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FRANCE

This work presents a family of parsimonious Gaussian process models which allow to

build, from a finite sample, a model-based classifier in an infinite dimensional space. The

proposed parsimonious models are obtained by constraining the eigen-decomposition of

the Gaussian processes modeling each class. This allows in particular to use non-linear

mapping functions which project the observations into infinite dimensional spaces. It is also

demonstrated that the building of the classifier can be directly done from the observation

space through a kernel function. The proposed classification method is thus able to classify

data of various types such as categorical data, functional data or networks. Furthermore,

it is possible to classify mixed data by combining different kernels. The methodology is as

well extended to the unsupervised classification case and an EM algorithm is derived for the

inference. Experimental results on various data sets demonstrate the effectiveness of the

proposed method. A Matlab toolbox implementing the proposed classification methods is

provided as supplementary material.

1 Introduction

Classification is an important and useful statistical tool in all scientific fields where decisions have

to be made. Depending on the availability of a learning data set, two main situations may happen:

supervised classification (also known as discriminant analysis) and unsupervised classification (also

known as clustering). Discriminant analysis aims to build a classifier (or a decision rule) able to assign

an observation x in an arbitrary space E with unknown class membership to one of k known classes

C1, ..., Ck. For building this supervised classifier, a learning dataset {(x1, z1), ..., (xn, zn)} is used,

where the observation xℓ ∈ E and zℓ ∈ {1, ..., k} indicates the class belonging of the observation xℓ.

In a slightly different context, clustering aims to directly partition an incomplete dataset {x1, ..., xn}
into k homogeneous groups without any other information, i.e., assign to each observation xℓ ∈ E

its group membership zℓ ∈ {1, ..., k}. Several intermediate situations exist, such as semi-supervised or

weakly-supervised classifications (Chapelle et al., 2006), but they will not be considered here.

Since the pioneer work of Fisher (Fisher, 1936), a huge number of supervised and unsupervised clas-

sification methods have been proposed in order to deal with different types of data. Indeed, there exist

a wide variety of data such as quantitative, categorical and binary data but also texts, functions, se-

quences, images and more recently networks. As a practical example, biologists are frequently interested
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in classifying biological sequences (DNA sequences, protein sequences), natural language expressions

(abstracts, gene mentioning), networks (gene interactions, gene co-expression), images (cell imaging,

tissue classification) or structured data (gene structures, patient information). The observation space

E can be therefore R
p if quantitative data are considered, L2([0, 1]) if functional data are considered

(time series for example) or Ap, where A is a finite alphabet, if the data at hand are categorical (DNA

sequences for example). Furthermore, the data to classify can be a mixture of different data types:

categorical and quantitative data or categorical and network data for instance.

Classification methods can be split into two main families: generative and discriminative techniques.

On the one hand, generative or model-based techniques model the data of each class with a probability

distribution and deduce the classification rule from this modeling. On the other hand, discriminative

techniques directly build the classification rule from the learning dataset. Among the discriminative

methods, kernel methods and Gaussian process classification are the most popular. Section 2 briefly

reviews these techniques.

In this work, we propose to adapt model-based methods for the classification of any kind of data by

working in a feature space of high or even infinite dimensional space. To this end, we propose a family

of parsimonious Gaussian process models which allow to build, from a finite sample, a model-based

classifier in a infinite dimensional space. It will be demonstrated that the building of the classifier

can be directly done from the observation space through the so-called “kernel trick”. The proposed

classification method will be thus able to classify data of various types (categorical data, mixed data,

functional data, networks, etc). The methodology is as well extended to the unsupervised classification

case (clustering).

The paper is organized as follows. Section 2 reviews generative and discriminative techniques for

classification. Section 3 then presents the context of our study and introduces the family of parsimonious

Gaussian process models. The inference aspects are addressed in Section 4. It is also demonstrated in

this section that the proposed method can work directly from the observation space through a kernel.

Section 5 is dedicated to some special cases and to the extension to the unsupervised framework through

the derivation of an EM algorithm. Experimental comparisons with state-of-the-art kernel methods are

presented in Section 6 as well as applications of the proposed methodologies to various types of data

including functional, categorical and mixed data. Some concluding remarks are given in Section 7 and

proofs are postponed to the appendix.

2 Related work

This section briefly reviews model-based and discriminative techniques for classification.

2.1 Model-based classification

Model-based discriminant analysis assumes that {x1, ..., xn} are independent realizations of a random

vector X on E and that the class conditional distribution of X is parametric, i.e. f(x|z = i) = fi(x; θi).

When E = R
p, among the possible parametric distributions for fi, the Gaussian distribution is often

preferred and, in this case, the marginal distribution of X is therefore a mixture of Gaussian distributions:

f(x) =

k∑

i=1

πiφ(x; µi, Σi),
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where φ is the Gaussian density, πi is the prior probability of the ith class, µi is the mean of the ith class

and Σi is its covariance matrix. The optimal decision rule is called the maximum a posteriori (MAP)

rule which assigns a new observation x to the class with the largest posterior probability. Introducing

the classification function Di(x) = log |Σi| + (x − µi)
tΣ−1

i (x − µi) − 2 log(πi), which can be rewritten

as:

Di(x) =

p
∑

j=1

1

λij

< x − µi, qij >2
Rp +

p
∑

j=1

log(λij) − 2 log(πi), (1)

where qij and λij are respectively the jth eigenvector and eigenvalue of Σi, it can be easily shown that

the MAP rule reduces to finding the label i ∈ {1, . . . , k} for which Di(x) is the smallest. Estimation

of model parameters is usually done by maximum likelihood. This method is known as the quadratic

discriminant analysis (QDA), and, under the additional assumption that Σi = Σ for all i ∈ {1, . . . , k},

it corresponds to the linear discriminant analysis (LDA). A detailed overview on this topic can be found

in (McLachlan, 1992). Recent extensions allowing to deal with high-dimensional data include (Bou-

veyron and Brunet, 2012; Bouveyron et al., 2007b,a; McLachlan et al., 2003; McNicholas and Murphy,

2008; Montanari and Viroli, 2010; Murphy et al., 2010) and an extensive review of those techniques is

given in (Bouveyron and Brunet-Saumard, 2013). Although model-based classification is usually enjoyed

for its multiple advantages, model-based discriminant analysis methods is mostly limited to quantitative

data. Some extensions exist to handle categorical data using multinomial (Celeux and Govaert, 1991) or

Dirichlet (Bouguila et al., 2003) distributions for instance. In addition, even in the case of quantitative

data, the Gaussian assumption may not be well-suited for the data at hand. Recent works focused on

different distributions such as the skew normal (Lin et al., 2007), asymmetric Laplace (Franczak et al.,

2014) or t-distributions (Andrews and McNicholas, 2012; Lee and McLachlan, 2013; Lin, 2010; Forbes

and Wraith, 2014).

2.2 Kernel methods for classification

Among discriminative classification methods, kernel methods (Hofmann et al., 2008) are probably the

most popular and overcome some of the shortcomings of generative techniques. Kernel methods are

non-parametric techniques and can be applied to any data for which a kernel function can be defined.

A kernel K : E × E → R is a positive definite function such as every evaluation can be written as

K(xi, xj) =< ϕ(xi), ϕ(xj) >H, with xi, xj ∈ E, ϕ a mapping function (called the feature map), H
a finite or infinite dimensional reproducing kernel Hilbert space (the feature space) and < ·, · >H the

dot product in H. An advantage of using kernels is the possibility of computing the dot product in

the feature space from the original input space without explicitly knowing ϕ (kernel trick) (Hofmann

et al., 2008). Turning conventional learning algorithms into kernel learning algorithms can be done if

the algorithms operate on the data only in terms of dot product. For instance, kernels can be defined on

strings (Shawe-Taylor and Cristianini, 2004; Cuturi and Vert, 2005), graphs (Smola and Kondor, 2003;

Mahé and Vert, 2009), trees (Schölkopf et al., 2004, Chap. 5) and vector-valued functions (Caponnetto

et al., 2008; Evgeniou et al., 2005; Kadri et al., 2012). Many conventional linear algorithms have

been turned to non-linear algorithms thanks to kernels (Scholkopf and Smola, 2001): KPCA (Schölkopf

et al., 1998), KFD (Mika et al., 1999), KGMM (Dundar and Landgrebe, 2004), mixture of Gamma

distributions (Murua and Wicker, 2014) and others. Let us however highlight that those kernel versions

often involve the inversion of a kernel matrix, i.e., a n × n matrix estimated with only n samples.

Usually, the kernel matrix is ill-conditioned and regularization is needed, while sometimes a simplified
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model is required too. Thus, it may limit the effectiveness of the kernel version. In addition, and

conversely to model-based techniques, classification results provided by kernel methods are difficult to

interpret which would be useful in many application domains.

2.3 Classification with Gaussian processes

A recent approach in discriminative classification is to make use of Gaussian processes (GP) in a Bayesian

view of logistic regression. In this context, Gaussian processes are used as prior distribution for the re-

gression function which links the predictive variable (Z) to the descriptive vector (X). The conditional

distribution of Z is then given through the relation logit (p(Z = 1|X = x)) = f (x) where the prior

distribution on the regression function f is f ∼ GP (0, Σ) with Σ a given covariance function. In the

regression context, the inference is usually tractable since the Gaussian process prior is combined with a

Gaussian likelihood. Unfortunately, in the classification case, the discrete nature of the predictive vari-

able makes the exact inference infeasible. To overcome this difficulty, several approximation techniques

have been proposed lately, such as the Laplace approximation (Kuss and Rasmussen, 2005) or through

the expectation-propagation algorithm (Minka, 2001). Let us notice that the latter approximation is

usually more accurate in term of classification performance than the former in practical situations (Ras-

mussen and Williams, 2006b). Furthermore, a limiting point of Gaussian process classification is, once

again, the need to numerically invert a n × n covariance matrix. Thus, the inference of a Gaussian

process predictor, even in a feasible case, is computationally demanding (O(n3) where n is the number

of learning observations). We refer to (Rasmussen and Williams, 2006b, Chapter 3) for an extensive

overview of Bayesian classification with Gaussian processes.

3 Classification with parsimonious Gaussian process models

In this section, we first define the context of our approach and exhibit the associated computational

problems. Then, a parsimonious parameterization of Gaussian processes is proposed in order to overcome

the highlighted computational issues. Before to move forward and in order to avoid any misunderstand-

ing, we would like to emphasize that we do not consider in this work Gaussian processes in a Bayesian

regression framework. In our approach, the Gaussian processes are used as conditional distributions of

a latent process and not as prior distributions for Bayesian logistic regression.

3.1 Classification with Gaussian processes

Let us consider a learning set {(x1, z1), ..., (xn, zn)} where {x1, ..., xn} ⊂ E are assumed to be indepen-

dent realizations of a, possibly non-quantitative and non-Gaussian, random variable X. The class labels

{z1, ..., zn} are assumed to be realizations of a discrete random variable Z ∈ {1, ..., k}. It indicates the

memberships of the learning data to the k classes denoted by C1, . . . , Ck, i.e., zℓ = i indicates that xℓ

belongs to Ci.

Let us assume that there exists a non-linear mapping ϕ such that the latent process Y = ϕ(X) is,

conditionally on Z = i, a Gaussian process on J ⊂ R with mean µi and continuous covariance function

Σi. Hence, the use of the transformation ϕ allows to embed a possible non-quantitative vector into

a quantitative space, as in kernel methods. More specifically, one has µi(t) = E(Y (t)|Z = i) and

Σi(s, t) = E(Y (s)Y (t)|Z = i) − µi(t)µi(s). It is then well-known (Shorack and Wellner, 1986) that,

for all i = 1, . . . , k, there exist positive eigenvalues (sorted in decreasing order) {λij}j≥1, together with

4



eigenvector functions {qij(.)}j≥1 continuous on J , such that

Σi(s, t) =

∞∑

j=1

λijqij(s)qij(t),

where the series is uniformly convergent on J ×J . Moreover, the eigenvector functions are orthonormal

in L2(J) for the dot product < f, g >L2
=
´

J
f(t)g(t)dt. It is then easily seen, that, for all r ≥ 1 and

i ∈ {1, . . . , k}, the random vector on R
r defined by {< Y, qij >L2

}j=1,...,r is, conditionally on Z = i,

Gaussian with mean {< µi, qij >}j=1,...,r and covariance matrix diag(λi1, . . . , λir). To classify a new

observation x, we therefore propose to apply the Gaussian classification function (1) to ϕ(x):

Di(ϕ(x)) =

r∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+

r∑

j=1

log(λij) − 2 log(πi).

From a theoretical point of view, if the Gaussian process is non degenerated, one should use r = +∞.

In practice, r has to be large in order not to loose to much information on the Gaussian process.

Unfortunately, in this case, the above quantities cannot be estimated from a finite sample set. Indeed,

only a part of the classification function can be actually computed from a finite sample set:

Di(ϕ(x)) =

ri∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+

ri∑

j=1

log(λij) − 2 log(πi)

︸ ︷︷ ︸

computable quantity

+

r∑

j=ri+1

1

λij

< ϕ(x) − µi, qij >2
L2

+

r∑

j=ri+1

log(λij)

︸ ︷︷ ︸

non computable quantity

,

where ri = min(ni, r) and ni = Card (Ci) is the cardinality of the ith class. Consequently, the Gaussian

model cannot be used directly in the feature space to classify data if r > ni for i = 1, ..., k.

3.2 A parsimonious Gaussian process model

To overcome the computation problem highlighted above, it is proposed here to use in the feature space

a parsimonious model for the Gaussian process modeling each class. Following the idea of (Bouveyron

et al., 2007a), we constrain the eigen-decomposition of the Gaussian processes as follows.

Definition 1. A parsimonious Gaussian process (pgp) model is a Gaussian process Y for which, con-

ditionally to Z = i, the eigen-decomposition of its covariance operator Σi is such that:

(A1) it exists a dimension r < +∞ such that λij = 0 for j ≥ r and for all i = 1, ..., k,

(A2) it exists a dimension di < min (r, ni) such that λij = λ for di < j < r and for all i = 1, ..., k.

It is worth noticing that r can be as large as it is desired, as long it is finite, and in particular r

can be much larger than ni, for any i = 1, ..., k. From a practical point of view, this modeling can be

viewed as assuming that the data of each class live in a specific subspace of the feature space. The

variance of the actual data of the ith group is modeled by the parameters λi1, ..., λidi
and the variance

of the noise is modeled by λ. This assumption amounts to supposing that the noise is homoscedastic

and its variance is common to all the classes. The dimension di can be also considered as the intrinsic

dimension of the latent subspace of the ith group in the feature space. This model is referred to as
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Model
Variance inside
the subspace Fi

Variance
outside Fi

Subspace
orientation Qi

Intrinsic
dimension di

M0 Free Common Free Free

M1 Free Common Free Common

M2 Common within groups Common Free Free

M3 Common within groups Common Free Common

M4 Common between groups Common Free Common

M5 Common within and between groups Common Free Free

M6 Common within and between groups Common Free Common

M7 Common between groups Common Common Common

M8 Common within and between groups Common Common Common

Table 1: Submodels of the parsimonious Gaussian process model (referred to as M0 here).

pgpM0 (or M0 for short) hereafter. With these assumptions, we have the following result (proof is

provided in the appendix).

Proposition 1. Letting dmax = max(d1, ..., dk), the classification function Di can be written as follows

in the case of a parsimonious Gaussian process model pgpM0:

Di(ϕ(x)) =

di∑

j=1

(
1

λij

− 1

λ

)

< ϕ(x) − µi, qij >2
L2

+
1

λ
||ϕ(x) − µi||2L2

+

di∑

j=1

log(λij) + (dmax − di) log(λ) − 2 log(πi) + γ, (2)

where γ is a constant term which does not depend on the index i of the class.

At this point, it is important to notice that the classification function Di depends only on the

eigenvectors associated with the di largest eigenvalues of Σi. This estimation is now possible due to

the inequality di < ni for i = 1, ..., k. Furthermore, the computation of the classification function does

not depend any more on the parameter r. As shown in Section 4, it is possible to reformulate the

classification function such that it does not depend either on the mapping function ϕ.

3.3 Submodels of the parsimonious model

By fixing some parameters to be common within or between classes, it is possible to obtain particular

models which correspond to different regularizations. Table 1 presents the 8 additional models which

can be obtained by constraining the parameters of model M0. For instance, fixing the dimensions di

to be common between the classes yields the model M1. Similarly, fixing the first di eigenvalues to be

common within each class, we obtain the more restricted model M2. It is also possible to constrain

the first di eigenvalues to be common between the classes (models M4 and M7), and within and

between the classes (models M5, M6 and M8). This family of 9 parsimonious models should allow

the proposed classification method to fit into various situations.

4 Model inference and classification with a kernel

This section focuses on the inference of the parsimonious models proposed above and on the classi-

fication of new observations through a kernel. Model inference is only presented for the model M0
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since inference for the other parsimonious models is similar. Estimation of intrinsic dimensions and

visualization in the feature subspaces are also discussed.

4.1 Estimation of model parameters

In the model-based classification context, parameters are usually estimated by their empirical counter-

parts (McLachlan, 1992) which leads, in the present case, to estimate the proportions πi by π̂i = ni/n

and the mean function µi by µ̂i(t) =
1

ni

∑

xj∈Ci

ϕ(xj)(t), where ni is the number of observations in the

ith class. Regarding the covariance operator, the eigenvalue λij and the eigenvector qij are respectively

estimated by the jth largest eigenvalue λ̂ij and its associated eigenvector function q̂ij of the empirical

covariance operator Σ̂i:

Σ̂i(s, t) =
1

ni

∑

xℓ∈Ci

ϕ(xℓ)(s)ϕ(xℓ)(t) − µ̂i(s)µ̂i(t).

Finally, the estimator of λ is:

λ̂ =
1

∑k
i=1 π̂i (r − di)

k∑

i=1

π̂i



trace(Σ̂i) −
di∑

j=1

λ̂ij



 . (3)

Using the plug-in method, the estimated classification function D̂i can be written as follows:

D̂i(ϕ(x)) =

di∑

j=1

(

1

λ̂ij

− 1

λ̂

)

< ϕ(x) − µ̂i, q̂ij >2
L2

+
1

λ̂
||ϕ(x) − µ̂i||2L2

+

di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i). (4)

However, as we can see, the estimated classification function D̂i still depends on the function ϕ and

therefore requires computations in the feature space. However, since all these computations involve dot

products, it will be shown in Proposition 2 that the estimated classification function can be computed

without explicit knowledge of ϕ through a kernel function.

4.2 Estimation of the classification function through a kernel

Kernel methods are all based on the so-called “kernel trick” which allows the computation of the classifier

in the observation space through a kernel K. Let us therefore introduce the kernel K : E × E → R

defined as K(x, y) =< ϕ(x), ϕ(y) >L2
and ρi : E × E → R defined as ρi(x, y) =< ϕ(x) − µi, ϕ(y) −

µi >L2
. In the following, it is shown that the classification function Di only involves ρi which can be

computed using K:

ρi(x, y) =
1

n2
i

∑

xℓ,xℓ′ ∈Ci

< ϕ(x) − ϕ(xℓ), ϕ(y) − ϕ(xℓ′) >L2
(5)

= K(x, y) − 1

ni

∑

xℓ∈Ci

(K(xℓ, y) + K(x, xℓ)) +
1

n2
i

∑

xℓ,xℓ′ ∈Ci

K(xℓ, xℓ′). (6)
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Kernels K(x, y) ri

Linear < x, y >L2
min(ni, p)

RBF exp

(

− ‖x−y‖2

L2

2σ2

)

ni

Polynomial (< x, y >L2
+1)

q
min

(

ni,
(

p+q
p

))

Table 2: Dimension ri for several classical kernels.

For each class Ci, let us introduce the ni × ni symmetric matrix Mi defined by:

(Mi)ℓ,ℓ′ =
ρi(xℓ, xℓ′)

ni

.

With these notations, we have the following result (proof is postponed to the appendix).

Proposition 2. For i = 1, . . . , k, the estimated classification function can be computed, in the case of

the model M0, as follows:

D̂i(ϕ(x)) =
1

ni

di∑

j=1

1

λ̂ij

(

1

λ̂ij

− 1

λ̂

)(
∑

xℓ∈Ci

βijℓρi(x, xℓ)

)2

+
1

λ̂
ρi(x, x)

+

di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i),

where, for j = 1, . . . , di, βij is the normed eigenvector associated to the jth largest eigenvalue λ̂ij of

Mi and λ̂ = 1/
∑k

i=1 π̂i(ri − di) ×∑k
i=1 π̂i

(

trace(Mi) −∑di

j=1 λ̂ij

)

.

It thus appears that each new sample point x can be assigned to the class Ci with the smallest

value of the classification function without knowledge of ϕ. Moreover, this operation only requires

the estimation of the di largest eigenvalues and eigenvectors of Mi. In practice, this computation is

achieved thanks to the implicitly restarted Arnoldi method (IRAM) (Lehoucq and Sorensen, 1996) which

is proved to be a stable procedure. The methodology based on Proposition 2 is referred to as pgpDA

in the sequel. In practice, the value of ri depends on the chosen kernel (see Table 2 for examples).

4.3 Intrinsic dimension estimation

The estimation of the intrinsic dimension of a dataset is a difficult problem which occurs frequently in

data analysis, such as in principal component analysis. A classical solution in PCA is to look for a break

in the eigenvalue scree of the covariance matrix. This strategy relies on the fact that the jth eigenvalue

of the covariance matrix corresponds to the fraction of the full variance carried by the jth eigenvector

of this matrix. Since, in our case, the class conditional matrix Mi shares with the empirical covariance

operator of the associated class its largest eigenvalues, we propose to use a similar strategy based on

the eigenvalue scree of the matrices Mi to estimate di, i = 1, ..., k. More precisely, we propose to make

use of the scree-test of Cattell (Cattell, 1966) for estimating the class specific dimension di, i = 1, ..., k.

For each class, the selected dimension is the one for which the subsequent eigenvalues differences are

smaller than a threshold which can be tuned by cross-validation for instance.
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4.4 Visualization in the feature subspaces

An interesting advantage of the approach is to allow the visualization of the data in subspaces of the

feature space. Indeed, even though the chosen mapping function is associated with a space of very

high or infinite dimension, the proposed methodology models and classifies the data in low-dimensional

subspaces of the feature space. It is therefore possible to visualize the projection of the mapped data

on the feature subspaces of each class using Equation (10) of the appendix. The projection of ϕ(x) on

the jth axis of the class Ci is therefore given by:

Pij(ϕ(x)) :=< ϕ(x) − µ̂i, q̂ij >=
1

√

niλ̂ij

∑

xℓ∈Ci

βijℓρi(x, xℓ).

Thus, even if the observations are non quantitative, it is possible to visualize their projections in the

feature subspaces of the classes which are quantitative spaces. Notice that the obtained visualizations

of the data are of course dependent on the chosen kernel, such as in kernel PCA for instance.

5 Links with existing works and extension to clustering

The methodology proposed in Section 4 is made very general by the large choice for the mapping

function ϕ(x). We focus in this section on two specific choices for ϕ(x) for which the direct calculation

of the classification rule is possible. We also exhibit the links with related methodologies. Finally, an

extension to unsupervised classification is considered through the use of an EM algorithm.

5.1 The case of the linear kernel for quantitative data

In the case of quantitative data, E = R
p and one can choose ϕ(x) = x associated to the standard

scalar product which gives rise to the linear kernel K(x, y) = xty. In such a framework, the estimated

classification function can be simplified as follows (proof is provided in the appendix):

Proposition 3. If E = R
p and K(x, y) = xty then, for i = 1, . . . , k, the estimated classification

function reduces to

D̂i(x) =

di∑

j=1

(

1

λ̂ij

− 1

λ̂

)

(
q̂t

ij(x − µ̂i)
)2

+
1

λ̂
||x − µ̂i||2Rp

+

di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i).

where µ̂i is the empirical mean of the class Ci, q̂ij is the eigenvector of the empirical covariance matrix

Σ̂i associated to the jth largest eigenvalue λ̂ij and λ̂ is given by (3).

It appears that the estimated classification function reduces to the one of the high-dimensional

discriminant analysis (HDDA) method (Bouveyron et al., 2007a) with the model [aijbQid] which has

constraints similar to M0. Therefore, the methodology proposed in this work partially encompasses the

method HDDA. Let us however highlight that the proposed methodology is not just a kernelized version

of HDDA. One can remark that it is clearly not obvious to obtain Proposition 2 from Proposition 3.

Indeed, substituting dot products by kernels in the classification function of the latter proposition does

not yield the classification function of Proposition 2.
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5.2 The case of functional data

Let us consider now functional data observed in E = L2([0, 1]). Let (bj)j≥1 be a basis of L2([0, 1])

and F = R
L where L is a given integer. For all ℓ = 1, . . . , L, the projection of a function x on the jth

basis function is computed as

γj(x) =

ˆ 1

0

x(t)bj(t)dt

and γ(x) := (γj(x))j=1,...,L. Let B the L × L Gram matrix associated to the basis:

Bjℓ =

ˆ 1

0

bj(t)bℓ(t)dt,

and consider the associated scalar product defined by < u, v >= utBv for all u, v ∈ R
L. One can then

choose ϕ(x) = B−1γ(x) and K(x, y) = γ(x)tB−1γ(y) leading to a simple estimated classification

function.

Proposition 4. Let E = L2([0, 1]) and K(x, y) = γ(x)tB−1γ(y). Introduce, for i = 1, . . . , k, the

L × L covariance matrix of the γ(xj) when xj ∈ Ci:

Σ̂i =
1

ni

∑

xℓ∈Ci

(γ(xℓ) − γ̄i)(γ(xℓ) − γ̄i)
t where γ̄i =

1

ni

∑

xj∈Ci

γ(xj)

Then, for i = 1, . . . , k, the estimated classification function reduces to

D̂i(ϕ(x)) =

di∑

j=1

(

1

λ̂ij

− 1

λ̂

)

(
q̂t

ij(γ(x) − γ̄i)
)2

+
1

λ̂
(γ(x) − γ̄i)

tB−1(γ(x) − γ̄i)

+

di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i),

where q̂ij and λ̂ij are respectively the jth normed eigenvector and eigenvalue of the matrix B−1Σ̂i and

λ̂ is given by (3).

Proof of the above result is provided in the appendix. Remark that B−1Σ̂i coincides with the matrix of

interest in functional PCA (Ramsay and Silverman, 2005, Chap. 8.4) and that, if the basis is orthogonal,

then B is the identity matrix. Notice that the proposed method therefore encompasses as well the model

proposed in (Bouveyron and Jacques, 2011) for the clustering of functional data.

5.3 Links with existing works

In addition to the links with existing methods exhibited above, it is also possible to establish some links

with other generative techniques proposed in the literature. Kernelized versions of Gaussian mixture

models were introduced in the unsupervised (Wang et al., 2003) and supervised (Xu et al., 2009)

classification contexts. These methods do not estimate the smallest eigenvalues of the kernel matrix

from the data but use instead a constant threshold. Furthermore, they numerically regularize the

estimated covariance matrices before to invert them. (Mika et al., 1999) have also proposed kernel

Fisher discriminant (KFDA) as a non-linear version of FDA which only relies on kernel evaluations.

KFDA shares as well the objectives of pgpDA but assumes a common covariance matrix for all classes

and uses a ridge regularization for the inversion of this covariance matrix. Recently, pseudo-inverse and
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ridge regularization have been proposed to define a kernel quadratic classifier where classes have their

own covariance matrices (Pekalska and Haasdonk, 2009). Similarly, a common covariance assumption

has been proposed in (Dundar and Landgrebe, 2004) for the construction of a LDA classifier in the kernel

feature space. Yet, small eigenvalues are thresholded in the computations. Finally, in the unsupervised

context, kernel k-means (Shawe-Taylor and Cristianini, 2004) can be also viewed as using a constraint

version of our pgp models. Indeed, it uses model M8 with di = d = r and πi = π = 1/K (all

mixture parameters are common). To summarize, all kernel methods have to face the inversion of

a kernel matrix (denoted by Mi in our framework) which is ill-conditioned or singular. The above

mentioned techniques to overcome this problem include eigenvalues thresholding, shape constraints

on the matrices, shrinkage methods (such as ridge regularization) and arbitrary combinations of these

three methods. Here, our approach relies on the two assumptions (A1) and (A2) which benefit from

clear interpretations, see Section 3.2. Moreover, no additional regularization has to be made, since the

model parameters can be estimated in a stable way, see Section 4.1. Finally, the possible visualization

of the data in subspaces of the feature space (Section 4.4) and the ability to deal with both supervised

and non-supervised frameworks are additional arguments in favor of our approach.

5.4 Extension to unsupervised classification

In model-based classification, the unsupervised and supervised cases mainly differ in the manner to

estimate the parameters of the model. The clustering task aims to form k homogeneous groups from a

set of n observations {x1, ..., xn} without any prior information about their group memberships. Since

the labels are not available, it is not possible in this case to directly estimate the model parameters. In

such a context, the expectation-maximization (EM) algorithm (Dempster et al., 1977) allows to both

estimate the model parameters and predict the class memberships of the observations at hand. In the

case of the parsimonious model M0 introduced above, the EM algorithm takes the following form:

The E step This first step reduces, at iteration s, to the computation of t
(s)
ij = E(Zj = i|xj , θ(s−1)),

for j = 1, . . . , n and i = 1, . . . , k, conditionally on the current value of the model parameter θ(s−1).

We have the following proposition (proof is postponed to the appendix):

Proposition 5. The conditional expectations t
(s)
ij = E(Zj = i|xj , θ(s−1)) are given by:

t
(s)
ij = 1/

k∑

ℓ=1

exp
(

D
(s−1)
i (ϕ(xj)) − D

(s−1)
ℓ (ϕ(xj))

)

, (7)

where

D
(s−1)
i (ϕ(x)) =

1

n
(s−1)
i

di∑

j=1

1

λ̂
(s−1)
ij

(

1

λ̂
(s−1)
ij

− 1

λ̂(s−1)

)(
n∑

ℓ=1

βijℓ

√
tiℓρ

(s−1)
i (x, xℓ)

)2

+
1

λ̂(q−1)
ρ

(s−1)
i (x, x) +

di∑

j=1

log(λ̂
(s−1)
ij ) + (dmax − di) log(λ̂(s−1)) − 2 log(π̂

(s−1)
i ).

is the Gaussian classification function associated with the model parameters estimated in the M step

at iteration s − 1 and n
(s−1)
i =

∑n
j=1 t

(s−1)
ij .

The M step This second step estimates the model parameters conditionally on the posterior prob-

abilities t
(q)
ij computed in the previous step. In practice, this step reduces to update the estimate of
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model parameters according to the following formula:

• mixture proportions are estimated by π̂
(q)
i = n

(q)
i /n where n

(q)
i =

∑n
j=1 t

(q)
ij ,

• parameters λij , λ, βij and di are estimated at iteration q using the formula given in Proposition 2

but where the matrix Mi is now a n × n matrix, recomputed at each iteration q, and such that,

for i = 1, ..., k and ℓ, ℓ′ = 1, ..., n:

(

M
(q)
i

)

ℓ,ℓ′

=

√

t
(q)
iℓ t

(q)
iℓ′

n
(q)
i

ρ
(q)
i (xℓ, xℓ′)

where ρ
(q)
i (xℓ, xℓ′) can be computed through the kernel K as follows:

ρ
(q)
i (xℓ, xℓ′) =K(xℓ, xℓ′) − 1

n
(q)
i

n∑

j=1

t
(q)
ji (K(xj , xℓ) + K(xℓ′ , xj))

+
1

(n
(q)
i )2

n∑

j,j′=1

t
(q)
ji t

(q)
j′i K(xj , xj′).

The associated clustering algorithm, denoted by pgpEM in the following, provides at convergence an

estimation of the set of parameters maximizing the pseudo-likelihood associated with the parsimonious

Gaussian model used. Model selection can be done using likelihood penalized criteria which add to the

log-likelihood a penalty depending on the complexity of the model. Classical criteria for model selection

include the AIC (Akaike, 1974), BIC (Schwarz, 1978) and ICL (Biernacki et al., 2001) criteria. The

Bayesian Information Criterion (BIC) is certainly the most popular and consists in selecting the model

which penalizes the likelihood by γ(M)
2 log(n) where γ(M) is the number of parameters in model M

and n is the number of observations. On the other hand, the AIC criterion penalizes the log-likelihood

by γ(M) whereas the ICL criterion add the penalty
∑n

i=1

∑K
k=1 tik log(tik) to the one of the BIC

criterion in order to favor well separated models. The value of γ(M) is of course specific to the model

selected by the practitioner.

6 Numerical experiments

In this section, numerical experiments and comparisons are conducted on simulated and real-world data

sets to highlight the main features of pgpDA and pgpEM.

6.1 Simulation study: influence of d and n

A two-class non linear classification problem is first considered, see Figure 1, in order to study the

influence of both the intrinsic dimension d and the size n of the data on pgpDA. The data have been

simulated in R
2 according to:

X|Z=1 =
(

− 1 + τ + η, 2 − τ2

2
+ η
)

,

X|Z=2 =
(

1 + τ + η, −2 +
τ2

2
+ η
)

,

where τ ∼ U [−4, 4] and η ∼ N (0, 0.25). The first class is depicted by circles on Figure 1 whereas

crosses correspond to observations of the second class. For all the experiments, the radial basis function
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Figure 1: Decision boundaries for the simulated classification problem are depicted in color: (a) models
M0, M1 and M2, (b) models M3, M4 and M5, (c) models M6, M7 and M8, (d) QDA,
LDA and HDDA.

(RBF) kernel was used and the kernel hyper-parameter was set to σ = 0.5. For models M0, M2 and

M5, the scree test threshold was fixed to 0.05. We remind that the Cattell scree test selects, for each

class, the dimension for which the subsequent eigenvalues differences are smaller than a threshold. The

decision boundaries for each pgpDA models are depicted in Figure 1. From panels (a)-(d), it appears

that all the pgpDA models perform a non linear classification of the samples. For this toy data set,

except M7 and M8, all the models perform similarly and the decision boundaries are very satisfying.

As anyone could expect, conventional model-based classification methods (LDA, QDA, HDDA) are not

be able to separate correctly those non linear data.

Let us first focus on the influence of the intrinsic dimensions on the pgpDA classifier. For the sake of

simplicity, model M1 is considered in this experiment since it assumes a common intrinsic dimension,

let us say d, for all classes. The influence of this intrinsic dimension d on the decision boundaries for

model M1 is illustrated in Figure 2. For this experiment, we vary the intrinsic dimension value between

1 and 80. On the one hand, the parameter d seems, at least for this toy data set, not to have a

strong influence since the decision boundaries are similar whatever the value of d. This behavior can be

explained by the fact that all dimensions of the feature space are taken into considerations even though

only the most informative are modeled precisely. On the other hand, it can be seen that when d is set

to a low value, the decision boundary is slightly smoother than when it is set to a high value. Hence,

we recommend the use of low values of d in practical situations in order to prevent over-fitting.

Table 3 shows the computing time for learning the pgpDA classifier according to the size of the

learning set. Computing times for kernel Fisher discriminant analysis (KFD), support vector machines
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Figure 2: Simulated classification problem: Influence of the intrinsic dimension for the model M1. In
blue d = 1, in red d = 5, in black d = 10, in magenta d = 20, in yellow d = 40 and in green
d = 80.

Learning set size

Method 200 500 1000 1500 3000

pgpDA M0 0.015 ± 0.01 0.102 ± 0.01 0.473 ± 0.06 1.340 ± 0.03 12.19 ± 0.45
pgpDA M1 0.012 ± 0.01 0.099 ± 0.01 0.469 ± 0.06 1.336 ± 0.03 12.17 ± 0.52
pgpDA M2 0.013 ± 0.01 0.098 ± 0.01 0.464 ± 0.06 1.340 ± 0.03 12.31 ± 0.51
pgpDA M3 0.013 ± 0.01 0.098± 0.01 0.463 ± 0.06 1.332 ± 0.03 12.27 ± 0.58
pgpDA M4 0.012 ± 0.01 0.097 ± 0.01 0.470 ± 0.05 1.345 ± 0.05 12.15 ± 0.36
pgpDA M5 0.013 ± 0.01 0.098 ± 0.01 0.477 ± 0.06 1.347 ± 0.04 12.14 ± 0.33
pgpDA M6 0.012 ± 0.01 0.098 ± 0.01 0.479 ± 0.06 1.339 ± 0.05 12.19 ± 0.44

pgpDA M7 0.050 ± 0.01 0.344 ± 0.01 3.031 ± 0.13 9.453 ± 0.72 68.99 ± 2.37
pgpDA M8 0.045 ± 0.01 0.340 ± 0.01 3.034 ± 0.13 9.398 ± 0.39 69.58 ± 3.05

KFDA 0.005 ± 0.01 0.056 ± 0.01 0.344 ± 0.06 0.828 ± 0.02 5.26 ± 0.25
SVM 0.037 ± 0.01 0.128 ± 0.13 0.758 ± 0.09 1.904 ± 0.20 11.99 ± 1.03
GPML 0.282 ± 0.02 4.951 ± 0.65 54.38 ± 3.43 167.36 ± 13.17 1582.2 ± 128.75

Table 3: Average computing time (in seconds, ± standard deviation) over 30 replications for learning
the classifiers KFDA, SVM, GPML and pgpDA according to the size of the learning set.
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Dataset n p n/p k hr
Iris 150 4 37.5 3 0.5

Glass 214 9 23.7 6 0.25
Wine 178 13 13.7 3 0.5

Ionosphere 351 34 10.3 2 0.5
Sonar 208 60 3.5 2 0.5

USPS 358 2248 256 8.8 3 0.5
Vowel 990 10 99 10 0.5
Letter 15000 16 937.5 26 0.1
Protein 17766 357 49.8 3 0.05

Satimage 4435 36 123.2 6 0.25
Vehicle 846 18 47 4 0.5

Table 4: Data used in the experiments. n is the number of samples, p is the number of features, k is
the number of classes and hr is the hold-out ratio used in the experiments.

(SVM, with the SVM-KM toolbox, (Canu et al., 2005)) and Gaussian process classification (GPML

toolbox, (Rasmussen and Williams, 2006a)) are also provided for comparison. Notice that all codes

used in this experiment are written in Matlab in order to obtain a fair comparison. One can first

observe that pgpDA has a similar computing time as SVM. One can also remark that pgpDA has

a comparable computing time as KFDA (though the latter is slightly faster), which is unsurprising

since both methods are somehow related (see Section 5.3). Let us notice that models M7 and M8 of

pgpDA are significantly more time consuming than the other models because their parameters (variances

inside and outside the subspace, subspace orientation and intrinsic dimensions) are common between

groups. As a consequence, the estimation of parameters for those models can not be done for each

class independently and requires to work on a unique n × n matrix instead of several ni × ni matrices.

Finally, the GPML implementation of Gaussian process classification turns out to be dramatically more

time consuming than pgpDA, KFDA and SVM. This difference in computing times is certainly explained

by the need to use the iterative expectation-propagation algorithm for inferring the GP model whereas

the inference is direct for KFDA and pgpDA.

6.2 Benchmark study on quantitative data

We focus here on the comparison of pgpDA with state-of-the-art methods. To that end, two kernel

generative classifiers are considered, kernel Fisher discriminant analysis (KFD) (Mika et al., 1999) and

kernel LDA (KLDA) (Dundar and Landgrebe, 2004), and one kernel discriminative classifier, support

vector machine (SVM) (Scholkopf and Smola, 2001). The RBF kernel is used once again in the

experiments for all methods, including pgpDA. Since real-world problems are considered, all the hyper-

parameters of the classifiers have been tuned using 5-fold cross-validation.

Eleven data sets from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/) have

been selected: glass, ionosphere, iris, sonar, USPS, wine, vowel, letter, protein, satimage and vehicle.

We chose these data sets because they represent a wide range of situations in term of number of

observations n, number of variables p and number of groups k. The USPS dataset has been modified

to focus on discriminating the three most difficult classes to classify, namely the classes of the digits 3,

5 and 8. This dataset has been called USPS 358. The main feature of the data sets are described in

Table 4.

Each data set was randomly split into training and testing sets in the hold-out ratio hr given in Table 4.

The data were scaled between -1 and 1 on each variable. The search range for the cross-validation was
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Figure 3: Choice of the number k of groups with the BIC criterion for the Canadian temperature data
set.

for the kernel hyperparameter σ ∈ [−4, 4], for the common intrinsic dimension d ∈ [1, 20], for the scree

test threshold τ ∈ [10−7, 1], for the regularization parameter in KFD and KLDA λ ∈ [10−13, 10−6]

and for the penalty parameter of the SVM γ ∈ [25, 29]. Notice that pgpDA has only one additional

parameter to tune compared to other kernel methods: either τ for models with free dimensions or d

for models with common dimensions. The global classification accuracy was computed on the testing

set and the reported results have been averaged over 50 replications of the whole process. The average

classification accuracies and the standard deviations are given in Table 5.

Regarding the competitive methods, KFD and SVM provide often better results than KLDA. The

model used in KLDA only fits “ionosphere”, ”iris” and “wine” data, for which classification accuracies

are similar to or better than those obtain with KFD and SVM. For the parsimonious pgpDA models,

the classification accuracies are globally good. The results of models M7 and M8 are not presented

here since they perform very poorly and we do not recommend their use. Model M1 provides the

best result in terms of average correct classification rates. In particular, for the “USPS 358”, “wine”

and “satimage” data sets, it provides the best overall accuracy. Let us remark that pgpDA performs

significantly better than SVM (for the RBF kernel) on high-dimensional data (USPS 358).

In conclusion of these experiments, by relying on parsimonious models rather than regularization,

pgpDA provides good classification accuracies and it is robust to the situation where few samples are

available in regards to the number of variables in the original space. In practice, models M1 and M4

should be recommended: intrinsic dimension is common between the classes and the variance inside

the class intrinsic subspace is either free or common. Conversely, models M7 and M8 must be avoided

since they appeared to be too constrained to handle real classification situations.

6.3 Clustering of functional data: the Canadian temperatures

We now focus on illustrating the possible range of application of the proposed methodologies to different

types of data. We consider here the clustering of functional data with pgpEM for which the mapping

function ϕ is explicit (see Section 5.2). The Canadian temperature data used in this study, presented

in details in (Ramsay and Silverman, 2005), consist in the daily measured temperatures at 35 Canadian
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Method Iris Glass Wine Ionosphere Sonar USPS 358 Vowel Letter Protein Satimage Vehicle Mean (rank)
pgpDA M0 95.9± 2.1 64.9 ± 6.3 96.8 ± 1.7 90.5 ± 2.3 77.9 ± .9 92.2 ± 1.0 95.2 ± 1.6 86.5 ± 0.6 54.8 ± 1.3 89.4 ± 0.5 78.3 ± 2.7 83.85 (4)
pgpDA M1 95.2± 2.1 62.6 ± 12.5 96.7 ± 2.3 93.7 ± 1.6 81.8 ± 4.9 96.6 ± 0.4 95.2 ± 1.6 85.4 ± 0.8 57.6 ± 0.9 89.4 ± 0.5 79.9 ± 1.9 84.92 (1)
pgpDA M2 94.4± 6.2 64.4 ± 6.7 96.8 ± 1.8 91.0 ± 2.8 71.6 ± 13.4 95.4 ± 0.8 91.2 ± 1.6 79.0 ± 0.7 54.6 ± 1.0 66.3 ± 2.5 66.8 ± 2.7 79.23 (8)
pgpDA M3 95.8± 2.3 64.3 ± 6.8 96.9 ± 2.0 93.2 ± 2.1 79.3 ± 4.9 96.2 ± 0.5 92.2 ± 1.5 78.7 ± 1.1 57.2 ± 1.0 77.6 ± 2.0 68.4 ± 2.3 81.80 (5)
pgpDA M4 94.4± 2.2 65.3 ± 6.4 97.2 ± 1.8 93.4 ± 2.0 81.6 ± 4.5 96.3 ± 0.7 95.0 ± 1.5 84.8 ± 0.7 58.2 ± 1.3 87.8 ± 0.9 72.8 ± 1.9 84.25 (3)
pgpDA M5 94.2± 7.1 59.8 ± 10.9 96.4 ± 2.0 92.0 ± 1.8 72.5 ± 12.6 96.0 ± 0.5 92.0 ± 1.5 79.0 ± 0.9 48.5 ± 1.9 63.4 ± 3.1 66.0 ± 2.9 78.16 (10)
pgpDA M6 94.8± 2.1 65.2 ± 5.6 97.2 ± 1.8 92.5 ± 2.1 79.8 ± 4.9 96.1 ± 0.5 92.4 ± 1.8 79.2 ± 1.0 56.3 ± 1.3 75.6 ± 2.3 66.9 ± 2.5 81.45 (6)
KFD 93.4± 3.7 47.3 ± 10.1 95.9 ± 2.3 94.1 ± 1.7 82.9 ± 3.1 93.6 ± 0.5 95.1 ± 1.3 83.6 ± 0.9 53.5 ± 3.8 86.1 ± 0.7 66.4 ± 12 81.08 (7)
KLDA 96.6± 2.3 64.5 ± 6.3 96.6 ± 1.7 88.1 ± 2.3 68.9±18.1 64.7 ± 37.5 92.4 ± 1.4 85.2 ± 0.9 41.5 ± 10.4 86.1 ± 0.7 82.1 ± 1.4 78.79 (9)
SVM 95.7± 2.0 69.1 ± 5.5 96.8 ± 1.4 92.8 ± 1.8 84.8 ± 4.0 77.6 ± 5.4 96.2 ± 1.5 87.0 ± 0.5 60.7 ± 0.9 88.5 ± 0.5 82.7 ± 1.5 84.72 (2)

Table 5: Classification results on real-world datasets: reported values are average correct classification rates and standard deviation computed on validation sets.
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Figure 4: Clustering of the 35 times series of the Canadian temperature data set into 4 groups with
pgpEM. The colors indicate the group memberships: group 1 in black, group 2 in red, group
3 in green and group 4 in blue.

weather stations across the country. The pgpEM algorithm was applied here with the model M0, which

is the most general parsimonious Gaussian process model proposed in this work. The mapping function

ϕ consists in the projection of the observed curves on a basis of 20 natural cubic splines. Once the

pgpEM algorithm has converged, various informations are available and some of them are of particular

interest. Group means, intrinsic dimensions of the group-specific subspaces and functional principal

components of each group could in particular help the practitioner in understanding the clustering of

the dataset at hand. Since pgpEM is a generative clustering technique, it is possible to choose the most

appropriate model for the data at hand using model selection criteria, such as BIC (Schwarz, 1978) or

ICL (Biernacki et al., 2001). The number of groups has been chosen here with the BIC criterion which

picks k = 4 (see Figure 3). Figure 4 presents the clustering of the temperature data set into 4 groups

with pgpEM.

It is first interesting to have a look at the name of the weather stations gathered in the different

groups formed by pgpEM. It appears that group 1 (black solid curves) is mostly made of continental

stations, group 2 (red dashed curves) mostly gathers the stations of the North of Canada, group 3

(green dotted curves) mostly contains the stations of the Atlantic coast whereas the Pacific stations are

mostly gathered in group 4 (blue dot-dashed curves). For instance, group 3 contains stations such as

Halifax (Nova Scotia) and St Johns (Newfoundland) whereas group 4 has stations such as Vancouver

and Victoria (both in British Columbia). Figure 5 provides a map of the weather stations where the

colors indicate their group membership. This figure shows that the obtained clustering with pgpEM is

very satisfying and rather coherent with the actual geographical positions of the stations (the clustering

accuracy is 71% here compared with the geographical classification provided by (Ramsay and Silverman,

2005)). We recall that the geographical positions of the stations have not been used by pgpEM to

provide the partition into 4 groups.
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Figure 5: Geographical positions of the weather stations according to their group belonging. The colors
indicate the group memberships: group 1 in black, group 2 in red, group 3 in green and group
4 in blue.

An important characteristic of the groups, but not necessarily easy to visualize, is the specific func-

tional subspace of each group. A classical way to observe principal component functions is to plot the

group mean function µ̂i(t) as well as the functions µ̂i(t) ± 2
√

λ̂ij q̂ij(t) (see (Ramsay and Silverman,

2005) for more details). Figure 6 shows such a plot for the 4 groups of weather stations formed by

pgpEM. The center and right panels show the cluster mean as well as the back-projections of the

perturbed mean along the two first eigenfunctions (+ and - curves). For instance, the + curve of the

center panel of 1st row is the back-projection of the curve µ̂1(t) + 2
√

λ̂11q̂11(t). It first appears on

the first functional principal component of each group that there is more variance between the weather

stations in winter than in summer. In particular, the first principal component of group 4 (blue curves,

mostly Pacific stations) reveals a specific phenomenon which occurs at the beginning and the end of

the winter. Indeed, we can observe a high variance in the temperatures of the Pacific coast stations

at these periods of time which can be explained by the presence of mountain stations in this group.

The analysis of the second principal components reveals finer phenomena. For instance, the second

principal component of group 1 (black curves, mostly continental stations) shows a slight shift between

the + and − along the year which indicates a time-shift effect. This may mean that some cities of this

group have their seasons shifted, e.g. late entry and exit in the winter. Similarly, the inversion of the

+ and − on the second principal component of the Pacific and Atlantic groups (blue and green curves)

suggests that, for these groups, the coldest cities in winter are also the warmest cities in summer. On

the second principal component of group 2 (red curves, mostly Arctic stations), the fact that the +

and − curves are almost superimposed shows that the North stations have very similar temperature

variations (different temperature means but same amplitude) along the year.
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(a) Group 1 (mostly continental stations)
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(b) Group 2 (mostly Arctic stations)
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(c) Group 3 (mostly Atlantic stations)
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(d) Group 4 (mostly Pacific stations)

Figure 6: The group means of the Canadian temperature data obtained with pgpEM (left panel) and
the effect of adding (+) or subtracting (−) twice the square root of the variance to the cluster
means along the two first eigenfunctions (center and right panels, see text for details).
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Figure 7: Votes (yea, nay or unknown) for each of the U.S. House of Representatives congressmen on
16 key votes in 1984. Yeas are in indicated in white, nays in gray and missing values in black.
The first 168 congressmen are republicans whereas the 267 last ones are democrats.

6.4 Clustering of categorical data: the house-vote dataset

We focus now on categorical data which are also very frequent in scientific fields. We consider here

the task of clustering (unsupervised classification) and therefore the pgpEM algorithm. To evaluate

the ability of pgpEM to classify categorical data, we used the U.S. House Votes data set from the

UCI repository and compare its performance with kernel k-means (Girolami, 2002; Shawe-Taylor and

Cristianini, 2004). This data set is a record of the votes (yea, nay or unknown) for each of the U.S.

House of Representatives congressmen on 16 key votes in 1984. These data were recorded during

the third and fourth years of Ronald Reagan’s Presidency. At this time, the republicans controlled

the Senate, while the democrats controlled the House of Representatives. Figure 7 shows the database

where yeas are in indicated in white, nays in gray and missing values in black. The first 168 congressmen

are republicans whereas the 267 last ones are democrats. As we can see, the considered votes are very

discriminative since republicans and democrats vote differently in almost all cases while most of the

congressmen follow the majority vote in their group. We can however notice that a significant part

(around 50 congressmen) of the democrats tend to vote differently from the other democrats.

To cluster this dataset, we first build a kernel from the categorical observations (16 qualitative

variables with 3 possible values: yea, nay or unknown). We chose a kernel, proposed in (Couto, 2005),

based on the Hamming distance which measures the minimum number of substitutions required to

change one observation into another one. Naturally, pgpEM and kernel k-means worked on the same

kernel to have a fair comparison and with a number of group equals to 2. The pgpEM algorithm was

used with the model M0 and the Cattell’s threshold set to 0.2 (cf. Section 4.3). Figure 8 presents

the clustering result obtained with kernel k-means (left) and pgpEM (right). The clustering results are

presented through a binary matrix where a black pixel indicates a common membership between two

congressmen and a white pixel means different memberships for the two congressmen. The clustering

accuracy between the obtained partition of the data and the democrat/republican partition was 88.97%

for pgpEM and 87.59% for kernel k-means on this example. As one can observe, both algorithms globally

succeed in recovering the partition of the House of Representatives. It is also interesting to notice that

most of the congressmen which are not correctly classified are those who tend to vote differently from

the majority vote in their group. Nevertheless, pgpEM correctly classifies 6 congressmen more than
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(a) Kernel k-means (87.59% of accuracy) (b) pgpEM (88.97% of accuracy)

Figure 8: Clustering results of the house-vote dataset obtained with kernel k-means (left) and pgpEM
(right). The clustering results are presented through a binary matrix where a black pixel
indicates a common membership between two congressmen. Again, the first 168 congressmen
are republicans whereas the 267 last ones are democrats. On this run, pgpEM correctly
classifies 6 congressmen more than kernel k-means.

kernel k-means on this run. To confirm the apparent good behavior of pgpEM, the experiment was

replicated. Figure 9 presents boxplots of the clustering accuracies for kernel k-means and pgpEM over

25 replications. It turns out that pgpEM is significantly better than kernel k-means to cluster this kind

of data.

6.5 Classification of mixed data: the Thyroid dataset

In this final experiment, we consider the supervised classification of mixed data which is more and more

a frequent case. Indeed, it is usual to collect for the same individuals both quantitative and categorical

data. For instance, in Medicine, several quantitative features can be measured for a patient (blood

test results, blood pressure, morphological characteristics, ...) and these data can be completed by

answers of the patient on its general health conditions (pregnancy, surgery, tabacco, ...). The Thyroid

dataset considered here is from the UCI repository and contains thyroid disease records supplied by the

Garavan Institute, Sydney, Australia. The dataset contains 665 records on male patients for which the

answers (true of false) on 14 questions have been collected as well as 6 blood test results (quantitative

measures). Among the 665 patients of the study, 61 suffer from a thyroid disease.

To make pgpDA able to deal with such data, we built a combined kernel by mixing a kernel based on

the Hamming distance (Couto, 2005) for the categorical features and a RBF kernel for the quantitative

data. We chose to combine both kernels simply as follows:

K(xj , xℓ) = αK1(xj , xℓ) + (1 − α)K2(xj , xℓ),

where K1 and K2 are the kernels computed respectively on the categorical and quantitative features.

Another solution would be to multiply both kernels. We refer to (Gönen and Alpaydin, 2011) for further

details on multiple kernel learning.

The model for pgpDA was the model M0 with the Cattell’s threshold set to 0.2 (cf. Section 4.3).

On each replication of the experiment, the data set was randomly split into a learning set of 599

observations and a test set of 66 observations. We selected the optimal set of kernel parameters by
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Figure 9: Boxplots of the clustering accuracies for kernel k-means (left) and pgpEM (right) over 25
replications on the house-vote dataset.
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Figure 10: Choice of the mixing parameter α through cross-validation based on true positive rate (TPR)
and false positive rate (FPR) curves.
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Figure 11: Quantitative (left) and categorical (center) data kernels and the combined kernel (right) for
the Thyroid dataset (mixed data).
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Method
pgpDA on

quantitative data
pgpDA on

categorical data
pgpDA with the
combined kernel

TP rate 74.86 96.00 75.88
FP rate 22.16 95.53 21.97

Table 6: Classification results on test sets for the Thyroid dataset (mixed data). Results are averaged
on 25 replications of the experiment.

cross-validation on the learning part of the data. The average chosen parameter for the Hamming

kernel was ξ = 0.5 (K1 = exp(−D2)/ξ2 where D is the Hamming distance matrix), the RBF kernel

parameter was σ = 15 and the retained value for the mixing parameter α was 0.3. Figure 10 shows

the choice of α and the kernels associated to the chosen values are presented in Figure 11. The rows

and columns of the matrices are sorted according to the class memberships (healthy or sick) and the

sick patients are the last ones. We then compared the performance of pgpDA with the combined kernel

to pgpDA with, on the one hand, a simple RBF kernel built only on the quantitative variables of the

dataset and, on the other hand, a Hamming kernel built only on the categorical variables. Table 6

presents both the true positive (TP) and false positive (FP) rates obtained on 25 replications of the

classification experiment for pgpDA on quantitative data, on categorical data and on the mixed data.

It turns out that quantitative data contains most of the important information to discriminate the

patients with thyroid diseases and that categorical data, when considered alone, are not enough to

build an efficient classifier. However, it appears that the use of the categorical features in combination

with the quantitative data allows to slightly improve the prediction of thyroid diseases (increases the

TP rate and decreases the FP rate).

7 Conclusion

This work has introduced a family of parsimonious Gaussian process models for the supervised and un-

supervised classification of quantitative and non-quantitative data. The proposed parsimonious models

are obtained by constraining the eigen-decomposition of the Gaussian processes modeling each class.

They allow in particular to use non-linear mapping functions which project the observations into an

infinite dimensional space and to build, from a finite sample, a model-based classifier in this space. It

has been also demonstrated that the building of the classifier can be directly done from the observation

space through a kernel, avoiding the explicit knowledge of the mapping function. It has been possible

to classify data of various nature including categorical data, functional data, networks and even mixed

data. The methodology is as well extended to the unsupervised classification case. Numerical experi-

ments on benchmark data sets have shown that pgpDA performs similarly or better compared to the

best kernel methods of the state of the art. The possibility to examine the model parameters and to

visualize the data into the class-specific feature subspaces permits a finer interpretation of the results

than with conventional discriminative kernel methods. Among the possible extensions of this work, it

would be interesting to extend the methodology to the semi-supervised classification case or to the

classification with uncertain labels (Bouveyron and Girard, 2009).
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Appendix: Proofs

Proof of Proposition 1 Recalling that dmax = max(d1, ..., dk), the classification function can be

rewritten as:

Di(ϕ(x)) =

r∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+

di∑

j=1

log(λij) +

dmax∑

j=di+1

log(λ) − 2 log(πi) + γ,

where γ = (r − dmax) log(λ) is a constant term which does not depend on the index i of the class. In

view of the assumptions, Di(ϕ(x)) can be also rewritten as:

Di(ϕ(x)) =

di∑

j=1

1

λij

< ϕ(x) − µi, qij >2
L2

+
1

λ

r∑

j=di+1

< ϕ(x) − µi, qij >2
L2

+

di∑

j=1

log(λij) + (dmax − di) log(λ) − 2 log(πi) + γ.

Introducing the norm ||.||L2
associated with the scalar product < ., . >L2

and in view of Proposition 1

of (Shorack and Wellner, 1986, p. 208), we finally obtain:

Di(ϕ(x)) =

di∑

j=1

(
1

λij

− 1

λ

)

< ϕ(x) − µi, qij >2
L2

+
1

λ
||ϕ(x) − µi||2L2

+

di∑

j=1

log(λij) + (dmax − di) log(λ) − 2 log(πi) + γ,

which is the desired result. �

Proof of Proposition 2 The proof involves three steps.

i) Computation of the projection < ϕ(x)− µ̂i, q̂ij >L2
: Since (λ̂ij , q̂ij) is solution of the Fredholm-type

equation, it follows that, for all t ∈ J ,

λ̂ij q̂ij(t) =

ˆ

J

Σ̂i(s, t)q̂ij(s)ds

=
1

ni

∑

xℓ∈Ci

< ϕ(xℓ) − µ̂i, q̂ij >L2
(ϕ(xℓ)(t) − µ̂i(t)). (8)

This implies that q̂ij lies in the linear subspace spanned by the (ϕ(xℓ)−µ̂i), xℓ ∈ Ci. As a consequence,

the rank of the operator Σ̂i is finite and is at most ri = min(ni, r). It therefore exists βijℓ ∈ R such

that:

q̂ij =
1

√

niλ̂ij

∑

xℓ∈Ci

βijℓ(ϕ(xℓ) − µ̂i) (9)

leading to:

< ϕ(x) − µ̂i, q̂ij >L2
=

1
√

niλ̂ij

∑

xℓ∈Ci

βijℓρi(x, xℓ), (10)
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for all j = 1, . . . , ri. The estimated classification function has therefore the following form:

D̂i(ϕ(x)) =
1

ni

di∑

j=1

1

λ̂ij

(

1

λ̂ij

− 1

λ̂

)(
∑

xℓ∈Ci

βijℓρi(x, xℓ)

)2

+
1

λ̂
ρi(x, x)

+

di∑

j=1

log(λ̂ij) + (dmax − di) log(λ̂) − 2 log(π̂i),

for all i = 1, . . . , k.

ii) Computation of the βijℓ and λ̂ij : Replacing (9) in the Fredholm-type equation (8) it follows that

1

ni

∑

xℓ,xℓ′ ∈Ci

βijℓ′(ϕ(xℓ) − µ̂i)ρi(xℓ, xℓ′) = λ̂ij

∑

xℓ′ ∈Ci

βijℓ′(ϕ(xℓ′) − µ̂i).

Finally, projecting this equation on ϕ(xm) − µ̂i for xm ∈ Ci yields

1

ni

∑

xℓ,xℓ′ ∈Ci

βijℓ′ρi(xℓ, xm)ρi(xℓ, xℓ′) = λ̂ij

∑

xℓ′ ∈Ci

βijℓ′ρi(xm, xℓ′).

Recalling that Mi is the matrix ni × ni defined by (Mi)ℓ,ℓ′ = ρi(xℓ, xℓ′)/ni and introducing βij the

vector of R
ni defined by (βij)ℓ = βijℓ, the above equation can be rewritten as M2

i βij = λ̂ijMiβij

or, after simplification Miβij = λ̂ijβij . As a consequence, λ̂ij is the jth largest eigenvalue of Mi and

βij is the associated eigenvector for all 1 ≤ j ≤ di. Let us note that the constraint ‖q̂ij‖ = 1 can be

rewritten as βt
ijβij = 1.

iii) Computation of λ̂: Remarking that trace(Σ̂i) = trace(Mi) +
∑r

j=ri+1 λ̂ij , it follows:

λ̂ =
1

∑k
i=1 π̂i(ri − di)

k∑

i=1

π̂i



trace(Mi) −
di∑

j=1

λ̂ij



 ,

and the proposition is proved. �

Proof of Proposition 3 It is sufficient to prove that q̂ij and λ̂ij are respectively the jth normed

eigenvector and eigenvalue of Σ̂i. First,

Σ̂iq̂ij =
1

√

niλ̂ij

1

ni

∑

xℓ′ ∈Ci

(xℓ′ − µ̄i)(xℓ′ − µ̄i)
t
∑

xℓ∈Ci

βijℓ(xℓ − µ̄i)

=
1

√

niλ̂ij

1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(xℓ′ − µ̄i)(xℓ′ − µ̄i)
t(xℓ − µ̄i)

=
1

√

niλ̂ij

1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(xℓ′ − µ̄i)ρi(xℓ, xℓ′)

=
1

√

niλ̂ij

∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓ(xℓ′ − µ̄i)

=
1

√

niλ̂ij

B−1
∑

xℓ′ ∈Ci

(Miβij)ℓ′(xℓ′ − µ̄i),
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and remarking that βij is eigenvector of Mi, it follows:

Σ̂iq̂ij = λ̂ij

1
√

niλ̂ij

B−1
∑

xℓ′ ∈Ci

βijℓ′(xℓ′ − µ̄i) = λ̂ij q̂ij .

Second, straightforward algebra shows that

||q̂ij ||2 =
1

niλ̂ij

∑

xℓ∈Ci

βijℓ(xℓ) − µ̄i)
t
∑

xℓ′ ∈Ci

βijℓ′(xℓ′ − µ̄i)

=
1

niλ̂ij

∑

xℓ′ ,xℓ∈Ci

βijℓβijℓ′(xℓ − µ̄i)
t(xℓ′ − µ̄i)

=
1

λ̂ij

∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓβijℓ′

=
1

λ̂ij

q̂t
ijMiq̂ij = 1,

and the result is proved. �

Proof of Proposition 4 For all ℓ = 1, . . . , L, the ℓth coordinate of the mapping function ϕ(x) is

defined as the ℓth coordinate of the function x expressed in the truncated basis {b1, . . . , bL}. More

specifically,

x(t) =

L∑

ℓ=1

ϕℓ(x)bℓ(t),

for all t ∈ [0, 1] and thus, for all j = 1, . . . , L, we have

γj(x) =

ˆ 1

0

x(t)bj(t)dt =

L∑

ℓ=1

ϕℓ(x)

ˆ 1

0

bj(t)bℓ(t)dt =

L∑

ℓ=1

Bjℓϕℓ(x).

As a consequence, ϕ(x) = B−1γ(x) and K(x, y) = γ(x)tB−1γ(y). Introducing

γ̄i =
1

ni

∑

xj∈Ci

γ(xj),

it follows that ρi(x, y) = (γ(x) − γ̄i)
tB−1(γ(y) − γ̄i). Let us first show that q̂ij is eigenvector of

B−1Σ̂i. Recalling that

q̂ij =
1

√

niλ̂ij

B−1
∑

xℓ∈Ci

βijℓ(γ(xℓ) − γ̄i),
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we have

B−1Σ̂iq̂ij =
1

√

niλ̂ij

B−1 1

ni

∑

xℓ′ ∈Ci

(γ(xℓ′) − γ̄i)(γ(xℓ′) − γ̄i)
tB−1

∑

xℓ∈Ci

βijℓ(γ(xℓ) − γ̄i)

=
1

√

niλ̂ij

B−1 1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(γ(xℓ′) − γ̄i)(γ(xℓ′) − γ̄i)
tB−1(γ(xℓ) − γ̄i)

=
1

√

niλ̂ij

B−1 1

ni

∑

xℓ′ ,xℓ∈Ci

βijℓ(γ(xℓ′) − γ̄i)ρi(xℓ, xℓ′)

=
1

√

niλ̂ij

B−1
∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓ(γ(xℓ′) − γ̄i)

=
1

√

niλ̂ij

B−1
∑

xℓ′ ∈Ci

(Miβij)ℓ′(γ(xℓ′) − γ̄i).

Remarking that βij is eigenvector of Mi, it follows:

B−1Σ̂iq̂ij = λ̂ij

1
√

niλ̂ij

B−1
∑

xℓ′ ∈Ci

βijℓ′(γ(xℓ′) − γ̄i) = λ̂ij q̂ij .

Let us finally compute the norm of q̂ij :

||q̂ij ||2 =
1

niλ̂ij

∑

xℓ∈Ci

βijℓ(γ(xℓ) − γ̄i)
tB−1

∑

xℓ′ ∈Ci

βijℓ′(γ(xℓ′) − γ̄i)

=
1

niλ̂ij

∑

xℓ′ ,xℓ∈Ci

βijℓβijℓ′(γ(xℓ) − γ̄i)
tB−1(γ(xℓ′) − γ̄i)

=
1

λ̂ij

∑

xℓ′ ,xℓ∈Ci

(Mi)ℓ,ℓ′βijℓβijℓ′

=
1

λ̂ij

q̂t
ijMiq̂ij = 1,

and the result is proved. �

Proof of Proposition 5 Let us first set the estimate of µiat iteration s to its empirical counterpart

conditionally on the current value of the model parameter θ(s−1):

µ̂
(s)
i (t) =

1

n
(s)
i

n∑

j=1

t
(s−1)
ij ϕ(xj)(t),

where n
(s−1)
i =

∑n
j=1 t

(s−1)
ij . Replacing µ̂i by µ̂

(s)
i in the proof of Proposition 2 , we get:

q̂ij =
1

√

niλ̂ij

∑

xℓ∈Ci

βijℓ

√
tℓi(ϕ(xℓ) − µ̂i). (11)
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According to Bayes’ rule and Equation (1), the computation of t
(s)
ij = E(Zj = i|xj , θ(s−1)) conditionally

on the current value of the model parameter θ(s−1) can be finally written as:

t
(s)
ij = E(Zj = i|xj , θ(s−1)) = P (Zj = i|xj , θ(s−1)) =

exp
(

− 1
2 D

(s−1)
i (ϕ(xj))

)

∑k
ℓ=1 exp

(

− 1
2 D

(s−1)
ℓ (ϕ(xj))

) ,

for j = 1, . . . , n and i = 1, . . . , k. The result follows. �
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