
HAL Id: hal-00687301
https://hal.science/hal-00687301

Submitted on 12 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-consistent aspects of x-ray absorption calculations
Oana Bunau, Yves Joly

To cite this version:
Oana Bunau, Yves Joly. Self-consistent aspects of x-ray absorption calculations. Journal of Physics:
Condensed Matter, 2009, 21, pp.345501. �10.1088/0953-8984/21/34/345501�. �hal-00687301�

https://hal.science/hal-00687301
https://hal.archives-ouvertes.fr


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 345501 (11pp) doi:10.1088/0953-8984/21/34/345501

Self-consistent aspects of x-ray absorption
calculations
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Abstract
We implemented a self-consistent, real-space x-ray absorption calculation within the FDMNES
code. We performed the self-consistency within several schemes and identified which one is the
most appropriate. We show a method that allows a rigorous setting of the Fermi level and thus
an estimation of the energy cutoff for the identification and elimination of the occupied states.
We investigated what are the structures where one can afford performing the self-consistent
calculation at a lesser cluster radius than the absorption one. We exemplify the effects of the
self-consistency at the K-edge and for several reference cases, including the copper Cu and the
rutile TiO2. We verified the robustness of our procedure on the transitional 3d and 4d elements.
Although amelioration can be noticed, the self-consistency performed at the K-edge does not
bring a major improvement of the calculated spectra. Taking into consideration a
non-self-consistent, non-spherical potential gives better results than a self-consistent muffin-tin
approximation calculation.

1. Introduction

X-ray near-edge absorption (XANES), as well as the related
spectroscopies such as RXS (resonant x-ray scattering) and
XMCD (x-ray magnetic circular dichroism), are powerful
means of probing the electronic structure around the absorbing
atom. In the near-edge region one is very sensitive to the
surroundings of the absorbing atom. This makes absorption
spectroscopies a very useful tool to investigate geometric and
electronic structure.

There is a great need for codes which are able to reproduce
the near-edge structure within a reasonable calculation time.
Providing a satisfactory description of such complex electronic
scattering phenomena is a theoretical challenge and numerous
attempts have been reported.

They can be classified into two major categories. The first
one is multielectronic but monoatomic, based on the multiplet
theory [1]. They give a parametrized description of the
localized electronic states which provides satisfactory results,
but cannot describe correctly the delocalized ones. The second
category is formed by the multiatomic but monoelectronic
codes [2–8] which give a correct description of the extended
states but fail to account for the highly correlated ones, where
the interaction with the core hole is strong (e.g. the calculation
of the L2 and L3 edges of the 3d elements). This is due

to the relatively long timescale associated with the localized
level, as compared to the core hole lifetime. Another aspect
ill-described by a monoelectronic calculation is the offset
of the absorption spectra. We note that there are attempts
to perform multiatomic and multielectronic x-ray absorption
calculations, based on the time-dependent density functional
theory [5, 9], Bethe–Salpeter equation [5, 9] or on the multi-
channel methods [10]. Nevertheless these approaches are still
in their early phase and require further investigation.

The most difficult part in obtaining the absorption
spectra (1) is the calculation of the final states. As far
as multiatomic, monoelectronic calculations are concerned,
one can do this either in the real space [2–5] or in the
reciprocal one [6–8]. Both approaches give good results and
are completely equivalent, provided that the cluster used for
the real-space calculations and the supercell in the reciprocal-
space calculations (introduced because of the breaking of
periodicity due to the core hole) are large enough. In
this context, performing a monoelectronic calculation means
that one uses a DFT-like potential which accounts for some
correlation effects.

The band structure calculations are generally self-
consistent. This is usually not the case for the real-
space calculations, with the notable exception of the FEFF
code [11, 12]. The issue of self-consistency in the real-space
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calculations has not been concluded upon and needs further
analysis. The purpose of this paper is to describe and to analyse
the self-consistent aspects of the calculations performed with
the FDMNES code [2] and compare the result with the non-
self-consistent calculations.

The outline of this paper is as follows. To begin with we
show some basic equations of the absorption spectroscopies.
In section 2 we introduce the calculation code. In section 3 we
focus on some specific points of the multiple scattering theory
(MST) that are essential for our calculation. In section 4 we
detail the implementation of our self-consistent scheme. In the
following two sections we show our results and conclude upon
the self-consistency issue at the K-edge.

1.1. Equations of XANES and RXS

Absorption and resonant diffraction’s main featured quantities
are the cross section σ(ω) and the structure factor F(Q, ω),
both normalized with respect to the unit cell:

σ(ω) = 4π2αh̄ω
∑

j

∑

f,g

|〈ψf|Ô|ψ( j)
g 〉|2δ(h̄ω − (E − E ( j)

g ))

(1)
F(Q, ω) ∝

∑

j

eiQ·Rj ( f0 j + f ′
j (ω)+ i f ′′

j (ω)) (2)

with [13]

f ∗
j (ω)

= me

h̄2

∑

f,g

(E − E ( j)
g )2〈�( j)

g |Ô∗
out|�f〉〈�f|Ôin|�( j)

g 〉
h̄ω − (E − E ( j)

g )+ i
2	f(E)

. (3)

Here α is the fine structure constant, me the electron mass, h̄ω
the photon energy, δ(E) the electronic density of states, EF the
Fermi energy, and Eg and E are the energies of the ground state

�
( j)
g and photo-excited state�f, respectively. X-ray absorption

requires a core, localized level as a ground state; thus we
introduced the index j describing the atom. The summation
over j adds the contributions of all the atoms in the unit cell.
The final state �f is an unoccupied state of the continuum; we
omit its j index. Q is the diffraction vector and Rj is the
position vector of atom j in the unit cell. 	f is the sum of
the inverse of the final state and the core hole lifetimes, and
thus depends on the chemical type of the absorber. The atomic
structure factors intervening in (2) are, respectively, the off-
resonant, nearly isotropic, energy-independent Thompson term
f0 j and the complex resonant contribution f ′

j (ω) + i f ′′
j (ω).

We agree to use a sign convention in (3) such that f ′(ω) <
0 and f ′′(ω) > 0. For the diffraction part, as we deal
with a scattering process, we need to distinguish between the
incoming photon field operator Ôin and the outgoing one Ôout.

The electron–photon interaction is described classically
by means of the field operator Ô. In the x-ray regime, the
magnetic part of the electromagnetic field can be neglected and
the remaining electric part is satisfactorily described by the first
two terms of the multipolar expansion, corresponding to the
excitations of the electric dipole and of the electric quadrupole:

Ô = ε · r

(
1 + i

2
k · r

)
(4)

where r is the position from the absorbing ion, ε the
polarization of the photon and k its wavevector.

2. The FDMNES code

The FDMNES (standing for finite difference method near-
edge structure) package is an ab initio, free and open source,
parallelled under MPI, code which calculates the XANES,
RXS and XMCD spectra. Because of their anisotropy,
absorption spectroscopies are convenient to be described with
a tensorial algebra. FDMNES allows a full analysis of both
Cartesian and spherical tensors.

FDMNES is a real-space, symmetrized code. Whether we
deal with a molecule or a periodic system, FDMNES builds a
cluster around the absorbing atom. The cluster’s radius needs
to be large enough in order to achieve convergence with respect
to the accuracy of the calculation of the final states.

2.1. The procedure

In this paragraph we will detail the steps of the calculation.
We start by performing a self-consistent atomic calculation
in order to get the initial level �g for the absorber and the
atomic densities for the atoms in the cluster. To calculate
the absorption signal, we assume an excited electronic
configuration for the absorbing atom, i.e. we place the
core electron on the first available unoccupied level. We
superpose the atomic densities to get the charge density of
the cluster and we solve the Poisson equation to get the
Coulomb potential. We improve this potential by considering
an energy-dependent exchange–correlation correction that one
can choose among the Perdew and Wang [14] and the real
Hedin–Lundquist [15, 16] potentials. Once the potential has
been constructed we solve the Schrödinger-like equation (SE)
to get the final states �f(r) (or some related quantities). Next
we calculate the matrix elements featured by equations (1)
and (3). Finally we perform the sum over the states in (1)
and (3) and the convolution.

2.2. The Schrödinger-like equation

FDMNES features two ways of calculating �f(r): the finite
differences method (FDM) and the multiple scattering theory
(MST), within the limits of the muffin-tin approximation
(MT). The latter assumes a crystal potential that has spherical
symmetry around the atoms (the so-called muffin-tin spheres)
and is constant in the remaining space. A radial SE is solved
within each sphere. The former uses the full potential and
consists in constructing a space grid and discretizing the SE
on the points of this grid. FDM does not introduce any
approximation on the form of the potential and thus provides
a more accurate but more time-consuming description of the
scattering phenomena.

2.3. The convolution

The spectrum in (1) requires the convolution with a Lorentzian
having an energy-dependent width 	f(ω) in order to account
for the broadening due both to the core hole width 	hole and to
the spectral width γ (ω) of the final state:

σ conv(ω) =
∫ ∞

EF

dE σ nonconv(E)
1

π

	f(ω)

	f(ω)
2 + (h̄ω − E)2

(5)
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Figure 1. 	f has an arctangent-like form, centred at Ectr and whose
defining parameters are the slope 	max/El at Ectr and the total height
	max.

with
	f(ω) = 	hole + γ (ω). (6)

Here σ nonconv(ω) and σ conv(ω) are the unconvoluted and
the convoluted absorption signal, respectively. In practise, one
uses the standard, tabulated [17], edge-dependent and energy-
independent (i.e. the screening is treated statically) values for
	hole. The energy dependence of the broadening is entirely
due to γ and is a signature of the inelastic electron scattering
phenomena.

We agree to set γ according to the arctangent model, an
empirical model close to the Seah–Dench formalism [18]:

	f(E − EF) = 	hole + 	max

×
(

1

2
+ 1

π
arctan

(
π

3

	max

El

(
e − 1

e2

)))
;

e = E − EF

Ectr
(7)

where EF is the Fermi energy and the parameters describing
the arctangent are: the total height 	max = 15 eV, the inflection
point Ectr − EF = 30 eV and the inclination El = 30 eV of the
arctangent (figure 1). As far as the calculations in this paper
are concerned, we maintained these parameters unchanged. In
figure 1, the inflection point corresponds to the emergence of
the plasmons. The energy scale is referenced to the Fermi
level EF whereas its zero points to vacuum energy. To have
an approximate indication on the energy of the photon, one
should add the energy of the edge.

We use the same 	f as in the sum over the states for the
structural factor calculation in (3). Contrary to the convolution
of the spectrum in (1), the convergence of (3) over the energies
is extremely slow. To overcome this problem, one uses
the imaginary part of f (ω) to the atomic form factor up to
10 000 eV above the highest calculated energy.

In the (1) and (3) summations over the states, only
unoccupied states appear. Consequently, one must eliminate
the contribution of all �( j)

g corresponding to states whose
energies are below the Fermi energy. The sum over the final
states in (1) becomes

∑
≡

∫ ∞

EF

dE
∑

f

(8)

with f being the final states of the same energy E (normalized
at one state per Rydberg). In some cases the lower limit of
this integral is different from the Fermi energy EF, as we shall
discuss in section 5.1.

3. The multiple scattering theory

In this paper we will focus on the MST as an alternative to
solve the SE for an electron moving in a potential V̂ . We
show the link with the electronic density, which we use in
our self-consistent procedure. Only non-magnetic cases are
considered; we therefore make no further reference to the
electron spin. In this approach we calculate the multiple
scattering amplitude matrix τ

l′m′;( j)
l,m (E), also known as the

transmission t matrix, for each atomic scatterer j and projected
on the spherical harmonics basis. As the t matrix is related to
the full Green function Ĝ, we thus have a complete description
of the interacting system [19]:

G(r, r′; E) =
∑

l,l′

∑

m,m′
�∗

l′,m′(r
′; E)τ l′m′;( j)

l,m (E)�l,m(r; E).

(9)
Equation (9) is valid in the interior of the muffin-tin sphere

for the j scatterer, where the wavefunction describing the final
states can be expanded in the spherical harmonics basis.

We use the expansion

�f(r; E) =
∑

l,m

af
l,m(E)bl(r, E)Y m

l (r̂). (10)

Here Y m
l (r̂) are the spherical harmonics (which we can

take in either the real or the complex basis, depending on
the symmetry) and φl(r; E) = rbl(r, E) is the solution
of the radial SE at energy E . af

l,m(E) are the energy-
dependent atomic amplitudes chosen to ensure the continuity
of the solution in the muffin-tin sphere with the free-space
wavefunction. The latter is normalized to the density of states
of the continuum, hence �f(r; E) has the adequate norm. In
practise, we cut this expansion at a maximum value lmax + 1 of
the l quantum number, which depends on the energy according
to the rule √

lmax(lmax + 1) = √
E rMT (11)

where both the energy E and the muffin-tin radius rMT are
expressed in atomic units.

We briefly recall the mechanism of the multiple scattering:
the absorbing atom receives both the incoming wave �0, i.e. a
term of the expansion in (10), and those scattered by the atomic
neighbourhood. One needs to have a cluster large enough to
get the accurate final states �f. The core state being fixed, the
energy dependence of the scattering lies in the photo-excited
state �f. Hence the density operator can be written as

ρ̂ =
∫ EF

−∞
dE

∑

f

|�f〉〈�f| (12)

with f being the final states of the same energy E and EF the
Fermi energy.
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The multiple scattering matrix element τ l′m′
l,m (E) is

calculated using the atomic scattering amplitudes af(E) via the
optical theorem (13).

In the following paragraphs we will show the form of
the optical theorem, as well as the density-related quantities
(density of states δ(E), density of particles ρ(r), occupation
number N) in the limit of a zero spin–orbit coupling.

When the potential is real, the optical theorem gives
∣∣∣∣
∑

f

af∗
l′m′(E)af

l,m(E)

∣∣∣∣ = − Im(τ l′m′
l,m (E)) (13)

with f being the final states of the same energy E .
The density of states δ(E) of an interacting system is given

by the imaginary part of its associated Green operator Ĝ(E).
We can express all the density-related quantities (density of
states, charge density, occupation number, etc) in terms of
the MST matrix elements τ l′m′

l,m (E) and of the radial solutions
bl,m(r, E).

For an atom, we use (10) and (12) to get the density
operator matrix element in the representation of spherical
harmonics:

d

dE
ρl′m′

l,m (r, E) = b∗
l′(r, E) bl(r, E)

×
∑

f

af∗
l′,m′(E)af

l,m(E) (14)

ρl′m′
l,m (r) = − Im

∫ EF

−∞
dE bl′(r, E)τ l′m′

l,m (E) bl(r, E) (15)

where the integral is taken over all the energies under the Fermi
level EF and f are the final states of the same energy E . The
electronic density of states δ(E) is calculated similarly:

δ(E) = − Im
∫

d3r
∑

l,m

bl(r, E)τ l,m
l,m (E)bl(r, E). (16)

The expectation value of the occupation number is
obtained by taking the trace of the ρ̂ matrix, i.e.

N =
∫ EF

−∞
dE δ(E) =

∫
d3r

∑

l,m

ρ
l,m
l,m (r). (17)

3.1. The scattering in a complex potential

When the potential is complex the radial SE has two admissible
solutions, a regular and an irregular one, according to the
behaviour of �l(r) = rul(r) in the origin r = 0. One has to
account for both of them when writing the Green’s function. In
the absence of the spin–orbit coupling it has been shown [20]
that

G+(r, r′; E) =
∑

l,m

∑

l′,m′
bl′(r

′, E)bl(r, E)Y m′
l′ Y m

l

×
(
τ

l′,m′
l,m (E)− t l′ ,m′

l,m (E)

)
−

∑

l,m

tl,m
l,m (E)

× bl(r<, E) bl(r>, E)Y m
l Y m

l (18)

where r< = min(r, r ′) and r> = max(r, r ′). We can easily get
the density of states by taking the trace of the G+ matrix:

δ(E) = − Im
∫

d3r G+(r, r; E). (19)

The ρ̂ matrix becomes

d

dE
ρ

l′ ,m′
l,m (r, E) = − Im[(τ l′,m′

l,m (E)− t l′ ,m′
l,m (E))

× bl′(r, E) bl(r, E)+ δll′δmm′

× bl(r, E)t l,m
l,m (E)bl(r, E)]. (20)

To end with, we shall try to provide a brief insight
into the physical meaning of a complex potential one shall
further use in the implementation of the self-consistent scheme.
Numerically, one can prove that performing the convolution
of (5) on the output of a real potential calculation is identical to
the unconvoluted result for the equivalent complex potential
calculation (i.e. the imaginary part of the potential is equal
to the 	f broadening of the former) in the limit EF → −∞.
Therefore the use of a complex potential is synonymous with
taking into account some inelastic photo-electron scattering
mechanisms.

4. Implementation of the self-consistency

We introduced the self-consistency within the multiple
scattering frame. By self-consistency we mean that a first
calculation is performed and that the resulting electronic
density is used to derive the potential used during the next
iteration. This procedure is repeated until convergence is
achieved. Once we are sure to have the correct electronic
levels, we perform a last iteration which calculates the
absorption spectra (1), in either the MST or the FDM approach.
We note that the cluster’s radius for this last calculation is not
necessarily the same as the one used at the previous iterations;
in particular we can be interested in running an absorption
calculation at a larger radius than the one used in order to
get the electronic density in a self-consistent manner. In
the following we will discuss the implementation of the self-
consistent scheme.

We distinguish between three ways of performing the
self-consistent procedure, which we will further reference by
(a), (b) and (c), respectively. Scheme (a) assumes a non-
excited electronic configuration for the absorber during the
entire calculation. The second possibility (b) is to assume an
excited absorber, i.e. in the presence of a core hole and with
an extra electron on the first available valence level. Finally,
there is a third scheme (c) corresponding to an intermediate
situation between (a) and (b): the self-consistency is performed
on a non-excited atom, in order to get the accurate final states
ψf. It is only during the absorption calculation that we take
into account the excited electronic structure of the absorber.
In practise, at the beginning of the absorption calculation, we
add the difference between the atomic density corresponding
to an excited atom and the one for the non-excited case to
the self-consistent electronic density of the absorber. We
note that both in (b) and in (c) we introduce by default a
full screening to calculate absorption. The multielectronic
effects due to the core hole are taken into account through the
final state rule [21, 22]. The essential dissimilarity between
the (b) and (c) procedures is linked to the difference in the
timescales associated with the two main processes involved:
the passage of the photo-electron and the response of the
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electron cloud surrounding the absorber. The electrons either
adjust instantaneously to the perturbed structure, in which case
scheme (b) is appropriate, or their reactivity is latent with
respect to the advent of the photo-electron, in which case
scheme (c) is more accurate. In the next section we shall
validate the most accurate procedure among the three.

We cycle on a wide range of electron energies (we set an
energy step of 0.1 eV) and we calculate the a(E) and bl(r, E)
factors for each of these energies. The first energy of the
calculation is chosen between those of the last core orbital and
of the first valence one, in terms of the atomic energy levels
of the atoms in the cluster. We define the core states as those
atomic orbitals which are part of a full shell and are far enough
from the potentially occupied states; the remainder are referred
to as valence states. We recall that the atomic levels have no
physical significance if the cluster contains several atoms; they
still give us a fair indication of where the calculation should
begin, in order not to miss the electrons we are interested in.
We note that beginning the calculation at a rather low energy (at
around 30–80 eV below the edge) is not very time-consuming,
because of the small number of spherical harmonics featured
in the expansion, according to the rule in (11).

Calculation time is saved by means of the symmetrization.
All calculations are symmetrized, but different symmetry
constraints are applied according to the choice of the self-
consistent scheme ((a), (b) or (c)). Procedure (a) is consistent
with the periodic description of a crystal. In this case
we calculate electronic densities corresponding to the non-
equivalent atoms in the unit cell and impose them to the rest
of the atoms in the cluster, according to the space group
symmetry. This scheme avoids the convergence problems due
to border phenomena and concerning the atoms far from the
absorber. Within scheme (b), when we deal with an excited
absorber, the crystal symmetry is broken by the presence of the
core hole which renders the calculation molecular-like. The
space group symmetry is no longer relevant and we need to
calculate the electronic structure of atoms independently, at
most by taking into account the point group symmetry of the
absorber. One straightforward consequence of this procedure
is the fact that it induces artificial effects at the cluster’s
borders. The lack of constraints with regard to the distribution
of electrons determines them to accumulate at the borders. This
phenomenon does not prevent convergence at the K-edge.

In practise, in order to calculate the potential for the atoms
at the border of the cluster, we use an auxiliary calculation
cluster, whose radius is larger than the former’s. The additional
atoms it brings are not calculated self-consistently. Their only
purpose is to set the atomic levels used for the superposition of
both the electronic densities and the atomic potentials.

The energies of the calculation are chosen to have a small
(0.1 eV) imaginary part. This is needed in order to broaden
the localized electronic levels, otherwise we would need an
extremely small energy step to count properly the electrons
in these orbitals. We therefore need to refer to equations (18)
and (20) for the calculation of all the density-related quantities.
Given the fact that the imaginary part of the complex potential
is typically one or two orders of magnitude smaller than the
parameters defining the convolution function (section 2.3), one

should not be bothered by the fact that the spectral broadening
in (5) is taken into account twice.

The evaluation of the Fermi level demands the setting of
a reference in terms of the number of valence electrons one
can find in the cluster. Summing up the atomic numbers is not
exact, for two reasons. Firstly, we count only the electrons
lying within the atomic spheres R j , whose construction is
explained in the following paragraph. Secondly, we fail to
count some valence electrons localized beyond the cluster’s
borders and which belong to the next-to-the-border atoms.

To solve this, we assign a specific space extension to each
atom. We consider spherical atoms j with radii R j , chosen in
such a way that the cluster is neutral. This procedure has been
proved inappropriate for certain kinds of materials (i.e. sparse
structures) as it implies too great of an overlap between the
atomic spheres. In this case we set an upper limit of 30% of
overlap with respect to the sum of the volumes of the spheres
in the unit cell. We note that the atomic radii are usually larger
than the muffin-tin radii. One calculates the spatial integrals in
the following manner:

∫

space
d3r =

∑

j

∫ R j

0
d3r (21)

by summing the relevant atomic sphere over all the atoms of
the cluster.

Subsequently, we use (17) and (21) to calculate the
number of electrons belonging to each atom and then the
total electronic population of the cluster. The first calculation
is stopped when this number reaches the reference electron
number. We get the corresponding electron charge density.
In practise, as usual, we perform a weighting of the charge
density at the previous iteration (that we used at the beginning
of the cycle in order to calculate the Coulomb potential) with
the current one. The experience tells us that the current
calculation needs to have a rather small weight (0.1 at most)
for convergence to be achieved. The interpolation parameter is
set up dynamically, i.e. we decrease it by a factor of 2 in case of
a beating convergence parameter, which we define later in (23).
We inject the weighted charge density into the next cycle and
we repeat the calculation until the convergence is achieved.

We note that the automatic setting of the Fermi level is a
very convenient and user-friendly feature of the self-consistent
calculation. For the codes where this is not the case, the Fermi
level is set ad hoc and thus the elimination of occupied states
according to (8) is spurious. In the case of sparse structures
(as one will see in section 5) the calculated Fermi level and the
cutoff of the absorption spectrum may differ; nevertheless the
former still gives valuable information (within ≈1–5 eV).

The total energy of the cluster E is calculated by
integrating the multiple scattering calculated quantities into the
Kohn–Sham formula [23]:

E[ρ(r)] =
∑

atoms

∫
dE E δ(E)+

∑

atoms

∑

g∈core

εg

−
∫

d3r ρ(r)Vc(ρ(r))+
∫

d3r ρ(r)εxc(ρ(r))

−
∫

d3r ρ(r)Vxc(ρ(r)) (22)

5



J. Phys.: Condens. Matter 21 (2009) 345501 O Bunău and Y Joly

where f are the final states of the same energy E . The first term
of (22) represents the sum over the occupied valence orbitals
of the eigenvalues we got by solving the SE. Vc is the bare
Coulomb potential, Vxc is the exchange–correlation potential
and εxc is the exchange correlation energy. The second term,
which we do not calculate explicitly, is the energy of the core
states, calculated in the monoelectronic picture. What we
calculate is the variation of this energy with respect to the
first iteration value, under the assumption that this variation
is entirely due to the changing potential and that the core
wavefunction is the atomic one. Consequently, the energy
in (22) is defined up to an additive constant.

The criterion to achieve convergence is to have a stable
total cluster energy E , i.e. the variation of this quantity from
one iteration to the next must be inferior to a particular
user-chosen value. In practise, we take into account the
less favourable situation where the variations of energies of
different atoms have different signs, from one iteration to the
next. Hence we use a more severe criterion, as compared to the
stability of E :

�E =
p∑

eq

Np|Ei
p − Ei−1

p | < 1 eV ×
∑

p

Np (23)

where we sum on all the equivalent atoms p, with Np being
their multiplicity and N = ∑

p Np the total number of atoms
in the cluster. Ei

p is the energy of such a prototype atom p at
the i iteration. Once convergence is achieved we expect that E
reaches its minimum amongst all the iteration values.

5. Results

In this section we aim to answer several questions linked to the
pertinence of applying a self-consistent procedure to an x-ray
absorption calculation. In particular, we are interested to detect
what are the structures where a self-consistent calculation
can improve the non-self-consistent results. Another issue is
whether one could afford a smaller calculation radius for the
self-consistent part than for the absorption calculation, for the
purpose of saving computation time. Moreover, we wish to
indicate what is the best self-consistent approach among the
ones presented in the previous section. To begin with, we shall
study two textbook cases, the copper Cu and the rutile TiO2.
We also discuss the results of calculations run on boron nitrate
BN and calcium oxide CaO, as well as on the 3d elements.

5.1. The copper Cu

To begin with, we will show the self-consistent calculations run
on copper, as a reference case. We show the absorption spectra
at the K-edge for several radii of calculation, each of them
corresponding to an additional shell of atoms. Figure 2 shows
the absorption spectra, calculated within the MST frame,
before and after the convolution. One should always appeal
to the convoluted spectra when comparing to experiment.

One can see that, in terms of calculation radii, convergence
is achieved at 6.76 Å (i.e. 135 atoms). For this radius

Figure 2. Evolution of the absorption signal with respect to the
cluster size: before (top) and after convolution (bottom). The cutoff
in the unconvoluted spectra is a consequence of the elimination of the
occupied states.

we superpose the spectra after convolution for several self-
consistent and for a non-self-consistent calculation. The self-
consistent calculations have been performed in several manners
((a), (b) and (c)), according to the procedures described above
(see section 4). Among these, one can notice that procedure (c)
is the most appropriate with respect to the agreement with
the experiments [24], as it improves the ratio of intensities of
the structures after the edge. Unlike scheme (b), non-excited
self-consistent procedures (a) and (c) do not influence the
position of the structures preceding the white line, as compared
both to the non-self-consistent case and to the experiment.
We therefore conclude that the assumption we had made to
get the (b) spectrum (i.e. the response of the electron cloud
surrounding the absorber to the passage of the photo-electron
is adiabatic) is not valid at the K-edge, as confirmed by our
further examples.

We shall discuss the issue whether the self-consistency
(i.e. all but the last iteration) has to be performed at the same
radius as the absorption (i.e. the last iteration) calculation. We
ran a calculation where we used a cluster of 2.56 Å radius
(13 atoms, i.e. the absorber surrounded by the first shell of
copper atoms) for the self-consistency, while the absorption
calculation was performed on a cluster of 6.76 Å. We
compared the result with the one we had previously obtained
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Figure 3. Calculation and experimental data for absorption at
copper’s K-edge for a 6.76 Å cluster. As far as self-consistent
calculations are concerned, we tested the three different procedures:
full non-excited calculation (a), full excited calculation (b) and
hybrid (c), i.e. self-consistency is performed on the non-excited
absorber while the absorption takes into consideration the excited
electronic structure.

Figure 4. A comparison between the total density of states of copper
calculated by FDMNES (an SCF—(a) procedure calculation) and the
results of Moruzzi et al [25]. The zero of the energy scale
corresponds to the Fermi level [25].

(figure 3) for a full 6.76 Å calculation. We found practically
no difference between the two, which encourages us to use a
smaller cluster for the self-consistency part for the copper-like
(i.e. compact) structures.

Finally, we wish to validate our self-consistent procedure
by comparing it to an equivalent band structure calculation. We
chose to compare with the results of Moruzzi et al [25], who
used the self-consistent, reciprocal space KKR method, leaning
on the muffin-tin (MT) approximation. Our self-consistent
scheme (a) is completely equivalent to a band structure
result, as the absorber is supposed non-excited throughout the
calculation. To ensure a high resolution, we performed a
calculation on a radius of 8.47 Å (225 atoms) taking the value
of 0.025 eV both for the energy step and for the imaginary
energy. In figure 4 we compare the total density of states (DOS)
for the two calculations. One can see a very good agreement of
the two, which testifies of the accuracy of our self-consistent
scheme.

To conclude, one may state that the self-consistency does
not have a major influence in the case of copper at the K-

Figure 5. MST-MT calculations and experimental data [24] for
absorption at titanium’s K-edge for a 5.51 Å cluster. Two
polarizations are shown: (ε, k) = ([001], [110]) (top) and
(ε, k) = ([11̄0], [110]) (bottom). As far as self-consistent
calculations are concerned, we tested two different procedures: the
full excited (b) and the hybrid (c) calculation. On the right-hand side,
we show a zoom on the pre-edge structures. One can see that,
compared to the non-self-consistent ones, self-consistent procedures
reduce the disagreement with the experiment.

edge. This result is general for the compact, metallic structures
(i.e. with a weak overlap between the atomic spheres R j ),
as shall follow further on in the present paper. Moreover,
one can afford to perform the self-consistent calculation at a
smaller radius than the absorption one. The self-consistent
calculation provides the Fermi level, which in practise is very
useful information and is eventually one of the most important
results of the self-consistency.

5.2. The rutile TiO2

In this section we will show the results of calculations run
on the TiO2 compound. We calculate the absorption signal
at the titanium’s K-edge for two different polarizations. TiO2

is an interesting structure to test our self-consistent procedure
on, as it features several pre-edge peaks of both dipolar and
quadrupolar origin and related to the 3d states of titanium. The
MST non-self-consistent calculations do not give a very good
agreement with the experiments. A priori one would expect
benefits from a self-consistent calculation, as it is supposed to
act especially on the localized 3d states in the vicinity of the
Fermi level.

In figure 5 we show the non-self-consistent and the
self-consistent calculations (according to the two different
procedures (b) and (c)) run on a 5.51 Å cluster and compare
them to the experimental data of Poumellec et al [24]. We note
that a radius of 5.51 Å corresponds to 75 atoms and is enough
to achieve convergence of the absorption signal with respect
to the cluster size. We note that a condition sine qua non to
obtain the pre-edge structures is that the cluster contains the
first shell of TiO2 octahedra surrounding the absorber, which
is achieved for the 5.51 Å radius. All absorption calculations
have been performed in the MST frame. We analyse the signal
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Figure 6. FDM calculations and experimental data [24] for
absorption at titanium’s K-edge for a 5.51 Å cluster. Two
polarizations are shown: (ε, k) = ([001], [110]) (top) and
(ε, k) = ([11̄0], [110]) (bottom). The self-consistent calculations are
performed according to scheme (c). On the right-hand side we show
a zoom on the pre-edge structures. One can see that, compared to the
non-self-consistent ones, self-consistent procedures reduce the
disagreement with the experiment.

obtained for two different orientations of the polarization
and the wavevector: (ε, k) = ([001], [110]) and (ε, k) =
([11̄0], [110]). One can see that all calculations fail to describe
the double structure at the edge (4980–4990 eV) for the second
polarization. This is a defect of the MT approximation. As
far as the pre-edge structures are concerned, they are due to
the overlap between the absorber’s electronic states and the eg

and the t2g of the titanium neighbours. As compared to the non-
self-consistent calculation, both procedures (b) and (c) succeed
in shifting the pre-edge structures towards the smaller energies;
nevertheless this shift is not enough to give a perfect agreement
with the experiments. One should note that TiO2 is a rather
sparse material and the MST-MT is known not to give very
good results for this particular kind of structure because of the
approximations it introduces on the form of the potential.

As far as the self-consistent calculations are concerned,
we checked that the converged result is the same if we choose
different departure points in terms of the atomic electronic
structure of the absorber (i.e. 3d1 4s2 4p1 or 3d2 4s2 4p0),
proving the robustness of our procedure. Moreover, in practise
the result is nearly independent of the exchange correlation
potential we used (i.e. Hedin–Lundquist [15, 16] or Perdew
and Wang [14]).

Another aspect to take into consideration when perform-
ing the self-consistent procedure is the evolution of the atomic
charges during the iterations. We recall that we set the atomic
radii R j in order to ensure the neutrality of the unitary cell
or, equivalently, of the calculation cluster. We checked that,
when convergence is achieved, the modulus of the individual
atom charges decreases as compared to its value at the first
iteration. In the particular case of TiO2, by using the self-
consistent scheme (c) we converge to negatively charged oxy-
gen and positively charged titanium, which is consistent with

Figure 7. Self-consistent calculations of type (c), run for different
sizes of the cluster. The absorption calculation is performed on a
5.51 Å cluster in the MST-MT frame.

the electrochemical picture. When convergence is achieved,
we get an additional +0.7e for the titanium and −0.35e for the
oxygen, with e being the modulus of the electron charge. At
this point, the calculated atomic charges (0.256e for the tita-
nium and −0.128e for the oxygen) are still very different from
the formal ones (4e and −2e, respectively). This is partially
due to the fact that the atomic radii R j we used for the charge
calculation (1.42 and 1.04 Å) are different from the ionic radii
(0.86 and 1.4 Å).

In figure 6 we show a self-consistent calculation with the
absorption calculation performed in the FDM frame. The main
difference between the FDM and the MST-MT calculations
occurs at the edge (4980–4990 eV), as the former is able to
reproduce the double structure for the (ε, k) = ([11̄0], [110])
polarization. This is a consequence of having considered
the full potential. As compared to its non-self-consistent
counterpart, the self-consistent FDM calculation shifts the
quadrupolar signal towards the lower energies. Moreover, the
ratio of the intensities of the pre-edge structures is improved.
The self-consistent scheme is still performed in the MST-MT
frame; to get a better agreement with the experiments one
should implement a full potential self-consistent calculation.

We have studied the influence of the cluster’s size for the
self-consistent part for a given radius (5.51 Å) of the absorption
calculation. We note that all the radii we tested are large
enough to exhibit the pre-edge structures. Unlike the copper
case, the results are very sensitive to the radius for the self-
consistent part (figure 7). We therefore conclude that for
oxides, whose structure is sparser, one should take the same
cluster size for the self-consistent part as for the absorption
calculation.

5.3. Other examples

We tested our procedure on numerous materials for which the
self-consistency brings little or no change with respect to its
non-self-consistent equivalent. We show the results on both
simple (3d and 4d metals) and complex elements (boron nitrate
BN and calcium oxide CaO).

We ran calculations on the 3d and 4d series by using
the standard crystallographic structure. We encountered no
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particular difficulty, either to achieve convergence, or to obtain
the correct cutoff for the convolution and, thus, the elimination
of the occupied states. We chose to show the results we got for
titanium, nickel, iron and silver (figure 8) and compare them
to the experiment [26]. In the cases where the (b) and (c) self-
consistent schemes give different results (Ag, Ni and Cu), the
best agreement is achieved by using the former procedure. In
other cases (Fe and Ti) this difference is not at all noticeable.
We inferred that the (b) self-consistent scheme is the best
choice when dealing with the K-edge. Our general conclusion
is that the self-consistency brings no major change at high
energies, as compared to the non-self-consistent calculations.
In some cases (Fe and Ni) one can see a shift in the position of
the low energy peaks. This behaviour confirms our assertion
that the self-consistent effects occur mostly in the vicinity of
the Fermi level.

We note that, in the case of transition metals, one can allow
to run the self-consistent calculation on a cluster of a lesser
radius than the one for the absorption calculation. A cluster
containing two atomic shells surrounding the absorber is large
enough to render reasonable results for the self-consistent part
of the calculation. We tested this feature on the transition
metals and we observed that the absorption calculation run for
a given radius (of the order of 5 Å or more) is not sensible on
the previous self-consistent calculation step provided the latter
contains two or more atomic shells.

In the following paragraph we shall discuss the results
we obtained on CaO and BN, some prototypical compounds
where non-spherical effects are important. In both cases, we
compared the self-consistent and the non-self-consistent results
(figures 9 and 10) with the experiment [11, 12]. Among the
self-consistent calculations, schemes (b) and (c) give similar
results and we chose to show the former one. For these
particular materials, the calculated Fermi level is not the same
with the cutoff we used for the convolution (for the quantitative
information, see the captions of figures 9 and 10). We explain
this inadequacy by the fact that our assumption of sphericity
(the MT approximation) prevents us counting all the electrons,
provided that we are not allowed to exceed an upper limit of
the overlap of the R j integration spheres. This energy shift
does not usually appear whether the compound is a compact
structure, as non-spherical effects are negligible, but may be
significant if one deals with a sparse structure, like BN or CaO.
We note that it is still the self-consistent calculation which
gives a more reasonable result with respect to the Fermi level
evaluation.

In the case of BN, one can see practically no difference
between the self-consistent and the non-self-consistent
calculations, whether the last iteration was performed in the
FDM or in the MST-MT frame. Moreover, the agreement
with the experiment is obviously better in the case of the FDM
calculations. One concludes that it is crucial for this particular
material to be treated within a full potential method (FDM),
whereas the fact that the calculation is self-consistent or not
(we recall that the self-consistency was implemented in the
MST frame, due to computational limits) does not make any
difference.

Figure 8. Calculations—non-SCF (long dashes), SCF—(b) (solid
line), SCF—(c) (short dashes) and experimental data (with dots) for
some transition elements. All calculations were performed on a 7 Å
cluster. The absorption units match the calculation and the
experimental data is scaled for comparison. Self-consistency does
not bring significant changes; nevertheless it allows a judicious
estimation of the Fermi level. Among the several alternatives,
scheme (b) is to be preferred.

As far as CaO is concerned, one notices an amelioration
provided by the self-consistent calculations, in both the MST-
MT and FDM cases. Nevertheless we are still unable to
get a perfect agreement for the modulations in the range
4060–4070 eV. One can see (figure 9) a better agreement in
the case of a non-self-consistent FDM absorption calculation
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Figure 9. Comparison between the self-consistent (solid line) and
non-self-consistent (dashed line) calculations with the experimental
data [12] (with dots), for calcium oxide CaO, with the absorption
calculation performed in the FDM (above) and in the MST-MT
(below). We used a 6.9 Å cluster, i.e. 93 atoms. The absorption units
match the calculation and the experimental data is scaled for
comparison. The calculated Fermi level (4037 eV for the
non-self-consistent calculation and 4039.5 eV for the self-consistent
one) is different from the cutoff we used for the convolution
(4042 eV).

than for the self-consistent MST-MT one. This leads us to
the conclusion that taking into account non-spherical effects
is more important than the amelioration given by the self-
consistent procedure, as implemented in the FDMNES (i.e. in
the spherical potential approximation).

6. Conclusions

One concludes that at the K-edge the effects of self-consistency
(in terms of the positions of the peaks) are restrained to the pre-

Figure 10. Comparison between the self-consistent (solid line) and
non-self-consistent (dashed line) calculations with the experimental
data [11] (with dots), for boron nitrate BN, with the absorption
calculation performed in the FDM (above) and in the MST-MT
(below). We used a 4.7 Å cluster, i.e. 87 atoms. The absorption units
match the calculation and the experimental data is scaled for
comparison. The calculated Fermi level (178.2 eV for the
non-self-consistent calculation and 179 eV for the self-consistent
one) is different from the cutoff we used for the convolution
(186 eV).

edge structures, close to the Fermi level. For certain materials,
a slight redistribution of the intensities can be noticed at
high energies. In the cases where non-spherical effects are
expected, performing calculations with a full potential method
is more important than the benefits one gets by means of the
self-consistency in the MST-MT frame. The value of the
Fermi level is very useful information one gets from a self-
consistent calculation, as it is essential for the identification
of the occupied states and thus for the comparison with the
experimental spectra. This cutoff of the spectra is correctly
estimated for the compact structures, but is liable to adjustment
in the case of materials where non-spherical effects are
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important. We have proved that the self-consistency brings
practically no change for the compact structures, in which
case one should be content to run the self-consistent part of
the calculation at a lower radius than the one used for the
absorption part. Oxides require that one uses the same cluster
sizes for the two stages of the calculation for the purpose of
improving the description of pre-edge structures.
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