Partitioning powers of traceable or hamiltonian graphs

Olivier Baudon, Julien Bensmail, Jakub Przybylo, Mariusz Woźniak

To cite this version:

Olivier Baudon, Julien Bensmail, Jakub Przybylo, Mariusz Woźniak. Partitioning powers of traceable or hamiltonian graphs. 2012. hal-00687278v1

HAL Id: hal-00687278
https://hal.science/hal-00687278v1

Preprint submitted on 12 Apr 2012 (v1), last revised 1 Jun 2013 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Partitioning powers of traceable or hamiltonian graphs*

Olivier Baudon
Julien Bensmail
Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
CNRS, LaBRI, UMR 5800, F-33400 Talence, France
Jakub Przybyło
Mariusz Woźniak
AGH University of Science and Technology
Faculty of Applied Mathematics
al. A. Mickiewicza 30,30-059 Krakow, Poland

February 1, 2012

Abstract

A graph $G=(V, E)$ is arbitrarily partitionable (AP) if for any sequence $\tau=\left(n_{1}, \ldots, n_{p}\right)$ of positive integers adding up to the order of G, there is a sequence of vertex-disjoints subsets of V whose orders are given by τ and which induce connected graphs. If, additionally, for any $k, k \leq p$, of elements of τ we are allowed to prescribe k vertices belonging to the subsets with given size, we say that G is $\mathrm{AP}+k$.

We prove that the $k^{\text {th }}$ power of every traceable graph of order at least k is $\mathrm{AP}+(k-1)$ and that the $k^{\text {th }}$ power of every hamiltonian graph of order at least $2 k$ is $\mathrm{AP}+(2 k-1)$, and these results are tight.

Keywords: arbitrarily partitionable graph, power of a graph, hamiltonian graph, traceable graph.

Mathematics Subject Classification: 05C15.

[^0]
1 Introduction

Consider a simple graph $G=(V, E)$ of order n. A sequence $\tau=\left(n_{1}, \ldots, n_{p}\right)$ of positive integers is called admissible for G if it is a partition of n, i.e., $n_{1}+\ldots+n_{p}=n$. If additionally there exists a partition $\left(V_{1}, \ldots, V_{p}\right)$ of the vertex set V such that each V_{i} induces a connected subgraph of order n_{i} in G, then we say that τ is realizable in G, while $\left(V_{1}, \ldots, V_{p}\right)$ is called a realization of τ in G. If every admissible sequence is also realizable in G, then we say that this graph is arbitrarily partitionable (or arbitrarily vertex decomposable) and we call it an AP graph for short.

The notion of AP graphs was first introduced by Barth, Baudon and Puech in [1], and motivated by the following problem in computer science. Consider a network connecting different computing resources; such a network is modeled by a graph. Suppose there are p different users, where the $i^{\text {th }}$ one needs n_{i} resources from our network. The subgraph induced by the set of resources attributed to each user should be connected and each resource should be attributed to (at most) one user. So we are seeking a realization of the sequence $\tau=\left(n_{1}, \ldots, n_{p}\right)$ in this graph. Suppose that we want to do it for any number of users and any sequence of request. Thus, such a network should be an AP graph.

This problem was also considered, independently, as a natural analogy of the similar notion in which vertices are replaced by edges (see for instance [5] or [6], where some references concerning arbitrarily edge decomposable graphs can be found).

The problem of deciding whether a given graph is arbitrarily vertex decomposable has been considered in several papers. Obviously, a graph needs to be connected in order to be AP. The investigation of AP trees gained lots of attention in this context, since a connected graph is AP if one of its spanning tree is AP. It turned out, however, that the structure of AP trees is not obvious in general. See for instance [2], [11] or [3] and the references given there.

Since each traceable graph (i.e., containing a hamiltonian path) is evidently AP, each condition implying the existence of a hamiltonian path in a graph also implies that the graph is AP. So, AP graphs may be considered as a generalization of traceable (or hamiltonian) graphs (see for instance [7]).

Suppose now that as managers of the computer network we have a number of at most k specially privileged clients (users), so called vips, each of whom may choose one computing resource which must be attributed to their connected subnetwork. It might be a powerful or conveniently located computer, which may serve our vip as an administrative center for managing the subnetwork. Then we naturally obtain the following modification of our
model on graphs: Let $G=(V, E)$ be a graph of order n and let $n>k$. The graph G is said to be $A P+k$ if for any partition $\tau=\left(n_{1}, \ldots, n_{p}\right)$ of n and any sequence $\left(u_{1}, \ldots, u_{k^{\prime}}\right)$ of k^{\prime} pairwise distinct vertices of G with $k^{\prime} \leq \min \{k, p\}$, there exists a realization $\left(V_{1}, \ldots, V_{p}\right)$ of τ in G such that $u_{1} \in V_{1}, \ldots, u_{k^{\prime}} \in V_{k^{\prime}}$.

Observe that we have adopted the convention that the numbers representing the sizes of subnetworks attributed to vips are listed in the beginning of the sequence τ.

If the number of subnetworks (users) is limited, say by r, i.e. we can realize in G each sequence $\tau=\left(n_{1}, \ldots, n_{p}\right)$ with $p \leq r$, we say that G is r-AP. So, a graph is AP if it is r-AP for $r=1,2, \ldots$ (see [9], [10] and [12] for algorithmic approach for small k).

If additionally for a given $s \leq r$, each of the first s^{\prime} users for any $s^{\prime} \leq$ $\min \{s, p\}$ is allowed to choose a vertex belonging to their subnetwork, then the corresponding graph G of order $n>r$ is called $r-\mathrm{AP}+s$.

The most significant result concerning these notions is the following famous result on $k-\mathrm{AP}+k$ graphs by Győri [4] and, independently, Lovász [8].
Theorem 1 Every k-connected graph G is $k-A P+k$.
It is straightforward to notice that the converse is also true. Indeed, removal of $k-1$ vertices v_{1}, \ldots, v_{k-1} cannot disconnect a k-AP $+k$ graph G, since otherwise there would not exist a realization $\left(V_{1}, \ldots, V_{k}\right)$ of an admissible sequence $(1, \ldots, 1, n-k+1)$ in G such that $v_{1} \in V_{1}, \ldots, v_{k-1} \in V_{k-1}$.

Analogously, by analyzing an admissible sequence ($1, \ldots, 1, n-k$), one can easily see that the following observation holds.

Observation 2 Every $A P+k$ graph has to be $(k+1)$-connected.
It is worth notice that if we change the requirement concerning the number of parts we partition our network into (from bounded to arbitrary case), this may have dramatical consequences. For instance, consider the complete bipartite graph $K_{k, k}$. Since it is k-connected, then by Theorem 1, it is also $k-\mathrm{AP}+k$. On the other hand, if we remove two vertices on the "same side" of $K_{k, k}$, we obtain the graph $K_{k, k-2}$, which evidently does not contain a perfect matching. In other words, with the above choice of two vips, the sequence $(1,1,2, \ldots, 2)$ is not realizable. In consequence, the graph $K_{k, k}$ is not even $\mathrm{AP}+2$.

Given a graph $G=(V, E)$, its $k^{t h}$ power G^{k} is the graph obtained of G by adding the edge between every pair of vertices with distance at most k in G. In this paper we prove that $k^{\text {th }}$ powers of traceable graphs are $\mathrm{AP}+(k-1)$, see Corollary 7 , and that $k^{t h}$ powers of hamiltonian graphs are $\mathrm{AP}+(2 k-1)$, see Corollary 9. These results are sharp.

2 Results

Given a path P_{n} (or a cycle C_{n}), its consecutive vertices $v_{1}, v_{2}, \ldots, v_{n}$ define a natural orientation of the path (or the cycle). We shall call them also the consecutive vertices of its $k^{t h}$ power $P_{n}^{k}\left(\right.$ or $\left.C_{n}^{k}\right)$. Similarly, v_{1} and v_{n} will be called the first and the last vertices of $P_{n}^{k}\left(C_{n}^{k}\right)$, respectively.

In both cases, for a vertex x, we shall also use the notation x^{+}and x^{-} in order to denote the next or the previous vertex to x, respectively, with respect to the natural orientation. For two vertices a and b of the cycle C_{n}, we denote by $a C_{n} b$ the set of all consecutive vertices of C_{n} starting from a and ending at b with respect to the natural orientation of the cycle.

First, we prove that $k^{\text {th }}$ powers of paths are $\mathrm{AP}+(k-1)$. We shall use Lemma 5 below, which is even stronger than required for this purpose. The both results however will be then necessary to show that $k^{\text {th }}$ powers of cycles are $\mathrm{AP}+(2 k-1)$. Since the property of being AP $+k$ is monotone with respect to adding edges, the results for paths and cycles immediately imply the corresponding properties for traceable and hamiltonian graphs, i.e., Corollaries 7 and 9 . Note here also that our results for paths (hence also for the family of traceable graphs) and for cycles (thus for hamiltonian graphs) are tight, since the connectivity of the $k^{\text {th }}$ power of a path $P_{n}, n \geq k+1$, is k, and the connectivity of the $k^{\text {th }}$ power of a cycle $C_{n}, n \geq 2 k+1$, is $2 k$. This is obvious for paths, while for cycles it is sufficient to notice that so that we could disconnect two vertices u, v of C_{n}^{k}, these must be at distance more than k in C_{n}. Then we have to remove (at least) k consecutive vertices from each of the two paths joining u and v in C_{n}.

Below we state two basic observations concerning the operation of removing a vertex from a graph $G=P_{n}^{k}$ being the $k^{t h}$ power of a path P_{n}. Let v_{1}, \ldots, v_{n} be the consecutive vertices of P_{n}. By a graph obtained by removing the first or the last vertex of G we mean a graph with consecutive vertices given by v_{2}, \ldots, v_{n} or v_{1}, \ldots, v_{n-1}, respectively. By a graph obtained by removing other than the first or the last vertex of G, say x, we mean a graph with consecutive vertices given by $v_{1}, \ldots, x^{-}, x^{+}, \ldots, v_{n}$.

Observation 3 A graph obtained by removing the first or the last vertex of any $k^{\text {th }}$ power of a path is also a $k^{\text {th }}$ power of a path.

Observation 4 A graph obtained by removing of $P_{n}^{k}, k \geq 2$, a vertex subset whose every pair of vertices is at distance at least k in the underlaying path P_{n} contains a spanning $(k-1)^{\text {st }}$ power of a path. Moreover, if we do not remove the last vertex of P_{n}^{k}, then it remains the last vertex of the obtained $(k-1)^{\text {st }}$ power of a path.

Proof. Suppose v_{1}, \ldots, v_{n} are the consecutive vertices of P_{n}. Then the result is obvious, since for each vertex v_{i} which has not been removed, all but at most one of its neighbours v_{j} from P_{n}^{k} with $j<i(j>i)$ remained in the obtained graph.

Lemma 5 Let $G=(V, E)$ be a $k^{\text {th }}$ power of a path P_{n} with consecutive vertices $v_{1}, v_{2}, \ldots, v_{n}, n \geq k$. For every partition $\tau=\left(n_{1}, \ldots, n_{p}\right)$ of n into $p \geq k$ parts and every list of k vertices $v_{i_{1}}, \ldots, v_{i_{k}} \in V$ with $i_{1}<i_{2}<\ldots<i_{k}$, we have: if $i_{k}=n$ (or $i_{1}=1$), then there exists a realization $\left(V_{1}, \ldots, V_{p}\right)$ of τ in G such that $v_{i_{1}} \in V_{1}, \ldots, v_{i_{k}} \in V_{k}$.

Proof. First observe that without loss of generality, we may suppose that $i_{k}=n$. We prove the theorem by induction with respect to k. For $k=1$ the result is obvious. Assume then that $k \geq 2$ and that the theorem holds for $(k-1)^{s t}$ powers of paths.

Denote by r_{1}, \ldots, r_{k-1} the residues modulo k of $i_{1}, i_{2}, \ldots, i_{k-1}$, resp., and let r be an unused residue, i.e., any element of the non-empty set $\{0,1, \ldots, k-1\} \backslash\left\{r_{1}, \ldots, r_{k-1}\right\}$. We shall construct a sequence $\sigma=$ $\left(v_{j_{1}}, \ldots, v_{j_{q}}\right)$ of pairwise distinct vertices of our P_{n}^{k} with the following properties:
(1) $v_{j_{1}}=v_{i_{1}}$ and $v_{i_{2}}, \ldots, v_{i_{k}}$ do not belong to σ,
(2) any initial block of σ induces a connected subgraph in G,
(3) after removing any initial subsequence of vertices of σ from G, the remaining graph contains a $(k-1)^{s t}$ power of a path as a spanning subgraph with the last vertex v_{n},
(4) each vertex of G is either a neighbour of some vertex from σ or belongs to σ.

First we choose every $k^{t h}$ vertex from the sequence $v_{1}, \ldots, v_{i_{1}}$ starting from $v_{i_{1}}$ and then "jumping back" as long as we can, i.e., we set $v_{j_{1}}=v_{i_{1}}, v_{j_{2}}=$ $v_{i_{1}-k}, v_{j_{3}}=v_{i_{1}-2 k}, \ldots, v_{j_{a}}=v_{i_{1}-(a-1) k}$, where $i_{1}-(a-1) k \in[1, k]$. Note that thus far rule (2) and, by Observation 4, rule (3) are fulfilled. Then one after another we choose the consecutive yet not chosen vertices from the sequence $v_{1}, \ldots, v_{i_{1}}$ as elements of σ starting from the one with the lowest index, i.e. v_{1} or v_{2}. By Observation 3, rule (3) (and obviously rule (2)) has not been broken this way. Note also that the remaining vertices induce now a $k^{\text {th }}$ power of a path in G. Then to finalize the construction of σ we make a "short jump forward" from $v_{i_{1}}$ to v_{b}, where b is the smallest index with residue r modulo k which is greater than i_{1} and smaller than n (if such b exists), followed by
choosing every $k^{\text {th }}$ element of the sequence v_{b}, \ldots, v_{n-1} starting from v_{b}, i.e., we set $v_{j_{i_{1}+1}}=v_{b}, v_{j_{i_{1}+2}}=v_{b+k}, v_{j_{i_{1}+3}}=v_{b+2 k}, \ldots, v_{j_{i_{1}+c}}=v_{b+(c-1) k}$, where $b+(c-1) k \in[n-k, n-1]$. By Observation 4, rule (3) (and rule (2)) is obeyed. Moreover, by the choice of r and our construction, property (1) also holds. Finally, since the constructed sequence σ contains "every $k^{t h}$ " vertex from the sequence v_{1}, \ldots, v_{n-1}, rule (4) is also satisfied.

Now if n_{1} is at most as big as the number of vertices in σ, i.e. $n_{1} \leq q$, then we set $V_{1}=\left\{v_{j_{1}}, \ldots, v_{j_{n_{1}}}\right\}$ as a realization of n_{1}. By rule (2), this set induces a connected subgraph in G. Then we let $G^{\prime}=G\left[V \backslash V_{1}\right]$ and $\tau^{\prime}=\left(n_{2}, \ldots, n_{p}\right)$. By rule (1), $v_{i_{2}}, \ldots, v_{i_{k}} \in V\left(G^{\prime}\right)$, and by rule (3), G^{\prime} contains a $(k-1)^{\text {st }}$ power of a path as a spanning subgraph with v_{n} being its last vertex. By induction we therefore may find a realization $\left(V_{2}, \ldots, V_{p}\right)$ of τ^{\prime} in G^{\prime} such that $v_{i_{2}} \in V_{2}, \ldots, v_{i_{k}} \in V_{k}$.

On the other hand, if $n_{1}>q$, then we set $V_{1}^{\prime}=\left\{v_{j_{1}}, \ldots, v_{j_{q}}\right\}, G^{\prime \prime}=$ $G\left[V \backslash V_{1}^{\prime}\right]$ and $\tau^{\prime \prime}=\left(n_{2}, \ldots, n_{p}, n_{1}-q\right)$. Then analogously as above we may find a realization $\left(V_{2}, \ldots, V_{p}, V_{1}^{\prime \prime}\right)$ of $\tau^{\prime \prime}$ in $G^{\prime \prime}$ such that $v_{i_{2}} \in V_{2}, \ldots, v_{i_{k}} \in V_{k}$ by induction. Then by rules (2) and (4), the set $V_{1}:=V_{1}^{\prime} \cup V_{1}^{\prime \prime}$ induces a connected subgraph in $G, v_{i_{1}} \in V_{1}$.

In both cases we obtain a desired realization of τ in G.
Corollary 6 Every P_{n}^{k} with $n \geq k$ is $A P+(k-1)$.
Proof. Assume that v_{1}, \ldots, v_{n} are the consecutive vertices of our graph. For partitions into at most k parts, the result follows by Theorem 1. Consider then a partition $\tau=\left(n_{1}, \ldots, n_{p}\right)$ of n with $p>k$, together with associated vertices $v_{i_{1}}, \ldots, v_{i_{k-1}}, i_{1}<i_{2}<\ldots<i_{k-1}$. If $i_{k-1}<n$, then we set $v_{i_{k}}=v_{n}$, whereas if $i_{k-1}=n$, then we set any vertex distinct from $v_{i_{1}}, \ldots, v_{i_{k-1}}$ as $v_{i_{k}}$. In both cases the result follows by Lemma 5 .

Corollary $\mathbf{7}$ For every traceable graph G with at least k vertices, G^{k} is $A P+(k-1)$.

Theorem 8 Every C_{n}^{k} with $n \geq 2 k$ is $A P+(2 k-1)$.
Proof. We assume that $k \geq 2$, since the theorem is obvious otherwise. Let C_{n} be a cycle, $n \geq 2 k$, with consecutive vertices denoted by $v_{0}, v_{1}, \ldots, v_{n-1}$ and consider its $k^{t h}$ power $G=(V, E)=C_{n}^{k}$. Since G is a $2 k$-connected graph (for $n>2 k$), then by Theorem 1, it is sufficient to consider partitions into more than $2 k$ parts. Assume then that $\tau=\left(n_{1}, \ldots, n_{p}\right)$ is a partition of n with $p>2 k$, and $v_{i_{1}}, \ldots, v_{i_{2 k-1}}$, where $i_{1}<i_{2}<\ldots<i_{2 k-1}$, are the vertices associated with the first $2 k-1$ elements of this partition, respectively.

For each such vertex $v_{i_{j}}, j=1, \ldots, 2 k-1$, denote by D_{j} the set of vertices which are between $v_{i_{j-1}}$ and $v_{i_{j}}$ along the cycle C_{n} together with $v_{i_{j}}$, i.e., $D_{j}=v_{i_{j-1}}^{+} C_{n} v_{i_{j}}$ for $j \geq 2$ and $D_{1}=v_{i_{2 k-1}}^{+} C_{n} v_{1}$, where the indices (here and further) should be understood modulo n, and let $d_{j}=\left|D_{j}\right|$ denote the distance between $v_{i_{j-1}}$ and $v_{i_{j}}$ along the cycle C_{n} (according to its orientation). Let further

$$
s_{j}:=d_{j+1}+\ldots+d_{j+k-1} \quad \text { and } \quad m_{j}:=n_{j+1}+\ldots+n_{j+k-1}
$$

for $j=1, \ldots, 2 k-1$. Note that $d_{1}+\ldots+d_{2 k-1}=n$, and since $p>2 k$, then $n_{1}+\ldots+n_{2 k-1}<n$. Therefore, there must exist j for which $m_{j}<s_{j}$, since otherwise we would obtain the following contradiction:

$$
(k-1) n>(k-1) \sum_{j=1}^{2 k-1} n_{j}=\sum_{j=1}^{2 k-1} m_{j} \geq \sum_{j=1}^{2 k-1} s_{j}=(k-1) \sum_{j=1}^{2 k-1} d_{j}=(k-1) n .
$$

Set $W:=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{2 k-1}}\right\}$ and assume first that the converse is true for some j^{\prime}, i.e., $m_{j^{\prime}} \geq s_{j^{\prime}}$. Without loss of generality we may assume that $j^{\prime}=1$ and $j=2 k-1$ (i.e., $m_{2 k-1}<s_{2 k-1}$ and $m_{1} \geq s_{1}$), and $v_{i_{2 k-1}}^{+}=v_{1}$. We thus have:

$$
\begin{aligned}
n_{1}+\ldots+n_{k-1} \leq d_{1}+\ldots+d_{k-1}-1 & =\left|\left\{v_{1}, v_{2}, \ldots, v_{i_{k-1}}^{-}\right\}\right| \text {and } \\
n_{1}+n_{2}+\ldots+n_{k} \geq 1+d_{2}+\ldots+d_{k} & =\left|\left\{v_{i_{1}}, v_{i_{1}+1}, \ldots, v_{i_{k}}\right\}\right| .
\end{aligned}
$$

Then there exists $t, 1 \leq t \leq i_{1}$ such that for $U:=\left\{v_{t}, v_{t+1}, \ldots, v_{i_{k}}\right\}$ we have:

$$
\begin{align*}
n_{1}+\ldots+n_{k-1} & \leq|U|-1 \text { and } \tag{1}\\
n_{1}+\ldots+n_{k} & \geq|U| \tag{2}
\end{align*}
$$

Note that $U \cap W=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}$. Thus if $|U|=n_{1}+\ldots+n_{k}$, then by Lemma 5 and Corollary 6 we may find a realization $\left(V_{1}, \ldots, V_{k}\right)$ of $\left(n_{1}, \ldots, n_{k}\right)$ in the $k^{\text {th }}$ power of a path induced in G by U, and a realization of $\left(V_{k+1}, \ldots, V_{p}\right)$ of $\left(n_{k+1}, \ldots, n_{p}\right)$ in the remaining part of G in such a way that $v_{i_{1}} \in V_{1}, \ldots, v_{i_{2 k-1}} \in V_{2 k-1}$. If on the other hand $n_{1}+\ldots+n_{k}>|U|$, then by (1) there exist positive integers $n_{k}^{\prime}, n_{k}^{\prime \prime}$ such that $n_{1}+\ldots+n_{k-1}+n_{k}^{\prime}=|U|$ and $n_{k}^{\prime}+n_{k}^{\prime \prime}=n_{k}$. Let $G^{\prime}, G^{\prime \prime}$ be the $k^{t h}$ powers of paths induced, resp., by $U, V \backslash U$ in G, and let v_{a} be the first vertex after $v_{i_{k}}$ (according to the orientation of the cycle $\left.C_{n}\right)$ such that $v_{a} \in(V \backslash U) \backslash W$. Note that since $|(V \backslash U) \cap W|=k-1$, then v_{a} must be a neighbour of $v_{i_{k}}$. By Lemma 5 there exist realizations $\left(V_{1}, \ldots, V_{k-1}, V_{k}^{\prime}\right),\left(V_{k}^{\prime \prime}, V_{k+1}, \ldots, V_{p}\right)$ of $\left(n_{1}, \ldots, n_{k-1}, n_{k}^{\prime}\right),\left(n_{k}^{\prime \prime}, n_{k+1}, \ldots, n_{p}\right)$ in $G^{\prime}, G^{\prime \prime}$, resp., such that $v_{i_{1}} \in V_{1}, \ldots v_{i_{k-1}} \in V_{k-1}, v_{i_{k}} \in V_{k}^{\prime}$ and $v_{a} \in$
$V_{k}^{\prime \prime}, v_{i_{k+1}} \in V_{k+1}, \ldots, v_{i_{2 k-1}} \in V_{2 k-1}$. Then $\left(V_{1}, \ldots V_{k-1}, V_{k}^{\prime} \cup V_{k}^{\prime \prime}, V_{k+1}, \ldots, V_{p}\right)$ is a desired realization of τ in G.

Assume then that $m_{j}<s_{j}$ for every $j \in\{1, \ldots, 2 k-1\}$. Thus, in particular, neither k consecutive vertices of the cycle C_{n} can belong to W. Note also that since in particular $n_{2}+\ldots+n_{k}=m_{1}<s_{1}=d_{2}+\ldots+d_{k}$, then there must exist $i^{\prime} \in\{2, \ldots, k\}$ such that $n_{i^{\prime}}<d_{i^{\prime}}$. Without loss of generality we may assume that $i^{\prime}=k$ and $v_{i_{2 k-1}}=v_{0}$. Then if we set $b:=i_{k}-n_{k}$ and $V_{k}:=\left\{v_{b+1}, v_{b+2} \ldots, v_{i_{k}}\right\}$, then $\left|V_{k}\right|=n_{k}$ and $V_{k} \cap W=v_{i_{k}}$. Moreover, the sets $U_{1}:=\left\{v_{1}, v_{2}, \ldots, v_{b}\right\}, U_{2}:=V \backslash\left(U_{1} \cup V_{k}\right)$ induce $k^{\text {th }}$ powers of paths G_{1}, G_{2} in G such that $W \cap U_{1}=\left\{v_{i_{1}}, v_{i_{2}} \ldots, v_{i_{k-1}}\right\}, W \cap U_{2}=$ $\left\{v_{i_{k+1}}, v_{i_{k+2}} \ldots, v_{i_{2 k-1}}\right\}$ and $n_{1}+\ldots+n_{k-1}<\left|U_{1}\right|, n_{k+1}+\ldots+n_{2 k-1}<\left|U_{2}\right|$. If we then are able to divide the remaining elements $n_{2 k}, \ldots, n_{p}$ of τ into two groups, i.e. fix I_{1}, I_{2} with $I_{1} \cap I_{2}=\emptyset$ and $I_{1} \cup I_{2}=\{2 k, 2 k+1, \ldots, p\}$, such that $\sum_{i=1}^{k-1} n_{i}+\sum_{i \in I_{1}} n_{i}=\left|U_{1}\right|$ and $\sum_{i=k+1}^{2 k-1} n_{i}+\sum_{i \in I_{2}} n_{i}=\left|U_{2}\right|$, then the result follows by Corollary 6. Otherwise, there exist $r \in\{2 k, \ldots, p\}$ and two positive integers $n_{r}^{\prime}, n_{r}^{\prime \prime}$ such that $n_{r}=n_{r}^{\prime}+n_{r}^{\prime \prime}$ and $\sum_{i=1}^{k-1} n_{i}+\sum_{i=2 k}^{r-1} n_{i}+n_{r}^{\prime}=\left|U_{1}\right|$. Let v_{c} be the first vertex of U_{1} that does not belong to W, and let v_{d} be the last vertex of U_{2} that do not belong to W. Since W cannot contain k consecutive vertices of C_{n}, then v_{c} and v_{d} are neighbours. By Lemma 5 there exist realizations $\left(V_{1}, \ldots, V_{k-1}, V_{r}^{\prime}, V_{2 k}, \ldots, V_{r-1}\right),\left(V_{k+1}, \ldots, V_{2 k-1}, V_{r}^{\prime \prime}, V_{r+1}, \ldots, V_{p}\right)$ of $\left(n_{1}, \ldots, n_{k-1}, n_{r}^{\prime}, n_{2 k}, \ldots, n_{r-1}\right),\left(n_{k+1}, \ldots, n_{2 k-1}, n_{r}^{\prime \prime}, n_{r+1}, \ldots, n_{p}\right)$, resp., such that $v_{i_{1}} \in V_{1}, \ldots, v_{i_{k-1}} \in V_{k-1}, v_{c} \in V_{r}^{\prime}$ and $v_{i_{k+1}} \in V_{k+1}, \ldots, v_{i_{2 k-1}} \in$ $V_{2 k-1}, v_{d} \in V_{r}^{\prime \prime}$. Then $\left(V_{1}, \ldots, V_{r-1}, V_{r}^{\prime} \cup V_{r}^{\prime \prime}, V_{r+1}, \ldots, V_{p}\right)$ is a desired realization of τ.

Corollary 9 For every hamiltonian graph G with at least $2 k$ vertices, G^{k} is $A P+(2 k-1)$.

References

[1] D. Barth, O. Baudon, J. Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Appl. Math., 119(3) (2002) 205-216.
[2] D. Barth, H. Fournier, A degree bound on decomposable trees, Discrete Math. 306(5) (2006) 469-477.
[3] O. Baudon, F. Gilbert, M. Woźniak, Recursively arbitrarily vertex decomposable suns, Opuscula Math. 31(4) (2011) 533-547.
[4] E. Győri, On division of graphs to connected subgraphs, Colloq. Math. Soc. János Bolyai No. 18, Combinatorics (1976) 485-494.
[5] M. Horňák, M. Woźniak, Arbitrarily vertex decomposable trees are of maximum degree at most six, Opuscula Mathematica 23 (2003) 49-62.
[6] M. Horňák, M. Woźniak, On arbitrarily vertex decomposable trees, Discrete Math. 308 (2008) 1268-1281.
[7] M. Horňák, A. Marczyk, I. Schiermeyer, M. Woźniak, Dense Arbitrarily Vertex Decomposable Graphs, Graphs and Combin., to appear.
[8] L. Lovász, A homology theory for spanning trees of a graph, Acta Mathematica Academiae Scientiarum Hungaricae 30(3-4) (1977) 241-251.
[9] T.H. Miyano, T. Nishizeki, N. Takahashi, S. Uneo, An algorithm for tripartitioning 3-connected graphs, Journal of Information Processing Society of Japan 31 (1990) 584-592.
[10] S. Nakano, S. Rahman, T. Nishizeki, A linear-time algorithm for fourpartitioning four-connected planar graphs, Inform. Process. Lett. 62(6) (1997) 315-322.
[11] R. Ravaux, Decomposing trees with large diameter, Theoret. Comput. Sci. 411 (2010) 3068-3072.
[12] H. Suzuki, N. Takahashi, T. Nishizeki, A linear time algorithm for bipartition of biconnected graphs, Inform. Process. Lett. 33 (1990) 227-231.

[^0]: *This research was partially supported by the partnership Hubert Curien Polonium 22658 VG . The research of the third and fourth author was partially supported by the Polish Ministry of Science and Higher Education.

