 17.4 35.4 ± 7.9 64.2 ± 26.8 64.3 ± 2.5 50.5 ± 5.5 36.8 ± 1.2 46.7 (12)

KFD 93.4± 3.7 47.3 ± 10.1 95.9 ± 2.3 94.1 ± 1.7 82.9 ± 3.1 93.6 ± 0.5 84.5 (9)
KQDA 96.6± 2.3 64.5 ± 6.3 96.6 ± 1.7 88.1 ± 2.3 68.9±18.1 64.7 ± 37.5 79.9 (10)
SVM 95.7± 2.0 69.1 ± 5.5 96.8 ± 1.4 92.8 ± 1.8 84.8 ± 4.0 77.6 ± 5.4 86.1 (6)

Table 4: Classification results on real-world datasets: reported values are average correct classification rates and standard deviation
computed on validation sets.
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the best overall accuracies. Let us remark that pgpDA performs significantly better than

SVM (for the Gaussian kernel) on high-dimensional data (USPS 358).

In conclusion of these experiments, by relying on parsimonious models rather than

regularization, pgpDA provides good classification accuracies and it is robust to the situ-

ation where few samples are available in regards to the number of variables in the original

space. In practice, models M1 and M4 should be recommended: intrinsic dimension is

common between the classes and the variance inside the class intrinsic subspace is either

free or common. Conversely, models M7 and M8 must be avoided since they appeared to

be too constrained to handle real classification situations.

6 Applications to the classification of non-quantitative data

This section aims to illustrate the possible range of application of the proposed methodolo-

gies (pgpDA and pgpEM) to different types of data. Therefore, conversely to the previous

section, the focus will be here more on the interpretability of the results than on the

performance of the algorithms.

6.1 Classification of functional data: the Canadian temperatures

In this first experiment, we focus on the clustering of functional data with pgpEM for which

the mapping function ϕ is explicit (see Section 4.2). The Canadian temperature data used

in this study, presented in details in [32], consist in the daily measured temperatures at

35 Canadian weather stations across the country. The pgpEM algorithm was applied

here with the model M0, which is the most general parsimonious Gaussian process model

proposed in this work, with a fixed number k of groups set to 4. The mapping function

ϕ consists in the projection of the observed curves on a basis of 20 natural cubic splines.

Once the pgpEM algorithm has converged, various informations are available and some of

them are of particular interest. Group means, intrinsic dimensions of the group-specific

subspaces and functional principal components of each group could in particular help the

practitioner in understanding the clustering of the dataset at hand. The left panel of

Figure 5 presents the clustering of the temperature data set into 4 groups with pgpEM.

It is first interesting to have a look at the name of the weather stations gathered in the

different groups formed by pgpEM. It appears that group 1 (black solid curves) is mostly

made of continental stations, group 2 (red dashed curves) mostly gathers the stations

of the North of Canada, group 3 (green dotted curves) mostly contains the stations of

the Atlantic coast whereas the Pacific stations are mostly gathered in group 4 (blue dot-

dashed curves). For instance, group 3 contains stations such as Halifax (Nova Scotia) and

St Johns (Newfoundland) whereas group 4 has stations such as Vancouver and Victoria

(both in British Columbia). The right panel of Figure 5 provides a map of the weather

stations where the colors indicate their group membership. This figure shows that the
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Figure 5: Clustering of the 35 times series of the Canadian temperature data set into 4
groups with pgpEM (left) and geographical positions of the weather stations according
to their group belonging (right). The colors indicate the group memberships: group 1 in
black, group 2 in red, group 3 in green and group 4 in blue.

obtained clustering with pgpEM is very satisfying and rather coherent with the actual

geographical positions of the stations (the clustering accuracy is 71% here compared with

the geographical classification provided by [32]). We recall that the geographical positions

of the stations have not been used by pgpEM to provide the partition into 4 groups.

An important characteristic of the groups, but not necessarily easy to visualize, is the

specific functional subspace of each group. A classical way to observe principal component

functions is to plot the group mean function µ̂i(t) as well as the functions µ̂i(t)±2
√

λ̂ij q̂ij(t)

(see [32] for more details). Figure 6 shows such a plot for the 4 groups of weather stations

formed by pgpEM. It first appears on the first functional principal component of each

group that there is more variance between the weather stations in winter than in summer.

In particular, the first principal component of group 4 (blue curves, mostly Pacific stations)

reveals a specific phenomenon which occurs at the beginning and the end of the winter.

Indeed, we can observe a high variance in the temperatures of the Pacific coast stations

at these periods of time which can be explained by the presence of mountain stations in

this group. The analysis of the second principal components reveals finer phenomena.

For instance, the second principal component of group 1 (black curves, mostly continental

stations) shows a slight shift between the + and − along the year which indicates a time-

shift effect. This may mean that some cities of this group have their seasons shifted, e.g.

late entry and exit in the winter. Similarly, the inversion of the + and − on the second

principal component of the Pacific and Atlantic groups (blue and green curves) suggests

that, for these groups, the coldest cities in winter are also the warmest cities in summer.

On the second principal component of group 2 (red curves, mostly Arctic stations), the
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(a) Group 1 (mostly continental stations)
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(b) Group 2 (mostly Arctic stations)
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(c) Group 3 (mostly Atlantic stations)
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(d) Group 4 (mostly Pacific stations)

Figure 6: The group means of the Canadian temperature data obtained with pgpEM and
the effects of adding (+) and subtracting (−) twice the square root of the feature subspace
variance (see text for details).
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Figure 7: Regularized Laplacian kernel associated to the Add Health network for ν =
4: blue pixels correspond to low values (low similarity between nodes) and red pixels
correspond to high values (high similarity between nodes).

fact that the + and − curves are almost superimposed shows that the North stations have

very similar temperature variations (different temperature means but same amplitude)

along the year.

6.2 Classification of networks: the Add Health dataset

We now consider network data which are nowadays widely used to represent relationships

between persons in organizations or communities. Recently, the need of classifying and

visualizing such data has suddenly grown due to the emergence of Internet and of a large

number of social network websites. Indeed, increasingly, it is becoming possible to observe

“network informations” in a variety of contexts, such as email transactions, connectivity

of web pages, protein-protein interactions and social networking. A number of scientific

goals can apply to such networks, ranging from unsupervised problems such as describing

network structure, to supervised problems such as predicting node labels with information

on their relationships.

We investigate here the use of pgpDA to classify the nodes of a network. To our

knowledge, only a few kernels (see [40] for more details) have been proposed for network

data and the regularized Laplacian kernel is probably the most used. This kernel is defined

as follows: let X be a symmetric n × n socio-matrix where Xij = 1 if a relationship is

observed between the nodes i and j and Xij = 0 in the opposite case. Let D be the diagonal

matrix where Dii indicates the number of relationships for the node i, i.e., Dii =
∑n

j=1 Xij .

The regularized Laplacian kernel K is then defined by:

K =
[

L̃ + νIn

]−1
,
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(a) Subspace of class 2 (b) Subspace of class 4

Figure 8: Visualisation of the Add Health network with pgpDA in the feature subspace of
the 2nd and the 4th class (grade 8 and 10 respectively).

where L̃ = In − D− 1

2 XD− 1

2 is the normalized Laplacian of the network, ν is a positive

value and In is the identity matrix of size n.

The social network studied here is from the National Longitudinal Study of Adolescent

Health and it is a part of a big dataset, usually called the “Add Health” dataset. The data

were collected in 1994-95 within 80 high-schools and 52 middle schools in the USA. The

whole study is detailed in [17]. In addition to personal and social information, each student

was asked to nominate his best friends. We consider here the social network based on the

answers of 67 students from a single school, treating the grade of each student as the class

variable. Two adolescents who nominated nobody were removed from the network. We

therefore consider a whole dataset made of 65 students distributed into 5 classes: grade 7

to grade 11.

We first selected by cross-validation the kernel parameter on a learning sample and

the threshold parameter for the intrinsic dimensions was set to 0.2. The most adapted

value for ν was 4 and this gives on average 96.92% of correct classification for the test

nodes. Remark that ν turned out not to be a sensitive parameter and we obtain satisfying

results for a large range of values of ν. Figure 7 presents the kernel associated with the

selected value of ν. Since network visualization is an important issue in network analysis,

we then kept these parameters to visualize the whole network in the feature subspace of

each class. Figure 8 presents the visualization of the network into the feature subspace of

the classes 2 and 4. Both visualizations turn out to be very informative and, in particular,

the visualization on the feature subspace of the 4th class (grade 10) is particularly useful

to understand the network. It is interesting to notice that the network is almost organized

along a 1-dimensional manifold (an half-circle here) which is consistent with the nature

of the network: students of different classes. The specific form of the representation is

due here to some relations between students of grade 7 and 10 (students of the same
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Figure 9: Votes (yea, nay or unknown) for each of the U.S. House of Representatives
congressmen on 16 key votes in 1984. Yeas are in indicated in white, nays in gray and
missing values in black. The first 168 congressmen are republicans whereas the 267 last
ones are democrats.

family perhaps). We also remark that the classes are quite well separated and most of the

relationships between students of different classes are between consecutive grades. This

suggests that relationships between classes are due to students who failed to move to the

upper grade and who may keep contact with old friends. It is in addition interesting to

notice that this visualization is very close to the one obtained on the same network by

Hoff, Handcock and Raftery in [16] using the so-called “latent space model”.

6.3 Classification of categoretical data: the house-vote dataset

We focus now on categorical data which are also very frequent in scientific fields. We

consider here the task of clustering (unsupervised classification) and therefore the pgpEM

algorithm. To evaluate the ability of pgpEM to classify categorical data, we used the U.S.

House Votes data set from the UCI repository. This data set is a record of the votes (yea,

nay or unknown) for each of the U.S. House of Representatives congressmen on 16 key

votes in 1984. These data were recorded during the during the third and fourth years of

Ronald Reagan’s Presidency. At this time, the republicans controlled the Senate, while

the democrats controlled the House of Representatives. Figure 9 shows the database where

yeas are in indicated in white, nays in gray and missing values in black. The first 168

congressmen are republicans whereas the 267 last ones are democrats. As we can see, the

considered votes are very discriminative since republicans and democrats vote differently

in almost all cases while most of the congressmen follow the majority vote in their group.

We can however notice that a significant part (around 50 congressmen) of the democrats

tend to vote differently from the other democrats.

To cluster this dataset, we first build a kernel from the categorical observations (16
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Figure 10: Kernel based on the Hamming distance (left) computed on the house-vote
dataset and clustering results (right) obtained with pgpEM. For the kernel, blue and red
pixels correspond respectively to low and high values. The clustering results are presented
through a binary matrix where a black pixel indicates a common membership between
two senators.

qualitative variables with 3 possible values: yea, nay or ?). We chose a kernel, proposed

in [8], based on the Hamming distance which measures the minimum number of sub-

stitutions required to change one observation into another one. Figure 10 presents the

resulting kernel (left panel) and the clustering result obtained with the pgpEM algorithm.

The clustering results are presented through a binary matrix where a black pixel indicates

a common membership between two senators and a white pixel means different member-

ships for the two senators. The pgpEM algorithm was used with the model M0, with a

number of group equals to 2 and the Cattell’s threshold was set to 0.2. The clustering ac-

curacy between the obtained partition of the data and the democrat/republican partition

was 84.37% on this example. As one can observe, the pgpEM algorithm globally succeeds

in recovering the partition of the House of Representatives. It is also interesting to notice

that most of the congressmen which are not correctly classified are those who tend to vote

differently from the majority vote in their group. Finally, the pgpEM algorithm allows to

visualize the observed categorical data into the (quantitative) feature subspace of the two

groups. Figure 11 presents these visualizations. The observation of these two plots con-

firms the fact that republicans voted more homogeneously than democrats in 1984 since

there is no clear concentration of points on both plots for the democrats.

6.4 Classification of mixed data: the Thyroid dataset

In this final experiment, we consider the supervised classification of mixed data which is

more and more a frequent case. Indeed, it is usual to collect for the same individuals

both quantitative and categorical data. For instance, in Medicine, several quantitative

features can be measured for a patient (blood test results, blood pressure, morphological
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Figure 11: Visualization of the house-vote data in the feature subspace of the republican
(left) and the democrat (right) groups (red crosses denote republicans and blue circles
denote democrats).

characteristics, ...) and these data can be completed by answers of the patient on its general

health conditions (pregnancy, surgery, tabacco, ...). The Thyroid dataset considered here

is from the UCI repository and contains thyroid disease records supplied by the Garavan

Institute, Sydney, Australia. The dataset contains 665 records on male patients for which

the answers (true of false) on 14 questions have been collected as well as 6 blood test

results (quantitative measures). Among the 665 patients of the study, 61 suffer from a

thyroid disease.

To make pgpDA able to deal with such data, we built a combined kernel by mixing a

kernel based on the Hamming distance [8] (same kernel as in the previous section) for the

categorical features and a Gaussian kernel for the quantitative data. We chose to combine

both kernels simply as follows:

K(xj , xℓ) = αK1(xj , xℓ) + (1 − α)K2(xj , xℓ),

where K1 and K2 are the kernels computed respectively on the categorical and quantitative

features. Another solution would be to multiply both kernels. We refer to [25] for further

details on multiple kernel learning.

We selected the optimal set of kernel parameters by cross-validation on a learning part

of the data. The model for pgpDA was the model M0 with the Cattell’s threshold set to

0.2. The mixing parameter α for kernels was set to 0.5 in order not to favor any kernel but it

is expected an improvement of the results if this parameter is tuned too. Kernel parameters

have been tuned by cross-validation on a learning sample and the kernels associated to

these values are presented in Figure 12. The rows and columns of the matrices are sorted

according to the class memberships (healthy or sick) and the sick patients are the last

ones. We then compared the performance of pgpDA with the combined kernel to pgpDA
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Figure 12: Quantitative (left) and categorical (center) data kernels and the combined
kernel (right) for the Thyroid dataset (mixed data).

Method
pgpDA on

quantitative data
pgpDA on

categorical data
pgpDA with the
combined kernel

TP rate 74.86 96.00 75.88

FP rate 22.16 95.53 21.97

Table 5: Classification results on test sets for the Thyroid dataset (mixed data). Results
are averaged on 25 replications of the experiment.

with, on the one hand, a simple RBF kernel built only on the quantitative variables

of the dataset and, on the other hand, a Hamming kernel built only on the categorical

variables. Table 5 presents both the true positive (TP) and false positive (FP) rates

obtained on 25 replications of the classification experiment for pgpDA on quantitative data,

on categorical data and on the mixed data. It turns out that quantitative data contains

most of the important information to discriminate the patients with thyroid diseases and

that categorical data, when considered alone, are not enough to build an efficient classifier.

However, it appears that the use of the categorical features in combination with the

quantitative data allows to slightly improve the prediction of thyroid diseases (increases

the TP rate and decreases the FP rate). In particular, the reduction of the FP rate is

important here since it implies an important reduction of the number of false alarms.

7 Conclusion

This work has introduced a family of parsimonious Gaussian process models for the su-

pervised and unsupervised classification of quantitative and non-quantitative data. The

proposed parsimonious models are obtained by constraining the eigen-decomposition of

the Gaussian processes modeling each class. They allow in particular to use non-linear

mapping functions which project the observations into an infinite dimensional space and

to build, from a finite sample, a model-based classifier in this space. It has been also

demonstrated that the building of the classifier can be directly done from the observation

space through a kernel, avoiding the explicit knowledge of the mapping function. It has
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been possible to classify data of various nature including categorical data, functional data,

networks and even mixed data by combining different kernels. The methodology is as well

extended to the unsupervised classification case. Numerical experiments on benchmark

data sets have shown that pgpDA performs similarly or better compared to the best ker-

nel methods of the state of the art. The possibility to examine the model parameters

and to visualize the data into the class-specific feature subspaces permits a finer interpre-

tation of the results than with conventional discriminative kernel methods. Among the

possible extensions of this work, it would be interesting to extend the methodology to the

semi-supervised case in which only a few observations are labeled.

Appendix: Proofs

Proof of Proposition 1 Recalling that dmax = max(d1, ..., dk), the classification func-

tion can be rewritten as:

Di(ϕ(x)) =
r∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+
di∑

j=1

log(λij) +
dmax∑

j=di+1

log(λ) − 2 log(πi) + γ,

where γ is a constant term which does not depend on the index i of the class. In view of

the assumptions, Di(ϕ(x)) can be also rewritten as:

Di(ϕ(x)) =
di∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+
1

λ

r∑

j=di+1

< ϕ(x) − µi, qij >2
L2

+
di∑

j=1

log(λij) + (dmax − di) log(λ) − 2 log(πi) + γ,

and, introducing the norm ||.||L2
associated with the scalar product < ., . >L2

, we finally

obtain:

Di(ϕ(x)) =
di∑

j=1

(

1

λij

− 1

λ

)

< ϕ(x) − µi, qij >2
L2

+
1

λ
||ϕ(x) − µi||2L2

+
di∑

j=1

log(λij) + (dmax − di) log(λ) − 2 log(πi) + γ,

which is the desired result. �

Proof of Proposition 2 The proof involves three steps.

i) Computation of the projection < ϕ(x) − µ̂i, q̂ij >L2
: Since (λ̂ij , q̂ij) is solution of the
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Fredholm-type equation, it follows that, for all t ∈ [0, 1],

λ̂ij q̂ij(t) =

ˆ 1

0
Σ̂i(s, t)q̂ij(s)ds

=
1

ni

∑

xℓ∈Ci

< ϕ(xℓ) − µ̂i, q̂ij >L2
(ϕ(xℓ)(t) − µ̂i(t)). (9)

This implies that q̂ij lies in the linear subspace spanned by the (ϕ(xℓ) − µ̂i), xℓ ∈ Ci. As

a consequence, the rank of the operator Σ̂i is finite and is at most ri = min(ni, r). It

therefore exists βijℓ ∈ R such that:

q̂ij =
1

√

niλ̂ij

∑

xℓ∈Ci

βijℓ(ϕ(xℓ) − µ̂i) (10)

leading to:

< ϕ(x) − µ̂i, q̂ij >L2
=

1
√

niλ̂ij

∑

xℓ∈Ci

βijℓρi(x, xℓ), (11)

for all j = 1, . . . , ri. The estimated classification function has therefore the following form:

D̂i(ϕ(x)) =
1

ni

di∑

j=1

1

λ̂ij

(

1

λ̂ij

− 1

λ̂

)


∑

xℓ∈Ci

βijℓρi(x, xℓ)





2

+
1

λ̂
ρi(x, x)

+
di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i),

for all i = 1, . . . , k.

ii) Computation of the βijℓ and λ̂ij: Replacing (10) in the Fredholm-type equation (9) it

follows that

1

ni

∑

xℓ,xℓ′∈Ci

βijℓ′(ϕ(xℓ) − µ̂i)ρi(xℓ, xℓ′) = λ̂ij

∑

xℓ′∈Ci

βijℓ′(ϕ(xℓ′) − µ̂i).

Finally, projecting this equation on ϕ(xm) − µ̂i for xm ∈ Ci yields

1

ni

∑

xℓ,xℓ′∈Ci

βijℓ′ρi(xℓ, xm)ρi(xℓ, xℓ′) = λ̂ij

∑

xℓ′∈Ci

βijℓ′ρi(xm, xℓ′).

Recalling that Mi is the matrix ni ×ni defined by (Mi)ℓ,ℓ′ = ρi(xℓ, xℓ′)/ni and introducing

βij the vector of R
ni defined by (βij)ℓ = βijℓ, the above equation can be rewritten as

M2
i βij = λ̂ijMiβij or, after simplification Miβij = λ̂ijβij . As a consequence, λ̂ij is the jth

largest eigenvalue of Mi and βij is the associated eigenvector for all 1 ≤ j ≤ di. Let us

note that the constraint ‖q̂ij‖ = 1 can be rewritten as βt
ijβij = 1.
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iii) Computation of λ̂: Remarking that trace(Σ̂i) = trace(Mi) +
∑r

j=ri+1 λ̂ij , it follows:

λ̂ =
1

∑k
i=1 π̂i(ri − di)

k∑

i=1

π̂i



trace(Mi) −
di∑

j=1

λ̂ij



 ,

and the proposition is proved. �

Proof of Proposition 3 It is sufficient to prove that q̂ij and λ̂ij are respectively the

jth normed eigenvector and eigenvalue of Σ̂i. First,

Σ̂iq̂ij =
1

√

niλ̂ij

1

ni

∑

xℓ′∈Ci

(xℓ′ − µ̄i)(xℓ′ − µ̄i)
t
∑

xℓ∈Ci

βijℓ(xℓ − µ̄i)

=
1

√

niλ̂ij

1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(xℓ′ − µ̄i)(xℓ′ − µ̄i)
t(xℓ − µ̄i)

=
1

√

niλ̂ij

1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(xℓ′ − µ̄i)ρi(xℓ, xℓ′)

=
1

√

niλ̂ij

∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓ(xℓ′ − µ̄i)

=
1

√

niλ̂ij

B−1
∑

xℓ′∈Ci

(Miβij)ℓ′(xℓ′ − µ̄i),

and remarking that βij is eigenvector of Mi, it follows:

Σ̂iq̂ij = λ̂ij
1

√

niλ̂ij

B−1
∑

xℓ′∈Ci

βijℓ′(xℓ′ − µ̄i) = λ̂ij q̂ij.

Second, straightforward algebra shows that

||q̂ij||2 =
1

niλ̂ij

∑

xℓ∈Ci

βijℓ(xℓ) − µ̄i)
t
∑

xℓ′∈Ci

βijℓ′(xℓ′ − µ̄i)

=
1

niλ̂ij

∑

xℓ′ ,xℓ∈Ci

βijℓβijℓ′(xℓ − µ̄i)
t(xℓ′ − µ̄i)

=
1

λ̂ij

∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓβijℓ′

=
1

λ̂ij

q̂t
ijMiq̂ij = 1,

and the result is proved. �

Proof of Proposition 4 For all ℓ = 1, . . . , L, the ℓth coordinate of the mapping function

ϕ(x) is defined as the ℓth coordinate of the function x expressed in the truncated basis
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{b1, . . . , bL}. More specifically,

x(t) =
L∑

ℓ=1

ϕℓ(x)bℓ(t),

for all t ∈ [0, 1] and thus, for all j = 1, . . . , L, we have

γj(x) =

ˆ 1

0
x(t)bj(t)dt =

L∑

ℓ=1

ϕℓ(x)

ˆ 1

0
bj(t)bℓ(t)dt =

L∑

ℓ=1

Bjℓϕℓ(x).

As a consequence, ϕ(x) = B−1γ(x) and K(x, y) = γ(x)tB−1γ(y). Introducing

γ̄i =
1

ni

∑

xj∈Ci

γ(xj),

it follows that ρi(x, y) = (γ(x)−γ̄i)
tB−1(γ(y)−γ̄i). Let us first show that q̂ij is eigenvector

of B−1Σ̂i. Recalling that

q̂ij =
1

√

niλ̂ij

B−1
∑

xℓ∈Ci

βijℓ(γ(xℓ) − γ̄i),

we have

B−1Σ̂iq̂ij =
1

√

niλ̂ij

B−1 1

ni

∑

xℓ′∈Ci

(γ(xℓ′) − γ̄i)(γ(xℓ′) − γ̄i)
tB−1

∑

xℓ∈Ci

βijℓ(γ(xℓ) − γ̄i)

=
1

√

niλ̂ij

B−1 1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(γ(xℓ′) − γ̄i)(γ(xℓ′) − γ̄i)
tB−1(γ(xℓ) − γ̄i)

=
1

√

niλ̂ij

B−1 1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(γ(xℓ′) − γ̄i)ρi(xℓ, xℓ′)

=
1

√

niλ̂ij

B−1
∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓ(γ(xℓ′) − γ̄i)

=
1

√

niλ̂ij

B−1
∑

xℓ′∈Ci

(Miβij)ℓ′(γ(xℓ′) − γ̄i).

Remarking that βij is eigenvector of Mi, it follows:

B−1Σ̂iq̂ij = λ̂ij

1
√

niλ̂ij

B−1
∑

xℓ′∈Ci

βijℓ′(γ(xℓ′) − γ̄i) = λ̂ij q̂ij.
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Let us finally compute the norm of q̂ij:

||q̂ij ||2 =
1

niλ̂ij

∑

xℓ∈Ci

βijℓ(γ(xℓ) − γ̄i)
tB−1

∑

xℓ′∈Ci

βijℓ′(γ(xℓ′) − γ̄i)

=
1

niλ̂ij

∑

xℓ′ ,xℓ∈Ci

βijℓβijℓ′(γ(xℓ) − γ̄i)
tB−1(γ(xℓ′) − γ̄i)

=
1

λ̂ij

∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓβijℓ′

=
1

λ̂ij

q̂t
ijMiq̂ij = 1,

and the result is proved. �
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