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CONSTRUCTION OF THE PAULI-VILLARS-REGULATED
DIRAC VACUUM IN ELECTROMAGNETIC FIELDS

PHILIPPE GRAVEJAT, CHRISTIAN HAINZL, MATHIEU LEWIN, AND ERIC SERE

ABSTRACT. Using the Pauli-Villars regularization and arguments from
convex analysis, we construct solutions to the classical time-independent
Maxwell equations in Dirac’s vacuum, in the presence of small external
electromagnetic sources. The vacuum is not an empty space, but rather
a quantum fluctuating medium which behaves as a nonlinear polariz-
able material. Its behavior is described by a Dirac equation involving
infinitely many particles. The quantum corrections to the usual Maxwell
equations are nonlinear and nonlocal. Even if photons are described by a
purely classical electromagnetic field, the resulting vacuum polarization
coincides to first order with that of full Quantum Electrodynamics.
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1. INTRODUCTION

In classical Physics, a time-independent external density of charge pext
and a charge current jexy induce a static electromagnetic field (Fexy =
—VVext, Bext = curl Aeyt), which solves Maxwell’s equations in Coulomb
gauge:

_A‘/ext =4 € Pext
_AAext = 47Tejext, (11)
div Aext == 0,
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where e is the elementary charge. It is convenient to gather the electro-
static and magnetic potentials in a unique vector Aext = (Vext, Aext) called
the four-potential, which we will do in the whole paper. The electromag-
netic potential Aeyt solving (1.1) is the unique critical point of the (time-
independent) Maxwell Lagrangian action functional

A 1
Prextidext(A) = / <‘VV(35)’2 — ]curlA(x)P) dz
R3

T 8m
- e/ Pext () V (x) dz + e/ Jext(z) - A(x) dz, (1.2)
R3 R3

which is strictly convex with respect to V' and strictly concave with respect
to A. In particular we can obtain A. by a min-max procedure:

_GPPextJext (Aext) — H%/in mj‘x _GPPextsJext (V, A) _ mgx H%/in _GPPextJext (V, A)

where the constraint div A = 0 is always assumed.

The situation is much more complicated in Dirac’s vacuum. It has been
known for a long time that, in reality, the vacuum is not an empty space, but
rather a quantum fluctuating medium which behaves as a nonlinear polariz-
able material [14, 13, 27, 36, 21]. In this medium, virtual electron-positron
pairs induce a polarization in response to external fields. The resulting elec-
tromagnetic field which is observed in experiments has to take into account
the vacuum polarization effects. The corresponding four-potential A, solves
coupled nonlinear Maxwell equations of the form

AV, =4re (pvac(eA*) + pext)a
_AA* =A4re (jvac(eA*) +jext)7 (13)
divA, =0.

Here pyac(eAy) and jyac(eA,) are respectively the charge density and the
charge current induced in the vacuum. As we shall explain, they are non-
linear and nonlocal functions of eA..

The Dirac vacuum is described by Quantum Field Theory, that is, by a
second-quantized fermion field. The charge and current densities py,.(eAx)
and jyac(eA,) are obtained by minimizing the energy of this field in the
presence of the given potential eA,. In this model the interaction between
the Dirac particles is mediated by the classical electromagnetic field which
accounts for photons. This approach to vacuum polarization is usual in the
Physics literature (see, e.g., [36, 20]).

The main idea behind the nonlinear Maxwell equations (1.3) is that the
vacuum behaves as a nonlinear medium, and the form of the equation is
reminiscent of nonlinear optics. The nonlinear effects are in practice rather
small since e has a small physical value, but they become important in the
presence of strong external sources, which can produce electron-positron
pairs in the vacuum. Already in 1933, Dirac computed in [9] the first or-
der term obtained by expanding pyac(eAy) in powers of e. The nonlinear
equations (1.3) was then studied by Euler, Heisenberg, Kockel and Weis-
skopf among others [14, 13, 27, 46]. In a celebrated paper, Schwinger [36]
used (1.3) (and a time-dependent version of it) to derive the probability of
pair creation by tunneling in a strong electrostatic field. For more recent
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works on the subject, see the references in [20]. Several ongoing experiments
aim at detecting some nonlinear effects of the vacuum in the laboratory [6].

Like for the usual Maxwell equations (1.1), the nonlinear equations (1.3)
in Dirac’s vacuum arise from an effective Lagrangian action, which now
includes the vacuum energy

ppesvdext(A) = 1 / <|VV($)|2 - |curlA(a:)|2> dx
R3

T 8w
- e/ Pext () V (x) dz + e/ Jext(7) - A(x) dz — Fyac(eA). (1.4)

Here Fyac(eA) is the ground state energy of Dirac’s vacuum in the potential
eA. The densities of the vacuum are then defined by
A) = 0 F. A d jvac (A) = 9 F. A 1
6pvac( ) = W Vac(6 ) an e]vac( ) = _8_A vac(e ) ( 5)
We note that the vacuum correction —Fy,c(eA) to Maxwell’s Lagrangian has
been computed to first order in the semi-classical approximation in [28, 36].

It is not so easy to provide a rigorous definition of the vacuum energy
Frac(eA). Tt is well-known that this quantity is divergent in the high energy
regime and an ultraviolet regularization has to be imposed. In this paper we
use the famous Pauli-Villars regularization method [32] to properly define
the vacuum energy Fyac(eA) (Theorem 2.1 below). Then we are able to
state our main result (Theorem 2.4 below), which gives the existence of
a critical point of the effective Lagrangian action (1.4), when the external
sources pext and jext are not too large. As a corollary, we obtain solutions
to the nonlinear Maxwell equations (1.3).

This article is the continuation of several works dealing with the Hartree-
Fock approximation of Quantum ElectroDynamics (QED), some of them
in collaboration with Solovej, [22, 23, 25, 24, 18, 19], and which originated
from a seminal paper of Chaix and Iracane [4]. There, only the purely
electrostatic case was considered. To our knowledge, the present work is the
first dealing with electromagnetic fields in interaction with Dirac’s vacuum.

Acknowledgements. M.L. and E.S. acknowledge support from the French
Ministry of Research (Grant ANR-10-0101). M.L. acknowledges support
from the European Research Council under the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement MNIQS
258023). We are also grateful to the referees for their careful reading of the
manuscript.

2. MAIN RESULTS

2.1. Elementary properties of electromagnetic Dirac operators. Be-
fore entering the main subject of this article, we recall some elementary
spectral properties of the Dirac operator in the presence of electromagnetic
fields [43, Chap. 4].

We work in a system of units such that the speed of light and Planck’s
reduced constant are both set to one, ¢ = h = 1. We introduce the Dirac op-
erator with mass m, elementary charge e and electromagnetic four-potential
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A= (V,A),
Diea =a-(—iV —eA(z)) + eV (z) + mB3 (2.1)

which is an operator acting on L2(R3,C*). Here the four Dirac matrices
a = (o, a9, a3) and 3 are equal to

L 0 g L IQ 0
ak"(ak 0> and B'_<0 —IQ)’

the Pauli matrices o1, o9 and o3 being defined by

0 1 0 —i 1 0
0'1::<1 O)’ 0'2::<Z. 0> and 03::<O _1>.

The spectrum of the free Dirac operator is not semi-bounded [43],
(Do) = (—o0, —m| U [m, 00).

As we will recall below, the unbounded negative spectrum of D, o led Dirac
to postulate the existence of the positron, and to assume that the vacuum is a
much more complicated object than expected. The mathematical difficulties
arising from the negative spectrum are reviewed for instance in [12].

In our setting, the natural space for the four-potential A = (V, A) is the
Coulomb-gauge homogeneous Sobolev space

i3, (%) = {4 = (v, 4) € SR, RY)
divA=0and F = (—~VV,curl 4) € LQ(R?’,RG)}, (2.2)
endowed with its norm
1Al @) = IVVIIE2@s) + [l curl Al 72 gs) = [1F 72 gs)- (2:3)

Here and everywhere, the equation div A = 0 is understood in the sense
of distributions. The requirement F € L?(R3) simply says that the elec-
trostatic field F = —VV and the magnetic field B = curl A have a finite
energy,

/ E?| + B < .
RS

Lemma 2.1 (Elementary spectral properties of Dy, 4). Let m > 0.

(i) Any four-potential A € HY (R3) is Dy, o-compact. The operator Dy, a
is self-adjoint on H'(R3) and its essential spectrum is

Uess(Dm,A) = (_OO, —m] U [m, OO)

(13) The eigenvalues of Dy, o in (—m,m) are Lipschitz functions of A in
the norm ||A||Hc11‘ (R3)"

(791) There exists a universal constant C such that, if
1Al g < v, 24)
for some number n < 1/C, then
7(Dm,a) N (=m(1 = Cn), (1 = Cn)m)
(iv) Finally, if V =0, then 0(Dy,,a) N (—m,m) = 0.

0.
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Proof. Recall the Kato-Seiler-Simon inequality (see [37] and [39, Thm. 4.1])
. 1
22 @)=V, = —=[Ifllsll9ll - (2.5)
(2n)7
where &, is the usual Schatten class [39]. Applying (2.5) with p = 6 together
with the Sobolev inequality, we obtain

1 C c
HVDm,O‘GG < ﬁHVHLG < ﬁHVVHLQ’

and, similarly,

1 ‘ < C | C ‘
Dpolles = /m vm
where we have used that divA = 0. Since all the operators in &g are

compact, statements (7) and (iz) follow from usual perturbation theory [29,
35]. Concerning (7ii), we notice that

‘a-A

[All o < —= |l curl 4|,

D a (Do) ™ = (14 (V- 4) Dl )

m,0
so that, under condition (2.4),
{Dm,A‘ > (1 - Cn){Dm,O‘
Statement (7ii) then follows from (¢), whereas (iv) is [43, Thm 7.1]. O

2.2. The Pauli-Villars-regulated vacuum energy.

2.2.1. Derivation. We are now ready to define the energy of the vacuum,
using Quantum Field Theory. We consider a fermionic second-quantized
field, placed in a given electromagnetic potential A. Later, the potential A
which describes light and external sources will be optimized. In this section
it is kept fixed and we shall look for the ground state energy of the Dirac
field in the given A. Our second-quantized field only interact through the
potential A, there is no instantaneous interaction between the fermions.
The Hamiltonian of the field reads
HeA .= %/3 (qz*(x)Dm,eAsz(m) - \IJ(x)Dm@A\II*(x))dx, (2.6)
R

where W(z) is the second-quantized field operator which annihilates an elec-
tron at = and satisfies the anti-commutation relation

U (2)e ¥ (y)y + Y (y)y ¥V (2)o = 206,,6(x — y). (2.7)

Here 1 < o,v < 4 are the spin variables and ¥(z), is an operator-valued
distribution. The Hamiltonian H4 formally acts on the fermionic Fock
space F = C & Py, /\le L?(R3,C*). The proper interpretation of the
expression in parenthesis in (2.6) is

U*(2) D ea¥(z) — ¥(2) D ea¥™(x)

4
=) V(@) (Din,ea) , ¥ (@) — ¥(2)u(Dmea) , ¥ (2),.
pn,v=1
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This choice is made to impose charge-conjugation invariance [25],
%HeA(gfl — erA
where € is the charge-conjugation operator in Fock space [43].

For any fixed A, the Hamiltonian (2.6) is a quadratic polynomial in the
creation and annihilation operators ¥*(x) and W(x). It is therefore very
well understood. The expectation value in any state in Fock space can be
expressed as

(HY) = tr Dypea (v - %) (2.8)

where v is the one-particle density matrix of the chosen state, namely

Y@, Y)ow = (T (2)e ¥ (Y)v).

The subtraction of half the identity comes from charge-conjugation invari-
ance. The details of this calculation can be found in [25]. Because electrons
are fermions, it is known that « must satisfy the constraint 0 < v < 1 on
L?(R3,C*), which is called the Pauli principle. Conversely, any operator -y
such that 0 <~ <1, arises (at least formally) from one state in Fock space.
Since the energy only depends on the quantum state of the electrons through
the operator v, we can refrain from formulating our model in Fock space and
only use the simpler operator v and the corresponding energy (2.8).

We note that the energy (2.8) is gauge invariant. Namely, it does not
change if we replace A by A+ Vx and 7 by e*X~ye~%X for any function .

Remark 2.1. A preferred state among those having v as one-particle den-
sity matrix is the unique associated quasi-free state [2], also called (general-
ized) Hartree-Fock state. So the main simplification with the model of this
paper is that, when the electromagnetic field is purely classical, the ground
state of the Hamiltonian is always a quasi-free state. Hartree-Fock theory
is exact here, it is not an approximation. This simplification does not occur
when the photon field is quantized.

We are interested in finding the ground state of the vacuum, which cor-
responds to minimizing (2.8) with respect to . For atoms and molecules,
we would impose a charge constraint of the form

1
tr (7 — 2) = N.
In this paper we restrict ourselves to the vacuum case for simplicity, and we
thus do not have any other constraint than 0 < « < 1. The formal minimizer
of the energy (2.8) is the negative spectral projector

7 =10 <Dm,eA>-

The interpretation is that the polarized vacuum consists of particles filling
all the negative energies of the Dirac operator D;, .4, in accordance with
the original ideas of Dirac [7, 8, 9].!

IFor atoms and molecules, the vacuum projector 1(_ oy(---) has to be replaced by a
spectral projector of the form 1(_ ,)(-- ), for some chemical potential 4 which is chosen
to ensure the correct number N of electrons in the gap (more precisely the correct total
charge of the system). Except from this change of chemical potential, the equations take
exactly the same form.
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The corresponding ground state energy is

. 1 1
021;21 tr Dy ea <7 — 5) =3 tr {Dm,eA{- (2.9)
Of course this energy is infinite, except if our model is settled in a box with
an ultraviolet cut-off [25].

Here and everywhere in the paper, the absolute value of an operator is
defined by the functional calculus

IC| = VC+C.

It is in general not a scalar operator, that is, it may still depend on the spin.
In the special case of D,,, it does not depend on the spin, however, since
it is the scalar pseudo-differential operator

‘Dm,0| =+vV-A+m2

In order to give a clear mathematical meaning to (2.9), we argue as follows.
First, we can subtract the (infinite) energy of the free Dirac sea and define
the relative energy as

Fea(ed) = 3 tr (|Dmo| = [Deal ) (2.10)

Since we have removed an (infinite) constant, we formally do not change the
variational problem in which we are interested, hence we also do not change
the resulting equations.

Unfortunately, the functional (2.10) is not yet well-defined, because the
model is known to have ultraviolet divergences. Indeed, the operator | Dy, o|—
|Dimeal is not trace-class when A # 0, which is reminiscent of the fact that
the difference of the two corresponding negative projectors is never Hilbert-
Schmidt [31]. This can be seen by formally expanding the trace in a power
series of eA. The first order term vanishes and the second order term is
computed in Section 4.2 below. It is infinite if no high energy cut-off is
imposed.

In order to remove these divergences, an ultraviolet cut-off has to be
imposed. The choice of this regularization is extremely important. When
the trace of | Dy, 0| — [Dm,eal is expanded as a power series of eA, several
terms which look divergent actually vanish because of gauge invariance. In
addition to obvious physical motivations, it is necessary to keep the gauge
symmetry for this reason. Some simple choices in the spirit of what we have
done in the purely electrostatic case (see, e.g. [18] for two different choices)
would not work here, because of their lack of gauge symmetry.

In 1949, Pauli and Villars [32] have proposed a very clever way to regular-
ize QED, while keeping the appropriate invariances. It is this technique that
we will use in this paper (but there are other choices, like the famous dimen-
sional regularization [30]). The Pauli-Villars method consists in introducing
J fictitious particles in the model, with very high masses m1, ..., m playing
the role of ultraviolet cut-offs.? These particles have no physical significance
and their role is only to regularize the model at high energies. Because of

2Since in our units ¢ = h = 1, m has the dimension of a momentum.
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their large masses, they do not participate much in the low energy regime
where everyday Physics takes place.

In our language, the Pauli-Villars method consists in introducing the fol-
lowing energy functional

J
Fov(eA) : <ch (1Dm0] = |ij,eA\)>, (2.11)

Jj=0

see Remark 2.2 below for some details. Here mg = m and ¢y = 1, and the
coefficients ¢; and m; are chosen such that

J J
ch = ch m? = 0. (2.12)
j=0 j=0

It is well-known in the Physics literature [32, 20, 3] that only two auxiliary
fields are necessary to fulfill these conditions, hence we shall take J = 2 in
the rest of the paper. In this case, the condition (2.12) is equivalent to

2 2 2 2

mog—m my —m
(=0Tl = I (2.13)

m2—m1 m2—m1

We will always assume that mg < mj < mg, which implies that ¢; < 0 and
co > 0.

The role of the constraint (2.12) is to remove the worst (linear) ultraviolet
divergences. In the limit m1, mo — 00, the regularization does not prevent
a logarithmic divergence, which is best understood in terms of the averaged
ultraviolet cut-off A defined as

log(A?) : Z ¢jlog(m (2.14)

The value of A does not determine my and ms uniquely. In practice, the
latter are chosen as functions of A such that ¢; and ¢y remain bounded when
A goes to infinity.

That the model is still logarithmically divergent in the averaged cut-off
A can again be seen by looking at the second order term in the expansion,
given by (2.20) and (2.22) below. Removing this last divergence requires a
renormalization of the elementary charge e. This can be done following the
method that we used in the purely electrostatic case with a sharp cut-off
n [19], but it is not our goal in this paper.

Remark 2.2. In our language the fictitious particles of the Pauli-Villars
scheme are described by density matrices v;, with 79 = 7 and the divergent
energy of the vacuum is chosen in the form
J

> ¢j tr Dy ealy; — 1/2)

§=0
instead of (2.8). When optimizing the energy subject to the Pauli principles
0 < v; <1, one has to minimize over the matrices ; such that ¢; > 0
and maximize over those such that ¢; < 0. Adding the infinite constant
Z}'Izo ¢j t1| D, 0]/2 gives Formula (2.11).
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2.2.2. Rigorous definition. Our main result below says that the energy func-
tional A — Fpy(A) is well defined for a general four-potential A = (V, A)

in the energy space H} (R?) (and which therefore satisfies the Coulomb
gauge condition div A = 0).

Theorem 2.1 (Proper definition of Fpy). Assume that c; and m; satisfy

2 2
co=1, mo>my>mg>0 and ch = cjm? =0. (2.15)
=0 =0
(i) Let
12
Ta =5 ¢ (|Dmyof = | Dy )- (2.16)
=0

For any A € L'(R3,RY) N HL (R3), the operator trca Ta is trace-class on
L?(R3,C). In particular, Fpv(A) is well-defined in this case, by

fpv(A) = tr (tr(c4 TA). (2,17)

(i) The functional Fpy can be uniquely extended to a continuous mapping
on Hdliv (R?))
(iii) Let A € HY. (R3). We have

‘fPV(A) = Fo(F) +R(A),

where F := (E,B), with E = —VV and B = curl A. The functional R is
continuous on H} (R3) and satisfies

rean <o () pel - (S )ie ). e

=0 j=0 "J

(2.18)

for a universal constant K.

(iv) The functional Fa is the non-negative and bounded quadratic form on
L?(R3,R*) given by

1 SN2 B2
F)=— M(k)||B(k)|” — |E(k dk 2.20
FaF) =5 [ MO)(|BOIP = |B@)P)ab. 220)
where
2 & L
M(k) === ¢ / w(1 — u)log (m? + u(l — u)|k[*) du. (2.21)
T~ 0
Jj=0
The function M is positive and satisfies the uniform estimate
2log(A
0 < M(k) < M(0) = O?:i) (2.22)
T

where A was defined previously in (2.14).

Let us emphasize the presence of the C*-trace in statement (i) about
the trace-class property of trcaT4. We do not believe that the operator
is trace-class without taking first the C*-trace, except when V = 0. If we
are allowed to take more fictitious particles by increasing the numbers of
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auxiliary masses, it is possible to obtain a trace-class operator under the

additional conditions
chmj = chm;’ =0.
J J

At least four auxiliary masses are then necessary. The terms which are not
trace-class when only two fictitious particles are used, actually do not con-
tribute to the final value of the energy functional Fpy (their trace formally
vanishes). For this reason, we have found more convenient to first take the
C*-trace (which is enough to discard the problematic terms) and limit our-
selves to two fictitious particles, as is usually done in the Physics literature.
This suffices to provide a clear meaning to the energy.

The function M describes the linear response of the Dirac sea. It is well-
known in the Physics literature [20, Eq. (5.39)]. We will see below that

lim
A—oo

(210gA

2 1 2'2 _ 24
8 arw) v = 5L B )

4 14 |k]2(1—22)/4

The function in the right-hand side of (2.23) was first computed by Ser-
ber [38] and Uehling [44]. The same function U already appeared in our
previous works dealing with pure electrostatic potentials [26, 23, 19]. This
is a consequence of the gauge and relativistic invariances of full QED.

Our proof of Theorem 2.1 in Sections 3 and 4 below, consists in expanding
the energy Fpy(A) in powers of the four-potential A. We use the resolvent
expansion at a high but fixed order and therefore our main result is valid for
all A’s, not only for small ones. All the odd order terms vanish (by charge-
conjugation invariance). The second order term is given by the explicit
formula (2.20) and it is responsible of the logarithmic ultraviolet divergences.
It will be important for our existence proof that this term be strictly convex
in A and strictly concave in V. We also have to deal with the fourth order
term in some detail. The latter was computed in the Physics literature
in [28] and our task will be to estimate it. The higher order terms are
then bounded in a rather crude way, following techniques of [22]. The main
difficulty in our work is to verify that the Pauli-Villars conditions (2.12)
induce the appropriate cancellations in the few first order terms, and to
estimate them using the L?-norm of the electromagnetic fields and nothing
else.

In spite of its widespread use in quantum electrodynamics, the Pauli-
Villars scheme [32] has not attracted a lot of attention on the mathematical
side so far (see [16, 40, 41, 42, 15] for some previous results). Theorem 2.1
seems to be among the first in this direction.

2.2.3. Differentiability. After having properly defined the functional Fpvy,
we need some of its differentiability properties, in order to be able to define
the charge and current densities of the vacuum by (1.5). In this direction,
we can prove the following

Theorem 2.2 (Differentiability of Fpy). Assume that ¢; and m; satisfy
conditions (2.15).
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(i) Let A € H} (R3) be such that 0 is not an eigenvalue of the operators
Din;.a for j =0,1,2. Then the functional Fpy is C* in a neighborhood of
A

(i) The first derivative of Fpy is given by
Wy ) 0.0) = [ (pa—ia) 0 (220)

forall (v,a) € HéiV(Rg), where the density pa and the current ja are defined
as

pa(z) = [trca Qal(z,z) and ja(z):= [trcs aQal(z,z),  (2.25)
and with Qo refering to the kernel of the operator

2
Qa =) ¢j1(-o00)(Dm; a).
j=0
The operators trca Qa and tres apQa for k =1,2,3 are locally trace-class

on L2(R3,C*), and pa and ja are well-defined functwns in Li (R¥)NC,
where C is the Coulomb space

C:= {f R® = C: /RS ‘J](]jf dk < oo} = HY(R3). (2.26)

(1ii) There exists a universal constant n > 0 such that the second derivative

of Fpv satisfies the estimate
1 (=M 0 ;]
erva) -1 (" ) gzK(zg S Ak, @20
j

for all A such that HAHHéiV(R?’) < ny/mg = nym.

Our estimate (2.27) means more precisely that

'<A',d2fpv(A) Ay - i/ M(k)(@(k)\2 - \E\f(k)f) dk‘

47

|CJ ’
<o (S D) gy 140
7=0
when A is small enough in H} (R?).
As a consequence of Lemma 2.1 and Theorem 2.2, we obtain

Corollary 2.1 (Regularity in a neighborhood of 0). There ezm'sts a positive
radius n such that the functional Fpy is C*> on the ball B(n) := {A €

H(}iv(R?’) : ”AHH}M(R;},) < ny/mo}. On this ball, the dzﬁerentml dFpy is
given by (2.24), whereas d2Fpy satisfies estimate (2.27).

Proof. We fix n such that

Cn<1,
where C' is the constant in statement (7ii) of Lemma 2.1. For this choice,
given any four-potential A in the ball B(n), 0 is not an eigenvalue of each
of the operators Dy, a. Corollary 2.1 then follows from Theorem 2.2. [
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2.3. Solutions to the Maxwell equations in Dirac’s vacuum. In this
section, we explain how to use Theorems 2.1 and 2.2 in order to get the
stability of the free Dirac vacuum, and to construct solutions to the nonlinear
Maxwell equations. The proofs of Theorems 2.1 and 2.2 will be detailed
later.

Let e > 0 be the (bare) charge of the electron. Assume that ¢y = 1,
and that ¢; and m; satisfy (2.12). We work under the condition that e < e
for some fixed constant € (e is not allowed to be too large, but it can be
arbitrarily small). All our constants will depend on €, but not on e. Note
that e is dimensionless here because we have already set the speed of light
equal to 1.

Using Theorem 2.1, we can properly define the effective electromagnetic
Lagrangian action by

A 1
LEFI(A) = —Fpy (eA) + o /RS [VV[? — |curl A

— e/ PextV + e/ Jext - A, (2.28)
R3 R3

forall Ac H Clﬁv(R?’), the Coulomb-gauge homogeneous Sobolev space. Our
purpose will be to construct a critical point of this Lagrangian, which will
in the end solve the nonlinear equations (1.3).

Remark 2.3. In this paper we have considered a second-quantized Dirac
field which only interacts with a classical electromagnetic field. There is an-
other way to arrive at exactly the same Lagrangian action (2.28), which is
closer to our previous works [22, 23, 25, 24, 18, 19]. We start with Coulomb-
gauge QED with quantized transverse photons. Then, we restrict our at-
tention to special states in Fock space of the form Q = Qpp ® Qcon, Where
Qur is an electronic (generalized) Hartree-Fock state characterized by its
one-particle density matrix 0 < v < 1, and Q¢on is a coherent state for
the photons, characterized by its magnetic potential A(z) (a given classical
magnetic potential in R?). We thereby get a Hartree-Fock model coupled to
a classical magnetic field. Because of the instantaneous part of the Coulomb
interaction, the model contains an exchange term. When this term is ne-
glected, one obtains the exact same theory as in this paper. In relativistic
density functional theory [11], the exchange term is approximated by a local
function of p,_1/o and j,_1/2 only.

2.3.1. Stability of the free Dirac vacuum. In the vaccum case pext = Jext = 0,
we have the obvious solution A = 0. The following theorem says that 0 is
stable in the sense that it is a saddle point of the effective Lagrangian action,
with the same Morse index as for the classical Maxwell Lagrangian action.
This can be interpreted as the stability of the free vacuum under its own
electromagnetic excitations.

Theorem 2.3 (Stability of the free Dirac vacuum). Assume that ¢; and m;
satisfy (2.15). The four-potential A =0 is a saddle point of L8\ It is the
unique solution to the min-max problem

L (0,0) = min L (V,0) = max L0, 4), (2.29)
[VV]|, 2 <0 [| curl A o <0

e e
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or, equivalently,

#0,(0,0) =  min sup Zov(V,4)
IVVI2 <™ |l curl AJl 2 <"/ (2.30)
o inf A0 (V,A), |

[curl Al| o <™ || VY2 <0

e

for some positive radius r which only depends on 25:0 lcj|(mo/m;) and e
(the largest possible value of e).

The result is a direct consequence of the properties of the functional F»
defined in (2.20), as well as of the regularity properties of Fpy.

As we have seen we can let the cut-off A go to oo (which implies that
mo/m; — 0 for j = 1,2), while keeping ¢; and ¢; bounded. We therefore
see that the radius r of the ball of stability of the free vacuum does not go to
zero in the limit A — oo if the bare parameters e and mg are kept bounded.

For A = 0, the electrostatic stability of the free Dirac vacuum was pointed
out first by Chaix, Iracane and Lions [4, 5] and proved later in full generality
in [1, 22, 23]. It is possible to include the exchange term and even establish
the global stability of the free Dirac vacuum [22, 23, 24]. Dealing with
magnetic fields is more complicated and, so far, we are only able to prove
local stability, using the Pauli-Villars regularization. Because of lack of
gauge symmetry, it is not clear whether the free Dirac sea is still stable
under magnetic excitations when a sharp ultraviolet cut-off is used.

Proof. We choose r > 0 such that

2
; 1
r<n/V2 and 2K<Z @)mo (r? + 2m0r4) < s (2.31)

m
j=0 7

where K is the constant appearing in (2.19), and where 7 is the constant
in statement (#i7) of Theorem 2.2. We recall that e < e. Consider now any
A such that |VV|| 2 <ry/mg/e and | curl A2 < ry/mg/e (which implies
HAHH}M(R?)) = ||F||12 < v2mgr/e). By (2.19), we have

2 2 e
| Fpv(eA) — Fo(eF)| < K((Z %)&HFH; + (Z ‘m—g’>e6uFH§2>

j=0 "7 j=0 "J

2
c:
< 2K<Z %)mo(TQ + 2m07“4)e2HFH%2
Jj=0

1

< LF|.

(2.32)
Using Formula (2.20) for F», we get

2
L0y > & / M)ER)P dk > 0,
87'(' R3

with equality if and only V = 0, since M > 0. Similarly,

2 A~
L (0,4) < —— | M®)|BH)*dk <0,

™ JR3
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with equality if and only A = 0. Thus we have shown (2.29). The equiva-
lence between (2.29) and (2.30) is a classical fact of convex analysis, see [10,
Prop. 1.2, Chap. VI].

Finally, since we can deduce from (2.27) that

2
1 (1+e2M 0
2 0 ot 2 =1 2
d°Zpy (A) 47T< 0 —1—62M>H§2K6 <ZOmJ>HFHL2
J:

< 4Km (ZO\CJD

for eHAHH(}iV(R?)) < rv2mg < ny/myg, we deduce that £, is strictly convex

with respect to V' and strictly concave with respect to A, provided that r
satisfies the additional condition

2
: 1
4Km0<z Li—f')ﬁ <3 (2.33)
J

J=0

This implies uniqueness of the saddle point by [10, Prop 1.5, Chap. VI]. O

2.3.2. Solution with external sources. We now come back to our initial prob-
lem and consider an external density pext and an external current jext. It
will be convenient to express our result in terms of the size of

1 . 1
Vext = € Pext * T and  Aext = € Jext * 77,
|z| |z|

which are the corresponding potentials when the vacuum does not react.
We look for a saddle point of the Lagrangian action Z5¢"7** defined above
n (2.28).

Theorem 2.4 (Nonlinear Maxwell equations in small external sources).
Assume that c; and m; satisfy (2.15). Let r be the same constant as in
Theorem 2.3.

(i) For any
T—ngo, (2.34)

eHAext HHCIUV(RS) <

there exists a unique solution A. = (Vi,A,) € H} (R?) to the min-maz
problem

$£$ct7]ext(A*) — HliDT _ g{)}\e}ctﬂext(v’ A*)

IVVIl 2 <=5

A (2.35)
= max GV A)
[ curl A]| ;2 < ‘ée_o
or, equivalently, to
$£$ct7]ext (A*) — min sup gg:/xh]ext (A)
T/,
IVVIL2 <2522 |lcurl Al o <70
(2.36)

= max inf LEFI(A).
[curl Al 2 <™70  [[VV]|2< 00
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(i) The four-potential Ay is a solution to the nonlinear equations

—AV; = 4re (peA* + pext)’
{ —AA, = 47e (jea, + Joxt ) (237)

where pea, and jea, refer to the charge and current densities of the Pauli-
Villars-regulated vacuum

2
Qe =D ¢ 1(—o00)(Dmyen. ) (2.38)
Jj=0

defined in Theorem 2.2.

Equations (2.37) and (2.38) are well known in the Physics literature (see,
e.g., [11, Eq. (62)—(64)]). Solutions have been rigorously constructed in the
previous works [22, 23, 25], with a sharp ultraviolet cut-off, but in the purely
electrostatic case Aoyt = Ax = 0. In this special case it is possible to obtain
the polarized vacuum as a global minimizer. The method of [22, 23, 25] does
not seem to be applicable with magnetic fields, however. To our knowledge,
Theorem 2.4 is the first result dealing with optimized magnetic fields in
interaction with Dirac’s vacuum.

The proof of Theorem 2.4 is based on tools of convex analysis, using that
LI has the local saddle point geometry by Theorem 2.1.

Proof. Let us define the balls
By(r):={V € LS(R3,R) : ¢|VV 2 < ry/mo},

and
Ba(r):={Ae€ LO(R3,R3) : ef curl 4|2 < /Mg }.

As we have already shown in the proof of Theorem 2.3, when r satisfies
condition (2.31), the function A — £, (A) is strictly convex with respect
to V and strictly concave with respect to A on By (r) x Ba(r). We deduce
that

A~ gPQV(A) + e/ jext “A— pextv
R3

satisfies the same property.

We now assume that the external field Aext € By (er) x Ba(er) for some
e < 1/3 to be chosen later, and we look for a saddle point in By(3er) x
Ba(3er). Since ZEy*7" is strongly continuous on By (3er) x Ba(3er) by
Theorem 2.1, a classical result from convex analysis implies that ZJ5y 7
possesses at least one saddle point A, = (Vi, As) € By(3er) x Ba(3er),

solving

gﬂext,jext A — mln gﬂextyjext V A — max gﬂext,jext V A .
Py (A VeBy(3er) TV (V4 A€Ba(3er) PV (Va, 4)

See for instance [10, Prop. 2.1, Chap. VI|. Uniqueness follows from the
strict concavity and convexity, by [10, Prop 1.5, Chap. VI].
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It only remains to verify that A, does not lie on the boundary of By (3er) x
Ba(3er). Similarly as in (2.32), we first compute

2 ) 6
A/ _ F/ <K M 4 FI 4 6_ F/ 6
Fovled)) - FafeF')| < (Z%m NI+ s
3oy
8

for all A’ € By (3er) x Ba(3er), when r satisfies (2.31) and ¢ < 1/3. We
obtain with Beyt 1= curl Aeyt

(2.39)

< 1F711Z2.

g}g:;mjexc (V, A) i gg{e;cc 7jext(v7 O)

1 1 3e)?
g—lez(o,B)——/ B2+—/ Bext-BJrﬂ/ 2E? + B2.
R3 R3 8 R3

8 47 T

When A belongs to the boundary of B4(3er), we obtain
1
| Bextlz2 < 5 1Blg2  and | Elg < |BlL

and therefore

1—2/3 —3(3¢)?
8T R3

LREI(V, A) — LEI(V,0) < —e?Fo(0, B) — B

Choosing ¢ = 1/9, the right-hand side is < —e?F5(0,B) < 0 since B #
0. So we have shown that when A belongs to the boundary of By (3er),
LEFHIN(V, A) < LB (V,0). Since A, maximizes A — ZE7H7(V,, A),

it cannot have an energy smaller than £ (V,,0) and we conclude that
e’ |curl A, |2 < (3¢)*r%my.
R3

Similarly, we can show that V. does not belong to the boundary of By (3er).

The unique saddle point A, = (Vi, A.) being in the interior of the set
By (3er) x Ba(3er), the derivative of Z£v"7/*" must vanish at this point.
Using the value (2.24) of the derivative of Fpy computed in Theorem 2.2,
we find that

—AV, =4rwe (peA* + pext)
—AA, =47 e (fea, + Joxt)

where pea, and jea, are given by (2.25) in Theorem 2.2. This is exactly the
self-consistent equation (2.37). O

The rest of the paper is devoted to the proofs of Theorems 2.1 and 2.2.
Our strategy is as follows. First, in Section 3, we show that the functional
Fpv is well-defined for four-potentials A with an appropriate decay in x-
space (the integrability of A on R? is enough). Then, we compute things
more precisely in Section 4, and we exhibit the cancellations which show
that this functional can be uniquely extended by continuity to H éiV(R?’).
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3. THE PAULI-VILLARS FUNCTIONAL FOR INTEGRABLE POTENTIALS

The purpose of this section is to prove that the operator

2
1
trea Ta 1= 5 > ¢jtrcs (1D 0l = [Dim;.al), (3.1)
j=0

is trace-class, when the four-potential A := (V, A) decays sufficiently fast.
The proof relies on an expansion of Fpy(A) with respect to the four-
potential A using the resolvent formula, but for which we actually do not
need that A is small. Our precise statement is the following

Proposition 3.1 (trca T4 is in &1). Assume that ¢; and m; satisfy con-
ditions (2.15). Then, the operator trca Ta is trace-class whenever A €
LY(R3,RY) N HY(R3, RY).

Remark 3.1. For this result, it is not important that div A = 0, hence we
do not require that A € H}, (R3).

The rest of this section is devoted to the proof of Proposition 3.1.

Proof. Our starting point is the integral formula

1 9 1 . .
‘x’:—/%dw:—/ <2— Wy >dw. (3.2)
T Jrp T4+ w 21 Jr TH+iw T —iw

When T is a self-adjoint operator on L?(R3,R?*), with domain D(T), it
follows from (3.2) using standard functional calculus (see e.g. [34]), that the
absolute value |T'| of T is given by

1 w w
T= o | (2- 2 —) do. 3.3
7l 27T/R T+zw+T—zw “ (3:3)
Let us remark that this integral is convergent when seen as an operator from
D(T?) to the ambient Hilbert space. In particular,

T2
==

: —2|| 2
< min {1,w [ HD(TQ)—>L2(]R3,(C4)}'
D(T?)—L?(R3,C4)

Since the domains of D?nj,o and Dfﬂj’A are both equal to H?(R3 C*), we
deduce that we can write

2 . .
1 w w
oo L | ~
A 47 /R]Z:% < ij,A + tw ij,A —w

(3.4)

W n w > d
- - - w
Dmjo+iw  Dpjo—iw

on H?(R3 C*). Here and everywhere else it is not a problem if Dy, 4 has
0 as an eigenvalue. The operator Dp,; o + iw is invertible for w # 0, and
(iw)(Dm, A +iw) ™! stays uniformly bounded in the limit w — 0.

In order to establish Proposition 3.1, we will prove that the C*-trace of
the integral in the right-hand side of (3.4) defines a trace-class operator
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according to the inequality

/ ic tr ( w W
i 4 — — -
R j:OJ ¢ Dm].,A—l—zw meA—zw
w w
— dw < oo, (3.5
ij,o+iw+ij,o—iw) & (3.5)

which we can establish when A € L'(R3,R*) N HY(R3,R*). This will com-
plete the proof of Proposition 3.1.

As a consequence, our task reduces to derive estimates in Schatten spaces
on the integrand operator

2 . .
w w
Rw,A) := c; tr 4< —— -
( ) j;o 7 e ij7A+zw ijvA—zw

iw n w >
Do +iw Dy —iw/’
which we can integrate with respect to w. To this end, we use the resolvent
expansion
w W Tw 1
_ _ (@ A-V)—
Dpj;a+iw  Dpjo+iw  Dmp,a+iw D0 +iw

iterated six times and obtain

. . 5 .
W w W 1 n
i (faav) L)
Dpja+iw  Dpjo+iw nlej’0+ZW(( )ij,o—F%U
w 1 6
—_ CA-V 7) ,
+ meA—l—iw ((a ) Dm].,o—l—iw
(3.6)

together with the similar expression for the term with —iw instead of +iw.
Again, we insist on the fact that this expansion makes perfect sense for
w # 0, even if the spectrum of Dy, 4 contains 0. This allows us to write

5
R(w’ A) = Ztr@ <Rn(w, A) + Rn(_w, A)) (3 7)
n=1 .

+ tres (Rg(w, A) + Rg(—w, A)),

with
2 )
W 1 n
Rp(w, A) .:jzocj ij,0+z'w<(a A-V) ij,o+iw) (3.8)
and
2
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Our purpose is to prove that

5
/ (Z [ trea (Bn(w, A) + Ru(—w, A))||g,
R n=1

+ [ tres (Ri(w, 4) + Ré(—waADH@l) ds < 0. (3.10)

Estimate on the sixth order term. We first estimate the sixth order
term Rj(w, A) in (3.7) which is the simplest one. The C*-trace is not going
to be helpful for us here. First we use the inequality

w
ot <1
D4 +iw
which, in particular, takes care of the possibility of having 0 in the spectrum
of Din;, 4. Combining with Holder’s inequality in Schatten spaces, |AB|g, <
HAHGP ”BHGP,, we obtain

W 1 6
(@ a-v) Y]
Hij,A—i—zw (( )ij70+zw

gH(a-A—V)

(31
1 6 (3.11)
ij,O + w ‘

66.

We next use the Kato-Seiler-Simon inequality (2.5), similarly as in the proof
of Lemma 2.1, which gives us

Wp>3, (@ A-V) o] <)+t |4
’ D0 +iwlle, = 0717 e

where

I 1 /‘x’ r2dr

L) b

2% Jo (14 r2)2
For p = 6, we can use the Sobolev inequalities
Vilze < SIVV]r2 and  [|Allze < S[[VA]|L2, (3.12)

to obtain an estimate in terms of the gradient VA by

1
1 Ig)s S
H(O“A_V)D - ‘ < o) ;HVAHLZ'
m;0 T W8 (mF 4 w?)3
Inserting in (3.11), we have
2
SO 6
[R5 (@, A)lg, <D lejl ——= VA2, (3.13)
im0 (mj+w?)2
so that
2 e dw
Ri(w, A)lls dw§S6IG< —J> VA|S /7 3.14
[ 1R A, > )IvAl: [ iy e

The term with +iw replaced by —iw is treated similarly.



20 P. GRAVEJAT, C. HAINZL, M. LEWIN, AND E. SERE

Estimate on the fifth order term. The method that we have used for
the sixth order term of (3.6) can be applied in a similar fashion to the fifth
order term, leading to the estimate

le ]|> / |w| dw
Rs(+w, A dw§I< A . 3.15
| WRs(ee Al < 1 j}oj oIl [ SE 2 e

None of these estimates use simplifications coming from the C*-trace. The
latter is only useful for lower order terms.

Estimate on the fourth order term. For the other terms in (3.6), we
need more precise estimates based on conditions (2.13) satisfied by the co-
efficients c¢; and the masses m;. We start by considering the fourth order
term, for which we use the identity cg + ¢; + co = 0 to write

ZOC]Z< m0,0+m(a-A—V))kx

iw w 1 A=k
(o Y (aaiyy L)
<ij70+zw Dmo,o—l—zw)(( )ij70+zw

Next we use that

w

- B s
Hij,O"i‘iw Dmoo—i-ZWH HDm 0—|—Zw Dm070—|—iw

vl

(3.16)

S(mj - mO)Wa

since m; > my, and we argue as before, using this time A € LA(R3,R*). We
obtain

2
51

IRa(tw, A)l|g < —220 S e (my = mo) AL, (317)

(m3 +w?)2 j=0o

hence
—my |w]| dw
Ri(2w, A)|| . dw < 5LJ AL S o] = / . (3.18)
[ IR, ), 1 ; el s

Notice again that we have not used the C*-trace in our estimate of the
fourth order term.

Estimate on the first order term. In order to deal with the first, second
and third order terms, we need to use more cancellations. We start by
considering the first order term for which we can write

W 1 iw 1
— (- A=V — CA-V)————
ij70 + tw (a ) ij70 + tw ij,o — W (a ) ij,O — W

2w? 1 1 2w?

=———(a-A-V - —(a- A=V
D%Lj70+w2( )ij70—|—zw ij,o—zw( )Dfnj0+w2
Inserting
1 Dy, iw
_ Zm0F (3.19)

. - 2 27
Dth + 1w ij70 +w
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we obtain
w 1 w 1
(- A—-V — — (- A-V)———
ij,o—i—zw( )ij,o—i—zw ij,o—zw( )ij,o—zw
2w? 1
= 7{a-A—V,Dm.7O}77
Drznj,(] + w2 ! D?)’L]’,O + w2

where the notation {7, T} refers to the anti-commutator operator
{1, Tr} =112 + TT1.
At this stage, we recall that
(- X)(a-Y)=X Y +i(XxY) X, (3.20)

for all (X,Y) € (R*)?2 In this formula, X x Y is the cross product of
the vectors X and Y, whereas the notation ¥ = (X, ¥y, X3) refers to the

matrices
_(o; O
Y= <0 o_j) . (3.21)
As a consequence, we obtain

{a-p,a-A} = {p,A}R3+i(p><A+A><p) - = {p,A}R3+B-2,
where {-, -}rs is a notation for
{S,T}ps :=5-T+T-S

and where p = —iV (a simplifying notation that will be used henceforth).
Since Bay, + a8 = 0, we deduce that

{a-A=V,Dp, 0} = {p,A—Va}y +B-%-2m;V. (3.22)
This finally gives us
Ri(w,A) + Ri(~w, A) = 2w?(R11 + Ri2), (3.23)
where
2 1 1
Ria jz; C; e m? T2 ({p, A Voz}RS +B E) P m? el (3.24)
and
2 1 1
Rig = —Q;ijj R VB P Bl (3.25)

Concerning the operator Ry 1, the last step consists in using identities (2.12)
and the two expansions

1 B 1 N mg —mj
pPPAmi+w? pPPmi+w? (PP +mf+w?)(p?+mi+w?)
2 2
1 Moy (3.26)

= +
p2 +m% +w2 (p2 +m% +w2)2
(m§ —m3)?
(p? +m3 +w?)(p? + mg + w?)?
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This gives
2
Rip =Y ci(mg— m§)2<
=0
1 1

{p,A—=Valps + B-X)

(P +mf +w?)? (P + m§ + w?)(p? + m] +w?)

1 1

A-V [0 >) I —
T +m2 4+ w?)(p? + mf +w2)2({p’ e+ )p2 +m? 4 w?
1 1
—  (pA-V B-% .
T rmi TP oo )(p2+m§+w2)(p2+mg+w2)2>

We now use the fact that A € L'(R3,R*), B =i(p x A+ A x p), as well as
the Kato-Seiler-Simon inequality (2.5) to get

2

[Rulls, <18) lel(mg —m3)?

I
7 E A, (3.27)
j=0

(mf + w?

The analysis of the operator R 2 is more involved. Under conditions (2.12),
we are not able to prove that R is trace-class. However we can compute
first the C*-trace before taking the operator trace. We obtain

trea RLQ =0, (3.28)
since trca B = 0.

Remark 3.2. By this argument, we do not prove that R is trace-class.
Under the additional conditions

ey — 3 —
Ec]m]—g cgmy =0,

J J

the operator R 2 becomes a trace-class operator, and its trace is equal to
0. This strategy however requires to introduce additional fictitious particles
in our model. Introducing more fictitious particles in order to justify the
computation of a term which is anyway 0 does not seem very reasonable
from a physical point of view. This explains why we prefer here to first take
the C*trace.

As a consequence, we can conclude our estimate of the first order term
by combining (3.27) and (3.28) in order to obtain

/.

dw
(S5

trea (Rl(w, A)+ Ri(—w, A))‘

2 2 2)2

(m§ —m?) w? dw
<361 | —2— A —. (3.29
IR o [ G 629)
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The second and third order terms are treated following the same method,
except that the algebra is a little more tedious. We start by writing that

n

2 1 .
Ry(w,A) + Ry (—w, A) = ZijZ::Ocj kZ:O (m(a CA— V)) X

1 1 n—k
X — ((ax- A=V 7> .
Dgﬂj,O +w? <( )ij,o + w

We next expand as before using (3.19).

Estimate on the second order term. For the second order term, we are
left with

2
Rg(w, A)—i—Rg(—u), A) = —2u? Z cj X
=0

5 2
w 1 2 Dm~0
X 7((04-14—{/)7) —E (%x
(Drznj,o + w? Drznj,o + w? =0 Drznj,o + w?

k 1 D0 2—k
(o A=) o ((ee A=) gt >

which may also be written as

2
2 2
RQ(W,A)"‘RQ(—W,A) = 2w : Cj<m(aA—V) D2 _O+w2
7=0 m; mj
1 1 2
D2 +w2 ({a A Vmej,O}DQ +w2) >
mg, mj,
(3.30)
Inserting
(- A-V)Y?=|AP+V?-2a- AV,
and (3.22) into (3.30), we are led to
Ry(w, A) + Ry(—w, A) = —2w? (Ra1 + Ra2), (3.31)
where
2 1 1
Roq = e (AP + V22 AV )
> jzocjp2+m§+w2<(’ I « >p2+m§+w2
1 2 1 2
A2V — ) _ 1> P
4m](vp2—|—m§—|—w2> <({p,A Va}R3+B E)pQ—i—m?—i—wQ) )’
and
2 1
Rao =2 ch m; p—2 e X
j=0 J
<V ({p.A-Valy +B-3) !
e — J— a . B —————— .
P2 +mi +w?’ P R? P +m3 + w?
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The proof that Rg; is trace-class is similar to the first order case, us-
ing (3.26). The final estimate is

2 m2 — ’I’I’L2 m2 —_ m2
18— 9 |14 B Jo—d 0
IRasle, <33 el (8 Al ol + b
(V5 + 1B + s = m)]A) )
Since
trea RQQ =0, (3.32)
as for the first-order term, our final estimate is
/ ‘ tree (Ro(w, A) + RQ(—(AJ,A))‘ o dw
1
2 2 2_ .2
w* dw m; —1m
SZ CJ|<8I7 HAHL2 1B 2 /RmJFIS]T%OX

w? dw

>%Mﬂﬂ@+wﬁﬁ&ﬁ—mMA%)éH;5Q-@%)

Estimate on the third order term. Similar computations give for the
third order term

2
22
Rs(w, A) + R3(~w, A) = jZZ:OCj (m(({%fl ~Vajp+ B3

2

_ QmjV,B) 1 >3 — 2w

p2+m?+w2 pQ—i—m?—i-wZ
1

({p.A-Vajp+B-3 - 2mﬂﬂ)m}>'

(3.34)

{(\A[2+V2—2a-AV)

1
X—
p2—|—m?+w2’

Using once again (3.26), we deduce

/.

trea (Rs(w, A) + R3(—w, A) H dw < KZ |c;] / %x
8

1 3
I(Ig)% (I16/3)2
X (ijSHVH:zS+18||VH%4HBHL2+ T I1BI72 V| za + /_ B[
m# m?
j J
I ||A| s ]|V |2 () B|2.|A A2, ||V
+m;I7|| Al s || V]7s + T °BJ12.| HL4+ H 1751V | 2
m;
j

o = ) (S 1AL 1Bl + 31415 ) ).
J
for some universal constant K.

Combining with (3.14), (3. 15), (3.18), (3.29) and (3.33), we obtain (3.10),
provided that A is in L'(R3,R3) N H'(R3,R3). This concludes the proof of
Proposition 3.1. U
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4. ESTIMATES INVOLVING THE FIELD ENERGY

In Proposition 3.1 above we have shown that the operator
2

1
trea T'q 1= 5 ch trea (|ij,0| — |ij7A|),
=0
is trace-class when A decays fast enough. More precisely, in the proof of
Proposition 3.1, we have written

5
TA:ZTn( )+ T4(A) : 4772/ n(w, A) + Ry (—w, A)) dw
n=1

+ e /R (Ré(w, A) + Ri(—w, A)) dw,

(4.1)

with R,, and Ry given by (3.8) and (3.9), and we have proved that the op-
erators trca T, (A) and tres TG (A) are trace-class. However our estimates
involve non gauge-invariant quantities (some LP norms of A) and they re-
quire that A decays fast enough at infinity.

In this section, we establish better bounds on these different terms. We are
interested in having estimates which only involve the field F = (—VV, curl A)
through the norms ||VV||2 and || curl A|| ;2. Our simple estimate (3.14) on
the sixth order only depends on the field F'. But we will also need to know
that the sixth order is continuous, which will require some more work. For
the other terms, we have to get the exact cancellations.

With these estimates at hand, it will be easy to show that Fpy can be
uniquely extended to a continuous function on the Coulomb-gauge homoge-
neous Sobolev space H L (R?), as stated in Theorem 2.1, and which we do
in the next section.

Remark 4.1. In the estimates of the previous section, it was not important
that div A = 0. We have to use this property now.

4.1. The odd orders vanish. The following lemma says that the trace of
the odd order operators trca Th(A), trea T5(A) and trea T5(A) vanish. This
well-known consequence of the charge-conjugation invariance is sometimes
called Furry’s theorem, see [17] and [20, Sec.4.1].

Lemma 4.1 (The odd orders vanish). For A € HL (R%®) N L'(R3 R*) and
n=1,3,5, we have
1
tr (trea Tn(A)) = o / tr (tr@; (Rn(w, A) + Ry (—w, A))> dw =0. (4.2)
T JR
Proof. Let C1p := ifao1) be the (anti-unitary) charge-conjugation operator.
Since C Dy, 0 cl= —Dp; 0, we have
C (Dm0 +iw) € = —(Dpy o +iw)
Similarly, since A and V are real-valued, we can write
Ca-AC'=a-A and CVC =

so that
CRu(+w,A)C! = (—1)"R,(Fw, A). (4.3)
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At this stage, we can compute
tres (CTC™Y) = trea T, (4.4)
for any operator T' on L?(R?,C%). Here, T refers to the operator defined as

T(f):=T(f).
When trea T is trace-class, so is the operator trca T, and its trace is equal
to
tr (trea T) = tr(trea 7). (4.5)

As a consequence, the operator trca (CTC*I) is trace-class, as soon as T is
trace-class, and its trace is the complex conjugate of the trace of T.

Finally, recall that we have established in the proof of Proposition 3.1 that
the operators trca(Ry(w, A) + R,(—w, A)) are trace-class for n = 1,3,5.
Combining (4.3) with (4.4) and (4.5), we obtain

tr <tr<c4 (Rn(w, A) + Ry (—w, A)))

= (—1)"‘51‘ <t1“(c4 (Rn(w, A) + Rn(_w’ A)))

We deduce that the quantity tr (tres(Rn(w, A) + Rn(—w, A))) is purely
imaginary when n is odd, so that the trace of trca 75, (A) is purely imaginary.
Since the operator trea T),(A) is self-adjoint, its trace is necessarily equal to
0. This gives Formula (4.2). O

4.2. The second order term. We now compute exactly the second order
term T5(A) appearing in the decomposition of T4, assuming that A belongs
to H'(R3,R*) and divA = 0. We will verify that it only depends on the
electromagnetic fields F := —VV and B := curl A.

Lemma 4.2 (Formula for the second order term). For A € H LR N
L*(R3,RY), we have

1
87 Jgs
where M s the function defined in (2.21) and F = (E, B).

The formula (2.21) for the function M which is nothing but the dielectric

response of Dirac’s vacuum is well-known in the physical literature. The
following proof is inspired of the calculations in [20, p. 280-282].

tr (tres To(A)) M(K)(IB(E)? — |E(K)[?) dk := Fo(F),  (4.6)

Proof. In the course of the proof of Proposition 3.1, we have shown that
the operator trea Th(A) is trace-class when A € H'(R3 R3) (see inequal-
ity (3.33)). As a consequence, its trace is well-defined and given by

tr ((trea To(A)) = /3 (trea To(A)) (p, p) dp. (4.7)
R
Here, trC4/TQ\(A) refers to the Fourier transform of the trace-class opera-
tor trca T2(A). Our convention for the Fourier transform of a trace-class
operator T is the following

T 1 —ip-x_ig-
T(p,q) :meﬂ%y)@ Pre!tY dy dy.
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In view of (3.31), the operator trcs T2(A) is given by

2
2 1 1
treaTa(A)(p,p) = = ———( (AP + V) ————
resTo(A) (p.p) WAE}%+WMM< (AP V) e

1 1 1
+({p’A}R3m> kzl e+ ml EER +mj + w?
Y Ve V) e

I mE w2t m + w?

1 2
pTtmj+w

(4.8)
Since div A = 0, we deduce after a lengthy calculation that
3
tr (trea To(A)) = > Toms (4.9)
where
2 w2 dw dp — —
Toq:=— / Al2(0) + V2(0)), 4.10
2 2
Z dk w* dw dp "
— (P +mi +w)?((p - k)2 +mi +w?)
N N (4.11)
(p- AR) (p- A(=R) + (7 + m3) [V (R)?)
= T22(A) + T22(V),
and

7 .

k‘2|A B)? + (k2 = 4p - k)|[V (k)| 2
dk w? dw dp.
/WZ TR kP rmiyw)

(4.12)
We next use the following Ward identities [45]
/ Z PmPn dp
R e +m? +w?)? ((p—k)2+m?+w2)
(4.13)

/ Z Qm)(kn Qn) dq
RS 4 j +m +w?)2(g? +mf +w?)’

for all (m,n) € {1,2,3}? and all k¥ € R3. This equation is nothing else
than a change of variables p = k — ¢, which makes perfect sense thanks
to conditions (2.12) which guarantee the convergence of the integral. Its
importance is well-known in the Physics literature, see, e.g., [33, Sec. 7.4].
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Since div A = 0, we infer that
Ta2(A) = / ZZA k) dk w? dwx
R4m 1n=1
x/ chpmap < 5 ! 5 >dp.
o 2 PO\ G O (o — R+ o)
Integrating by parts, we are led to
|A(K)|? dk w? dw dp
T> / 4.14
22(4) = g R7zo e ) (P s ) M
Similarly, we can compute
V (k)2 dk w? dw dp
TV w4/R7ZJp +m? +w2)((p—k)2+m§+w2)
(k)|? dk w* dw dp
w?)((p — k)2 +m? + w?)

/R7sz—|—m—|—

Integrating by parts with respect to w, one can check that

/ 22: w dw dp
s
ri 7 (02 m) w22 ((p — k)2 Hm o+ w?)
/ Z w? dw dp
R TP ) (p - kR m +w?)
so that
V(k)|? dk w? dw dp
4.15
T22(V) = g /R7Z TR +w2><<p—k>2+m§+w2> (415
On the other hand, since A and V are real-valued, we have
_ — 1 ~ ~
APO) + 720) = —= [ (AR +7®F) dk
(2m)2 Jre
hence
&)+ V(R
— dw dk dp.
Tai=—qa /R7Zo T (0 + m? + w?)? W dwarap
Combining with (4.14) and (4.15), we arrive at
E12) (JAK)|2 + |V (k)2

2p k—
/ 2) WP+ md )2 ((p— B)? - md + w?)

) and (4.12), this provides
tr (tres To(A)) = . G(k)(JA(K)[? -

To1+T22 =
(4.16)

In view of (4.
|V (k)P?) dk,



DIRAC’S VACUUM IN ELECTROMAGNETIC FIELDS 29

where

1 p-kw?dwdp
Gk) = — .
“ 2w4/R4jZ; P ) P e ey

We next use the identity

1 e
L :/ / SQefs(uaJr(lfu)b) ds |udu,
a2b 0 0

see [20, Chap. 5], to rewrite
1 2
) = ﬁ/ﬂg4ZCjW2de' k dpx

(/ / S Fm2 ) —s(L-u) (2 ~2p-k) 2 dsudu).

Using conditions (2.12), we can invoke Fubini’s theorem to recombine the
integrals in (4.17) as

/ / sm-‘r(l u)k)studuX
27T
X / p . ke_s(p2_2(1—u)p'k') </ e—SUJ2w2 dw> dp
R3 R

o2
/e 59702 dw =
R 2s

/ b ks -20-wph) g :k.v< / opa—sp-2s(1-u)pk dp>
R3 R3 |z=0

-(3)

(4.17)

Since

S

)

N

and

Njw

)

(1 - u)k2 s(1—u)?k?

we deduce that

=1 2/ / Zc S5 u(l-u)k?) ;-1 dsu(l —u)du.  (4.18)
7T

Integrating by parts, we now compute

/ Zc] sm+u1 u)k?) _1d$

= / E ¢ log(s)efs(m?‘L“(l*”)k% (m + u(l —u)k?)ds,
0 “
Jj=0
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which is justified again thanks to conditions (2.12). Letting o = s(m? +
u(l — u)kzz) we infer again from (2.12) that

/ Zce s(m?u(1-u)k?) lds—/ chlog m —|—u(0 )kz)e*UdU

=— ch log( mj + u(l — u)k?).
=0

Inserting into (4.18), we get

B2 2
) /0 Zocj u(l — u) 10g(m§ +u(l — u)k?) du =
]:

Combining with (4.16), we obtain Formula (4.6). O

We complete our analysis of the second order term by giving the main
properties of the function M.

Lemma 4.3 (Main properties of M). Assume that ¢; and m;j satisfy (2.15).
The function M given by (2.21) is well-defined and positive on R3, and
satisfies
2 log(A
0 < M(k) < M(0) = %,

where A is defined by (2.14). Moreover,

2 log(A) |k|? /1 22 —24/3

——= — M(k — d

3 (k) = At Jo 1+ |k2(1—22)/4 =

when m1 — oo and my — 00.

Most of the above properties of M are well-known in the Physics litera-
ture, see for instance [20, Sec. 5.2]. The positivity of M (k) for all k, which
is crucial for our study of the nonlinear Lagrangian action, does not seem
to have been remarked before.

Proof. In view of (2.21), the function M is well-defined on R3. Concerning
its positivity, we set

2
t) = ch 10g(m§ +1),

=0
for all ¢ > 0. Using (2.13), we compute
2

= mi -+t (mg+t)(mi+t)(m5+1)

Since ®(0) = —2log A < 0 and
m2

Zglog( >—>0 as t — oo,

by (2.12), we deduce that
—2log A < ®(t) <0,



DIRAC’S VACUUM IN ELECTROMAGNETIC FIELDS 31

for all ¢ > 0. Inserting into (2.21), we obtain (2.22).
As for (2.23), we first write

M(k) =— %/1icju(1 —u) (log(m?)%—log <1+u(1—72u)k2>> du
0 5

~2logA 2 12 u(l — u)k?
- —;/0 jz()c]u(l—u)log(l—Fi)du.

2
3 m;

When m; — oo and my — oo, we infer that

2 log A 2 [
;f — M(k) — - /0 u(1l — u) log (1 +u(l — u)k?) du.
Integrating by parts, we compute
1 L2 _ w2y (1 — 2u) du
1 —u) log (14 u(l — u)k?) du = — 2=
/0“( w) log (1+u(l —wk?) du /0 T+u(l—u)k?
so that it only remains to set z = 1 — 2u to derive (2.23). This concludes
the proof of Lemma 4.3. O

4.3. The fourth order term. Our goal is now to provide an estimate on
the fourth order term T4(A). We have estimated this term in (3.18), and
we know that Ty(A) is trace-class when A € L*(R3,R?*). Here, we want to

get an estimate involving only the norm of A in H L (R3).

Lemma 4.4 (Estimate for the fourth order term). Let A = (A, V) €
LYR3,RY N HL (R?) and set B := curl A and E := —VV. There ezists a
universal constant K such that

2 .
Lt (trga Ta(A))| = | tr Tu(A)] < K(Z %) (IBll2 + | Eli2). (4.19)
=0

Proof. Arguing as in the proof of Proposition 3.1 (see the proof of Formu-
las (3.31) and (3.34)), we decompose Ty(A) as

Ty(A) =Ty1(A) — Ty2(A) + Ty 3(A), (4.20)

where

2 2
1 ) 1 1
T4,1(A) = %/R E Cj W dw m <W2 m) ; (421)
j=0 J J

2
1 5 1 1
Ty2(A) = %/Rchw dwp2 T m2 + w2 <W2 PAmitwt

1 2 1 2 1
< (W —) +(W )W
< 1p2+m?+w2 1p2+m?+w2 2p2+m?+w2

1 1 1
w. W w )
+ 1p2—|—m?—i—w2 2p2—|—m?—|—w2 1p2+m?+w2>

(4.22)
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and

2 4
1 ) 1 1
T4,3(A) = %/R E cjw dw m (Wl m) . (423)
7=0 J J

Here, we have set for shortness,
Wi = {p,A — Va}R3 +B-X-2m;Vg,

and
Wy = |AP? +V? = 2(a- A)V.

Let us now explain our method to establish (4.19). When looking at 74,
with £ = 1,2,3, we are worried about several terms. First the function
W, does not decay too fast, it is only in L3(R3) if we only want to use
the L% norm of A. Furthermore, it involves quantities which are not gauge
invariant. Similarly, the term involving p in W, involves non-gauge invariant
quantities. On the other hand, the term involving B is in L?(R3) and it is
gauge invariant. The term involving V alone is also not gauge invariant but
it has the matrix B which will help us, and it has no p. Since the result
should be gauge invariant, these terms cannot be a problem. They should
not contribute to the total (fourth order) energy.

In order to see this, we use the following technique. In Formulas (4.21)—
(4.23), we commute all the operators involving p in order to place them either
completely on the left or completely on the right. We have to commute the
terms (p? + mj2 +w?)~! as well as the p appearing in Wi. We think that it
does not matter how many terms we put on the left and on the right. The
main point is to have some functions of p on both sides (to get a trace-class
operator under suitable assumptions on A). All the commutators obtained
by these manipulations are better behaved and they will be estimated using
the Kato-Seiler-Simon inequality (2.5), only in terms of || Al HL (3"

In the end of the process, we will be left with a sum of terms of the form

Ip|° fa) lp|*
2 2, 2 2 2 20’
(p? +m3 +w?)® (p? + mj + w?)

where f(z) is W2 or a product of W, with some of the functions appearing
in Wy, or only these functions. For instance, when we take the trace, the
worst term involving only V' is

/ v / dp +3/ lp|* dp
R3 rs (P2 +m3 + w?)3 rs (P2 +m3 + w?)4

+/ p|* dp
s (P +mi+w?)p )

Here the integrals over p come respectively from 7y 1, 742 and 743 and they
—5/2

behave exactly like (w? + mj2) . So we run into problems when we want
to multiply by w? and then integrate with respect to w. But this term
cannot be a problem here because ng V4 is not a gauge invariant quantity.
This is where the Pauli-Villars scheme helps us. Not only these integrals
will become well-defined, but also their sum will simply vanish because the

regularization was precisely designed to preserve gauge invariance.
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But before we explain all this in details, let us indicate how to handle the
multiple commutators that we get when commuting the operators involving
p. We start with T} 1, for instance. Following the general strategy explained
above, we write

2
1 2 1 2 1
T471(A) :%/chjw dw<p2+m2+w2 (WQ) (p2+m2+w2)2
7=0 J J

1 1 1
t o W | W] ,
Prmi+w? Clpamie? p2+m§+w2>

where, as usual, [S,T] := ST — T'S. We notice that

[W 1 ] 1 [pz, W2] 1

22+ m? o+ w? :p2+m§+w2 P2 +m3 4+ w?’

while
(0%, Wa] = p[p, Wa] + [p, Wa]p = —i{p, VW2 } s

Hence, we have

2
1 1 1
Tii(A) = — [ 3 epu?do( ——5—— (W)?
4,1( ) 27T/Rj:003w w<p2+m§+w2( 2) (p2—|—m§+w2)2

>, (4.24)

1

1 1
+i 4% :
p? +m? + w? 2p2+m§+w2{p

(p? + m? + w?)2

VIV, }R3

where

VW, =24-VA+2VVV =2V (a-VA) —2VV (a- A).
We then argue as in the proof of Proposition 3.1. We use that Wy € L3(R3),
with

[Wallzs < K| Al7s < K[Al%, gs).

and that VW, € L2 (R3), with

IVWall, g < K| Allsll Al g oy < KNAIG g,

by the Sobolev inequality. By the Kato-Seiler-Simon inequality (2.5), we

obtain for the term involving p - VWs,
1 1 1

W YW |

Hp2+m§+w2 2p2+m?+w2p 2(p2+m§+w2)2

Pl 1

VWs|3

&3 p2+m§+w2‘ 2| S

e

(p? + m? + w?)?

(G31

<K

1
L x
- “pQ—i—m?—i—wQ 2

6

3 Nk

(GD)

K 4
< WHAHHéiV(R?’)’
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for some universal constant K. The argument is exactly the same for the
term involving VWs - p instead of p - VWs. Therefore, we obtain the bound

2
1 1
j , VW — W
Ag;)k]'”(zﬂm?w?)?) Ve o W,

2
1
<K (3 D) Al o

J=0

w? dw

In particular, we have shown that the operator Ty 1(A) can be written in
the form

Ty1(A) = Ty1(A) + Ss1(A), (4.25)

with
2
HZM(A)H& = (Z m—]> HAHH1 J(R3) (4.26)
7=0
and
2 1 2
S11(A): 277/20]29 +m +w2(W2) (p2+m?+w2)2w dw.
(4.27)

By the Kato-Seiler-Simon inequality, this term is trace-class when A €
L*(R3,R*) and conditions (2.12) are fulfilled. On the other hand, there
is no evidence that the trace-class norm of Sy1(A) can be bounded using
only the norm ||V Al 2. Fortunately, this term will cancel with the other
ones of the same type, as we will explain later.

Our strategy to handle the operators Ty 2(A) and Ty 3(A) follows exactly
the same lines. We first simplify the expressions of Ty 2(A) and Ty 3(A) by
discarding the terms containing the operator B 3. Concerning Ty 3(A), we
can compute

1 1 3 1
W )B-E—‘
Hp2+m§+w2< PP md o+ w? pr+m? +u?lls,

K m?

<oy 1Bl (I Al + oy g TVl 1B13).
j m w2

3
2

so that

cjw? dw 1 4
T Te E J Wi —-B-X%) ———
13(A4) = Ti5(A / « p?+mj +w2<( ! )p2+m§+w2> ’

with
2

[ 7es(A) o, < (z e L (1.28)
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We next commute, as above, the operator W, — B - 3 with the operator
1/(p? + m2 + w?) in order to establish that

1 1 1 *
d (W -B.%) 50—
277/” WJZO TP+ m? +w2<( L )p +m? +w2>

1
= 7:1133(14) + %/RWQdWZC]’X
7=0

1
X
(p2 _|_mj2 _|_w2)4

1
p? +m3 +w?’

<{p,A — Va}RS — 2mjV,8>4

where 7:1133(A) also satisfies (4.28). Finally, we use that
{p,A—a-V}R3 =2p- (A—a-V) —ia-VV,

as well as the anti-commutation formulas for the matrices o and 8, to
obtain the formula
2

1 [, 1
2 [ w24
o7 Jn wjzcj(p +m?+w?)t

1

= Ti3(A) + S43(A),

with T5(A) satisfying again (4.28), and

8 1
Si3(A) = 7T/]Rw decj ((p2+m?)2V4

= (p? +m3 + w2

3
—4(p* +m3)(miB+p-a)(p- AV’ +6(p? +m3 Z p-A)AV?

3 3
— 4m; Z Z pipm(m;B+p-a)(p- A) A ALV
=1 m=1
3
+ mPn(D - A A A Ay | —————
;;;pm pn(p- A)A ) g +w2

(4.29)

The computation leading to this formula is tedious but elementary. In con-
clusion, setting Ty 3(A) = T{5(A) + 7:1133(A) + T£3(A), we have established
that

Ty3(A) = Ta3(A) + Ss3(A), (4.30)
where 74 3(A) satisfies (4.28). Similarly, one can check that
Ty2(A) = Ta2(A) + S42(A), (4.31)
with
o
T, < K (L2 Al o 0

7=0



36 P. GRAVEJAT, C. HAINZL, M. LEWIN, AND E. SERE

and

2 1
Si2(A) = W/Rw decj(p Tl T ) <(p +ms )(3]A‘2+3V2
7=0

—2(a-A))V? —2(p-a+m;B)(p- A)(3A? +5V)V

1
p? + m? +w?’
(4.33)

3
+ 3Zpl(p CA)A (AP 45V = 2(a- A)V))
=1

Notice here again that the Kato-Seiler-Simon inequality implies that Sy 2(A)
and Sy 3(A) are trace-class when A € L*(R? R*) and conditions (2.12) are
satisfied. Therefore, we always assume that A € L*(R? R*) to make our
calculations meaningful.

The last step in the proof is to compute the traces of the singular operators
S11(A), Sy2(A) and Sy3(A) for A € L4(R3,R*). As announced before we

claim that
tr 8471(A) —tr 8472(A) + tr 8473(44) =0, (434)

an identity which is enough to complete the proof of Lemma 4.4. To prove
this we could make up an abstract argument based on gauge invariance.
However we have to be careful with the fact that even if we can freely
exchange the trace with the integration over w, these only make sense after
we have taken the sum over the coefficients c¢;. The order matters and
this complicates the mathematical analysis. Instead, we calculate the sum
explicitly and verify that it is equal to 0.
A simple computation in Fourier space shows that

tr Sy, d d
R RN —

7=0

x/ (JAI* + 6|APVZ+ V1.
R3

(4.35)

Similarly, one can check that
trS / / 2d ! X
r w” dw
42 % RS (p2 +m2 _|_w2)4
Jj= 0 J
Y <3(p2+m§) [ apve v
R3
+ 32 Z plpm/ (AjAn AP + 54 Ay, v2)>.

=1 m=1

An integration by parts shows that

2
pipmdp  Oum dp
Z € Y ch 2 2 ,2)3°
p+m + w?)4 6 Jps“ (p —|—mj—|—w)

j=0
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and we obtain

tI‘S42(A
2 2 2
p +m 910 4
d d AV \%
3/}1@3 p/w w<Zc]p+m —|—w2)>/Ra(’ | + )

]:

1
2d ; / Al* AlPV?).
Rw w< Cj 75 5 )3> R3(| |* +5]A]*V?)

2
= (P> +mj+w
(4.36)

[\

R3

Similar computations lead to the expression

(p? +m 2 dpw? dw
trSy3(A) %
r Sy3( %(//}RSZ (p? +m + w?)? >/RS

dpw dw 3(]9 +m2~)
1 J > A2v2
3(//]1%32 < (p? +m§+w2)3< +p2+m§+w2 Rs’ |

=0
2 // dp w? dw )/ 4
c;j Al%
77)3( R RSJZ::O T (P2 mE +w?) RS‘ |

(4.37)
In view of (4.35) and (4.36), we obtain

2
trSy1(A) —trSue(A) +trSu3(A) = (/ V4> /w dw/ dpx
R3 R3

m(2m)2
ch( PP 0"+ m)) )
T\ +m? +w2) (p? +mj +w?) (p? +m3 +w?)5 )

A direct computation then shows that

/ 1 216 2 g — 0
R \(TFe?P - (e ety T

This is enough to deduce (4.34), and complete the proof of Lemma 4.4. 0O

4.4. Regularity of the sixth order term. In this section, we come back
to the sixth order term studied in the proof of Proposition 3.1. The sixth
order term is defined as

Ro(A) = - /R tr (Ry(w, A) + Ry(—w, A)) du, (4.38)

7

where
2

w 1 6
Ri(w, A) := c-%(a-A—V 7)
6l ) jZO ! D, A +iw ( )Dmﬁo—i-zw
We have shown that it is trace-class when A € H, L (R3). We can indeed
write estimate (3.14) as

2

[Rele, < 5 [ A, o< 538 ) Al o 149
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Here we want to prove that Rg is actually smooth, under suitable assump-
tions on A. We first establish the continuity of Rg through

Lemma 4.5 (Continuity of the sixth order term). The functional Rg is
locally 0-Hélder continuous on the space HY. (R3) for any 0 < 6 < 1.

Proof. We consider the difference Rj(w, A) — Ri(w, A’) for four-potentials
A and A’ in a given ball of H} (R3), which we write as

R§(w, A) — Rj(w, A)

Z ( (Dm]jl—l—zw ij7j/+iw><(a.A_V)m)6

7=0
5 .
1 k
'A/—V/ 7)
+kZOD —|—zw((a )ij,o—i—iw X

1 1 5—k
mj mj

The five terms in the sum over the index k can be estimated similarly as in
the proof of (3.14). Their &;—norms are bounded by a universal constant
K times

2

1
E:mﬂﬁwa%mAW&mWﬁ”MW%JWQ”A_AWQAWr
j=0 (m;

If we follow the same proof for the first term, we need an estimate on the
operator norm

1 1
w — — - )
(ij,A—i—zw Dy ar +iw H

On one hand, we remark that [|(Dp, a4 + iw) '] < 1/w, so that

1 1
w - <2 4.41
(ij7A+iw ij,A’ —i—iw)H B ( )

On the other hand, we can use the resolvent formula to write

1 1
Dipja +iw Dwﬁ+m ) (4.42)
= (a- (A-A)+V - V).
ij7A+zw( ( ) )DmﬁAl—i-zw

For small A, or small A’, we have no problem in estimating this term using
that the spectrum of Dj,; o stays away from 0 by Lemma 2.1, and that
(Dim,,A + iw)~(Dim;,0 + iw) is bounded uniformly. The argument is essen-
tially the same in the general case. We decompose the expression in the
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right-hand side of (4.42) as

1 1
jw| ——— (- (A — A V) ————
Zw<ij,A+iw(a ( )tV )ij,A’+iW>

1 ‘ 1 .
= (B (Omea +0) > (g (o + )

1 W
X[(=———(a-(A-A +V/—V)><7,,
(ij,o%—w( ( ) ) Dy ar +iw
(4.43)
for some positive number p. We check that
A u
B Omar il < g2t sl < v
Hij,A—i—zw( mJ’A+w ~ I Dy A +iw + Dppja+iwll = +|w|
(4.44)
Setting p —4K2HAH (ray Ve also remark that
— (D 1 woaoa))
(Dot H=H<1+ 2V -a )|
"ijyA+ZM( my;,0 lu’) ij,o—{—l,u( )
o 1 n
<S5 v-a-a)|
_ZHijo-i-iM( a-A) (4.45)

oo n

<X o Al e <2

Recalling that (iw)||(Dp,; ar+iw) 1] < 1, we infer from (4.42), (4.43), (4.44)
and (4.45) that

. 1 1
(Zw) (ij7A +iw - ijvAl +iw
K p /
s——— 1+ )l4A-4lj4
(m2 +u2)i< o) A= Ay, e (4.46)
1 1
gK(\/—m—j " HHAHH&W(Rs)) 14— Al g

In this bound, we can replace A by A’ by symmetry. Recall that we are in
a given ball in H} (R3), so that HAHH(}. (r#) 18 bounded by some constant.

Collecting estimates (4.41) and (4.46), we have shown that

IR, 4) = Rifeo, A0, do
R

2
= K<Z |77012|> (HAH L@ T 1A, >) 1A= Al w3y (aa7)
j=0 '
ol
w10 (1415 )+ 14T A, 20
j=0 7
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where
js 4 =, (1+w2)%
) 1
xmln{Q, (\/—m_]-i- HAHHl R3)>HA A/HHI L(R3) }

Assuming that [|A — A’HHclliv(Rg) < mj/(y/m; + HAHHQHV(R?’)) for any j =
0,1,2, we can estimate the integral Z(m;, A, A’) as

1 < dw
|I(mjaA’A')\§\/m—j</0 m)HA Al g

1 /
+zd%;mmamwA—Am@WJ

t 0
j(t)::/diw:,)—i—t/ d7w§
0 (14?3 St w(l+w?)s

It remains to observe that
J(t) < Kt(1+ |logtl),

and to combine with (4.38) and (4.47), to conclude that the functional Rg
is locally 6—Holder for any 0 < 6 < 1. O

with

We next turn to the differentiability of Rg.

Lemma 4.6 (Regularity of the sixth order term). The functional Rg is of
class C*° on the open subset H of Hdliv(]R?’) containing all the four-potentials
A such that 0 ¢ o(Dp; a) for each j = 0,1,2. Moreover, there exists a
universal constant K such that

2
[d*Re(A)| SKZ%(1+—A11A11H1 o) Al gy (448)
§j=0"""J

where
La :=max {|(Dm,.a+iw) " (Dm, 0+ iw)|, w€R, j=0,1,2} < oo.

Proof. The proof relies on elements in the proof of Lemma 4.5. When 0 is not
an eigenvalue of Dy,; a for each j = 0,1,2, we can deduce from Lemma 2.1
the existence of a positive constant K 4 such that

H < min {KA, ! } (4.49)

Hij,A/—i—iw \w[

for any A’ € H} (R%), with ||A’ — AHH(lliv(RS) small enough. As a conse-

quence, we can replace estimate (4.44) by the inequality

|5 (st i) < 1+ Kan
mj,
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Since

1 .
|5 Prn )]

. . 1
(Dim,.0 + ip) H + |w — p| min {KA, m},

< ’7
Dm]A+ZW

1 .
|5 (Pro )]

. . 1
< (14 Kap ij,O+W)H+|W—M|m1n{KA,m}-

(4.50)

1
)H ij,A + Z:U'(

Following the lines of the proof of (4.45), we deduce that the quantity in
the right-hand side of (4.50) is bounded independently on w by a positive
constant L4, depending only on the four-potential A and the mass m;.
Actually, we can claim, up to a possible larger choice of L 4, that

1
— (D, +i H<L,
Hij7A,+iw( mJ,0+zw) > La

for any w € R, j = 0,1,2, and A’ € H} (R?), with || A’ — AHH}M(R?’) small
enough.
As a result, we can upgrade (4.46) into

ieo : ! )H<%HA—A/

Iy

Dy a+iw  Dujartiw/ ||~ (m2 4w aie ()’
Similarly, we can compute
iiw,(a-(A—A’H—V/—V);,
DmﬁA—l—zw DmﬁA—i—zw
KL / (4.51)
< — A=Al @y
(m] _|_ W2)4 div

At this stage, we can iterate the resolvent expansion in (4.42) to obtain

1 1
ij,A + 1w B ij,A/ + 1w
1 1
=— (a¢- (A-AY+V - V)—F———
ij,AH‘w(a ( )+ )ij7A+z'w
1 2 1
—1—(7, a- (A-A +V’—V> —_
ij,A+zw( ( ) ) ij7A/+zw

Inserting this identity into (4.40), we can write

Ri(w, A) — Ri(w, A") = daRg(w, A)(A — A) +r5(w, A, A").  (4.52)
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Here, d o Rj(w, A) refers to the continuous linear mapping from HL. (R?) to
&1 (R3, R*) given by

daRg(w, A)(v,0a)

iw 1 1 6
Cj(ij7A T iw (oo~ U)ij,A T iw ((a A=) Dun, 0 —{—iw)

W
ij,A + 1w

Il
.
S Mw
=}

(A ) (g )

x ((a-A—V)m)k)

+
ol

(4.53)

In view of (4.51), and again the computations in the proof of estimate (3.14),
the operator norm of d 4 Rj(w, A) is indeed bounded by

faario. )

|C| La
<KZ z %||A|| L (1

WHAHHI (R3 )

(4.54)

Similarly, the remainder 7y (w, A, A’) in (4.52) may be estimated as

rg(w, A, A)

(GF1
2

s
<KIA= A% ST (1A oy + 1A g) %

3
7=0 (mJQ t+w )2
112
< (1+ : (A e + 14715 o))
(4.55)
Collecting (4.38), (4.52), (4.54) and (4.55) is enough to establish the con-

tinuous differentiability of the function Rg on a neighborhood of A, with a
differential given by

1
mj—i-w 2)z

dRe(A)(v,a) = i /Rtr <dARg(w,A)(U, a) + dAR%(—w,A)(U,a)) dw.

(4.56)

Finally, we can extend the previous arguments for the continuous differ-

entiability of Rg to the proof that it is actually of class C*°. In particular,
we can check that the norm of the quadratic form dile is bounded by

i)

2

|CJ| L
< KE A + —2  _||A .
%H HHl (R3)<1 (m? w )% | H Hiiy ))

Estimate (4.48) follows integrating with respect to w. O
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When ||A]| L (R3) is small enough, we can prove that the constant L 4
does not depend on A.

Corollary 4.1 (Estimate in a neighborhood of zero). Assume that ¢; and
m; satisfy (2.15). There exists a universal constant 1 such that, given any

A € H} (R?) with HAHH&- ®3) < 1My/mo, the functional Re is of class C*
on the ball '

BA(anO) = {A € Héiv(RB) : ||A||H51V(R3) <ny mo},

and satisfies the estimate

e
o)) < K (3% ) A4l o (@57

2
m*
j=0 "7

Proof. When A is small enough, the spectrum of D;;,; 4 does not contain 0
by Lemma 2.1. Moreover, when

1Al 71, gy < mmin{ Vo, Vimi, Vima} = ny/imo,
for n small enough, we can infer from (4.45) that
La<2.

Inserting in (4.48), and using the inequality [|Allz gs)y < 1y/My, gives
div
estimate (4.57). O

5. PROOF OF THEOREM 2.1

With the results of the previous section at hand, the proof of Theorem 2.1
is only a few lines. As a matter of fact, given any A € L}(R3, RY)NHY (R3),
we have shown that the functional Fpy(A) is well-defined by the expression

Fpv(A) = F2(F)+R(A), (5.1)
where
Fo(F) :=tr (trca To(A)),
and
R(A) := tr (trea Tu(A)) + tr (trea T4(A)),

are defined in (4.1). By Lemma 4.2, the function F; is given by (2.20) and
it is quadratic with respect to F'. Since M is bounded, we deduce that F>
is smooth on L?(R3,R%). On the other hand, the function A — Fy(A) :=
tr(trca T4(A)) is quartic and satisfies (4.19). Hence, it is a smooth func-
tion on H, 1 (R?). We have proved separately in Lemma 4.5 above that
Re(A) = tr(trea T4(A)) is an Hélder continuous function on H}, (R?), which
satisfies (3.14). We deduce from all this that Fpy has a unique continuous
extension to H}. (R?), which is given by (5.1), and that R satisfies esti-
mate (2.19). The properties of M can be found in Lemma 4.3. O
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6. PROOF OF THEOREM 2.2

In view of the results in Sections 3 and 4, the functional Fpy is smooth
on the open subset H of H 1. (R?) containing all the four-potentials A such
that 0 ¢ 0(Dp,;,a) for each j =0,1,2. Indeed, the function A +— Fy4(A) :=
tr(trca T4(A)) is quartic and satisfies (4.19). Hence, it is of class C*° on
H dliv(R?’). Similarly, in view of Lemmas 4.2 and 4.3, the quadratic map F»
is smooth on L?(R3,R%). On the other hand, we have shown in Section 4.4
that Rg is smooth when 0 is not an eigenvalue of Dy,; o for j =0,1,2. We
deduce that Fpy is smooth on the set H.

In order to complete the proof of Theorem 2.2, it remains to identify
dFpv(A). As mentioned in Formulas (2.24) and (2.25), this differential is
related to the operator

2
Qa = Z ¢j L(—c0,0) (ij,A)-
j=0
Concerning the properties of the operator 4, we can establish the following

Lemma 6.1 (Properties of pg and ja). Assume that ¢; and m; satisfy
conditions (2.15).

(i) Let A € H} (R3) be a four-potential such that 0 is not an eigenvalue of
Dy A for j =0,1,2. Then the operators trca Qa and trea aQa are locally

trace-class on L?(R3,R*). More precisely, given any function x € L°(R3)
(that is, bounded with compact support), the maps

AeH— X(tr(C4 QA)X €6,
and
AcHw— X(tr(c4 aQA)X €6
are continuous from H to &1. In particular, the density pa and the current
Ja, given by
pa(z) = [trea Qal(z,2) and ja(z):= [tres aQal(,2),

are well-defined and locally integrable on R3. Moreover, the maps A — pa x>
and A — ja x? are continuous from H to L'(R3). Finally, for A =0, we
have

po=0 and jy=0.

(ii) If moreover A € LY(R3 R*), then, the operators trca (Qa — Qo) and
trea a(Qa — Qo) are trace-class on L2(R3,R*), and the density pa and the
current ja are in L'(R3).

Proof. We split the proof into three steps. First, we consider the special
case A = 0.

The operators trca Qo and trca aQ are locally trace-class. Using that
Z?:o ¢j = 0, we can write

2 1 1 2. Dpyo
Qo=2_¢ (]l(foom (Dimj0) = 5) =5t )¢ D
§=0

=0
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As a consequence, we obtain

tr@; QO = 0.
In particular, the density pg is well-defined and it identically vanishes on R3.
Similarly, we have

treraQo— 25— P

7=0 p +m )

Due to conditions (2.12), the latter function behaves like
2

St S e

=0 p +m

as |p| — oo, hence it is in L'(R3). By the Kato-Seiler-Simon inequality (2.5),
we deduce that the operator trca axQoy is trace-class for any x € L?(RR3).
Hence, trce aQ)q is locally trace-class. In particular, the current jo is well-
defined and locally integrable on R3. Moreover, we can compute

/ Jox? =tr (tr@; axQox)
RS

2
1 p ~
:—m/m /Razcj ————|x(¢ —p)P* dpdg,

1
im0 (P +mj)?
which shows that

Jo=— / dp=0
4r3 RSZg (p +m)%

by rotational symmetry.
We next consider the general case.

The operators trcs Q4 and tres aQ 4 are (locally) trace-class. From
the previous discussion, we conclude that it is sufficient to prove that the
operators trea(Qa — Qo) and trea a(Q a4 — Qo) are locally trace-class. The
corresponding charge and current densities will be the same as that of () 4.

Concerning the (local) trace-class nature of the operator Q4 — Qq, we
follow the proof of Proposition 3.1. Our starting point is the integral formula

2 T w? 1 w w
gne == [ T sdw=— [ (g - =)o (61
SR W/R(mQ—i—wz)z “ 27T/R (x +iw)?  (x—iw)? . (6:1)
When T is a self-adjoint operator on L?(R3 R?*) with domain D(T), we
deduce that the sign of T is given by

1 w w
T = ( I , ) duw, 6.2
sign 27T/R (T +iw)?> (T —iw)? “ (62)
the integral in the right-hand side of (6.2) being convergent as an operator
from D(T) to L?(R3,C*).
In particular, the operator

2
1 . .
Qa—Qo=—5_c;(signDm, 4 —sign D, o),
j=0
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is given by the expression

w
Qa— Qo= —_/ Z mJAJrM) o (ij’oJriw)z
W n W > d
- ; ; W,
(DA — iw)? (Dm0 — iw)?

on H(R3,C*). In order to establish statements (i) and (iii) of Lemma 6.1,
we will prove that

J

(6.3)

2

Zc' trea my ( i — i
i (Dinya+iw)? (D0 + iw)?

w w

- R —)
Dy a —19)2 " (Dm0 — )2/

dw < 00,

(G31
(6.4)

for any of the matrices m = Iy, a1, a2, a3, and either when A € LY(R3, R*)N
H'(R3R*) and x = 1, or when A € H}. (R?) and y € L(R3 R). In the
different cases, the C*-traces of the operators m(Qa — Qq), respectively
mx(Qa — Qo)x, will define trace-class operators on L?(R3,C*). Then the
operators trca mQ) 4 will be locally trace-class and the density pa and the
current j4 will be well-defined and locally integrable on R3. Moreover, they
will be integrable on R? for any A € L}(R3, R*) N H'(R3, RY).

In order to prove (6.4), we use the expansion

w w w + w
(Dinja+iw)? (Do +iw)?  (Dmja —iw)?  (Dpyo — iw)?
5

= 3 (Quw, 4) + Qul-w, 4)) + Qh(w, A) + Q4(~w, 4)
n=1

(6.5)

- Ql?(w’ A) - Ql?(_w’ A)’
with

i ((a.A—V)m)n,

2
Qn(w,A) :=(n+ 1)ch D
=0

W 1 6
e Ay =730 e (le A=V )

and

2 .
, _ R R N A S
Grl A= 6]‘200] (ij,A + iw)? ((a 4 V) Do + iw> .

We next estimate the terms related to the operators Q,(w, A), Qi(w, A)
and Q% (w, A), as we have previously done for the operators R, (w, A) and
R§(w, A) in Section 3.

Concerning Qj(w, A) and Q%(w, A), we recall that 0 is not an eigenvalue
of Dy,; a for each j = 0,1,2. Hence, there exists a positive constant K such
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that

1
— || <K, 6.6
Hij,A—i—m)H - (6:6)

for all w € R and j = 0, 1,2. Following the proof of (3.14), we deduce that

[ (105 Ao, 1@ Al )

2 les 1
fK;‘m—‘ VAL (14 =194l )
As a consequence, the integrals
0i(A4) 1= 1= [ (4w 4) + Qh(—w. 4) do
and
0H(A) 1= 1= [ Q4w 4) + Qh(—w. 4) do

define trace-class operators on L2(R3 R*) when A € H}, (R?). The related
densities p;(A) and p%(A), and currents j§(A) and j%(A), are well-defined
and integrable on R3. Moreover, in view of (6.6), we can repeat the argu-
ments in the proof of Lemma 4.6 in order to establish the smoothness of the
maps A — Qi(A) and A — Q% (A) from H onto &;.

For 3 < n <5, the operators @, (w, A) satisfy the estimates

L@t A, do < KA}, (67

and

[ Qe Al e < K| Al (6:5)

for any function x € L°(R3). Here, K, refers to a positive constant de-
pending only on the coefficients ¢; and the masses m;. For n = 4 and n = 5,
we can indeed use the Kato-Seiler-Simon inequality (2.5) to write

2
@t o, < K3 sl Al [ =

=0 RS (p? +m3 4 w?) 2

|w| dp

Integrating with respect to w, we obtain inequality (6.7) with

2. gyl
._ Z J
j=0 """J

For n = 3, we rely on the identity cg + ¢; + co = 0 to write

2 3 .
w 1 k
Q3(w, A) = 4;:%%(; o (Dmmo —(a-A- V) x

; 1 3—k
><< iw _ Tw ' )((a-A—V) ' )
Dipjo+iw Do+ iw D0+ iw
W W

+ <(ij70 +iw)2  (Dpmpo + z’w)2) ((a A= V)mf'
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Using inequality (3.16), we deduce that
2

|l
o e, < K( S ltms =mo) ) ol

which provides estimate (6.7) with

2
Z m; — my
j=0 0

Inequalities (6.8) follow similarly. Applying the Sobolev inequality (3.12)
to (6.8), we deduce that the integrals

Q(A) = 1= [ (@ulw. A) + Qu(-w0, 4)) o,
T JR

define locally trace-class operators on L?(R3 R*) for 3 < n < 5, as soon as
A € HL (R%). The related densities p,(A) and currents j,(A) are well-
defined and locally integrable on R3. When A is moreover in L"(R?), in-
equality (6.7) guarantees that the operators Q,,(A) are trace-class, while the
functions p,(A) and j,(A) are integrable on R3. The continuity in these
spaces follows from multi-linearity.

For n = 1, we refine our estimates using the cancellations provided by con-
ditions (2.12). Following the lines of the analysis of the operator R;(w, A),
we start by writing

QI(W,A) +Q1(_W7A) = Ql,l(waA) - QI,Q(W,A)? (69)
where
2
D, 0 1
w,A) =8 ciw—"9" ___{a-A—V,D,, )
Ql,l( ) jgo J (DTan’O_i_WQ)Q{ 170}R3D72nj0+w2
(6.10)
and
2 1 1
w,A):=4 ciw—s-——(a-A-V
Q1,2( ) jZO j Dgnj,o+w2( )Dgnj’0+w2

As for the operator Q1 2(w, A), we combine conditions (2.12) with identi-
ties (3.26) to estimate

1@, A)g, < K(jzg el (m? — m) )m IA],..  (611)

In order to estimate the operator Q1 1(w, A), we eliminate the odd powers
of the masses m; in the numerator of the right-hand side of (6.10) by taking
the C*trace. Recall that

{0 A=V Dy o}ps = {0, A= Valy +B-Z—2m;Vi.

Since

3
trea <ﬁd 11 aZ’“) =0, (6.12)
k=1
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when d is odd, we obtain

2
1
trea (m QLl(UJ,A)) = SjZOCj MQ(D%W)—_{_CL}Q)Q < — QmJQV trea (m)
tirce (m(ep) ({0 A~ Vg +B-2)) ) oy
C ’ R3 D2 +w25

for any of the matrices m = Iy, a1, a2, 3. On the other hand, we can
compute

1 _ 1 . mg - mj2
(p% + m? +w?)?2  (pPP+mi+w?)? (pP+ mj2 + w?)(p? + m3 + w?)?
N m3 — mf
(P? +mj +w?)?(p? + m§ +w?)’
(6.13)
as well as
1 B 1 N 2(m(2) — mjz)
(p% + m? +w2)2 (P2 +mi+w?)? (p2+md +w?)3
(o} — m)? (3 — 2y

+ + .
(p?+ m? + w?)(p? + m3 + w?)?  (p2+ m? + w?)2(p? + m3 + w?)?

Combining again with conditions (2.12) and identities (3.26), we obtain the
estimate

w2
| (m3+w?)
< (m|V]| s + (m? = md)| A1)

In view of (6.9) and (6.11), we have

/Htrc4 (Qi(w, A) + Qi (~w )))‘

2
tres (m Qi (w, A)) Hcsl < KZ ;] (m
=0

dw

(S5

m?2 m?2 — m
< K3l - ) (T Vs + 50 )

=0

Similarly, we can check that

/

dw

(G31

2 2 m2 m2
<Kl (=) (2 1V o+ 22 s ) Il

j=0

trea (mx (@1, A) + Qu(—w, A))x)|

(6.15)

For n = 2, the analysis is identical. We compute

QQ(W, A) + Q2(—W, A) = QQJ(W, A) — Q2,2(W, A), (616)
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where

2
Q2,1(w, A) =12 Z cj wx

J=0

mJ
e A=V, Dy o}
X((D2 +w?)? 7l 0} D D2+ w?

D?n], 1 1
+—{a A=V Dy} gz la A= V) ).

(D2, + w?)? Dy o w2 D?nj,o + w?
and
2 2D, o 1 2
Q22(w, A) c w2< Uk ((a A-V) >
]:ZO J D72nj0+w2 D72nj0+w2
+ (a-A=V) L A=V
D?njo w? Dfnj70+w2( )Dfnjo—kcu?
> Dum.o
A-V ) ™3
(e o)

In order to estimate the operators Q2 1(w, A) and Q2 2(w, A), we again take
the C*-trace. For m = I, or m = ay,, we derive from (6.12) that

2
tres (M Q21 (w, A)) =12 ch w?x
j=0
(a-p) 1 1
X t — A-V, A=V
rea ((DQ TP o a- p} 70+w2(a )Dgnj0+w2
1 1
2
m; (D%LJ n 2)2 {Oﬂ + V,«x p}DQ wQ(a + )Dgnj0+w2
1 1 a-p
—2mim (- A-YV)
7Dy, 0t W) Dy gt w? D, o+ w?
a-p 1 1
+2m?m oa-A+V
7Dy, 0t w?)? D%ajo+w2( )Dgnj,0+w2
2 2
p°+mj 1
+m a-A-V,a-p (- A-YV) >,
(D?nj _|_w2)2{ }D72n 2 D72nj0+w2
while
2 o.
tres (MQ22(w, A)) = Gch w? trea <2ml)27_];w2><
j=0 m;,0
1 2 1 a-p
x((a-A—V)7> +tm—m—— (- A= V)———5x
Dy, o+ w? Dy, o+ w? D7, o+ w?

1 1 2 a-p

mj,
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Invoking conditions (2.12), as well as identities (3.26) and (6.13), we deduce
that

|

W
(m§ + w?)?

trea (M Q2,1 (w, A)) HG <KZ =1 ( mj —mg) HAHL2

w2
+mmamummﬁwwmh@¢;@)

and

|

It follows that

/Htr@ m (Qo(, A) + Qal(~w, A)) )|

tres (mQaali A)) | < (zmwnﬂw)wm;;&;

dw

(S5

<K S tol( S A+ AL AL+ 171,

Similarly, we have

/]

dw

1

trea mx(QQ(% A) + Q2(~w, A))X> ‘ &

<KZ@( 8 et s Al Al + V) ) Il
(6.17)

In view of (6.14) and (6.15), we conclude that the integrals

tree (m Q) = 1 /R tree (m (Qu(w, A) + Qu(—w, A)) ) do,

also define local trace-class operators on L2(R3,R*) for n = 1,2, as soon
as A € H}L (R3). The operators are trace-class when A is in L"(R?).
Concerning the related densities p,(A) and currents j,(A), they are well-
defined and locally integrable on R3 for A € H, éiV(Rg), and integrable on R?
for A € L™(R?). Their continuity follows again by multi-linearity.

At this stage, it remains to recall Formulas (6.3) and (6.5) to complete
the proof of Lemma 6.1. O

We are now in position to complete the proof of Theorem 2.2.

End of the proof of Theorem 2.2. We have shown that the functional Fpy
is smooth on the open subset H of four-potentials A such that 0 is not
an eigenvalue of Dy, a for each j = 0,1,2. In particular, the differential
dFpy(A) is a bounded form on H} (R3). By duality, it can be identified
with a couple of functions (p, j«) in “the Coulomb space C defined in (2.26).
Our task reduces to verify that p, = pa and j,. = —ja.
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We first restrict our attention to four-potentials A which are moreover
integrable on R3. In this case, the functional Fpy(A) is given by For-
mula (2.17), which may be written in view of (4.1) as

5
Frv(A) =) Fu(A) + Rs(A),

n=1
where we recall that
1
Fn(A) = — / tr <tr(c4 (Rn(w, A) + Rn(—w,A))) dw,
47T R

and

Rs(A) :== ﬁ /Rtr <tr(c4 (R§(w, A) + Ri(—w, A)) dw.

We have computed the differential of dRg(A) in (4.56). On the other hand,
the functionals F,, are n-linear with respect to A, so that their differentials
are given by

dF,.(A)(v,a)

= L [t (tres (daRal, A)(0,0) + daRy(~0, A)(,0) ) des
47 R
with
2 w — 1 F

daRy(w, A)(0,a) = ZO Do+ ,;) ((aa- V>W> g
1 n—1—k
x(a-a—U)m<(a'A_v)W> ’
(6.18)

for any (v,a) € L'(R3,R*) N H} (R3). Tt follows that the differential
dFpv(A) is equal to

1
ATy (A) (o, a) — —/E(w,A)(n,a)dw,
47T R
with

5
E(w, A)(v,a) :=tr <Ztr (tr@; (daRn(w, A)(v,a) + daR,(—w, A)(v, a)))
n=1

+tr <trc4 (daRg(w, A)(v,a) + daRi(—w, A)(v, a)))>

At this stage, we make use of Formulas (4.53) and (6.18) to check that

E(w, A)(b,a) = tr <trc4 (icj (L(a ca— n))). (6.19)

= ij,A + iw)Q

Indeed, we have established in the course of Lemma 4.6 that each term in
the decomposition of d 4 Rf(w, A)(v, a) which is provided by Formula (4.53)
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is trace-class. As a consequence, we can write

tr ( trea daRg(w, A)(v, a)>

iw 1 1 6
= c'tri,a-a—t)i,<a-A—V7,>
jzo J ij7A—|—zw( )Dm].,A%—zw ( )Dm].,o—i—zw
2 5 .
w 1 5—k
e (@)
=0 ! kZO ij,A + 1w ( )ij,O + w

1 1 k

An advantage of this further decomposition is that we are allowed to com-
mute the products in the right-hand side, so as to obtain

tr ( trea daRg(w, A)(v, a)>

W 1 6 1
Yo gap(eA-Vg—r) s gplaay)
2 5 .
w 1 k 1
+3 Y 7ij,0+iw<(a-/l— V) ij,oﬂw) At

j=0 k=0
5—k
) (o-a—v).

This follows from the property that the operator (iw)(Dpm;,a + iw)™' is
bounded, while the operators (a - A — V)(Dp0 + iw) ™' and (o - a —
0)(Dm,0 + iw) "' belong to suitable Schatten spaces. Using the resolvent
expansion (3.6), we are led to

1

(@ A=V

2 .
w
tr <tI'((:4 dARg(w, A)(U, Cl)) = tr (tr(c4 ]ZO Cj <W(a - a— U)
4

k=0 =0

x ((a-A—V)m>l(a.a—n)>>.

Similarly, we can deduce from (6.18) that

41—k .
w

1 k
((a-A—V) - > — X
meo + iw Do +iw/ Do+ iw

(6.20)

tr<trc4dAR w, A)( )

2 = AV 1 n—1—k
: 7( Ay

w

1 k
X Dot <(a CA - V)iij,o +iw) (a-a— n)).

Formula (6.19) follows combining with (6.20).
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As a conclusion, we have derived the following expression of dFpy(A),

2

dFpv(A)(v,a) = %/}Rtf(“@ (Zcﬂ’ <m

J=0

D)) )

In view of (6.1) and Lemma 6.1, we deduce that

dFpv(A)(v,a) = tr <tr(c4 (QA(U —a- a))) = /RS (pav — ja - q),

so that p. = pa and j. = ja, when A € L'(R3,R*) N H}, (R3).

In the general case where A is only in H, 1 (R3), we can construct a
sequence of maps (A, )nen in L' (R RY)NHL (R3), for which 0 ¢ 0(Dm;,A,)
for any n € N and each j = 0,1, 2, and such that

A, - A in H} (R%),

as n — oo. The existence of such a sequence follows from the density of
LYR3,RY N HL (R3) in H} (R3), and statement (ii) in Lemma 2.1. For
each integer n, we know that

AFev(An)(0.0) = [ (pa,0—ia, -a).

R
for any four-potential (v,a) € C*(R3,R*). Combining the continuous dif-
ferentiability of the functional Fpy with statement (i) in Lemma 6.1, we
obtain, taking the limit n — oo,

AFiv(A)(o.0) = [ (pav—ia-a),
R
which completes the proof of (i¢) in Theorem 2.2.
Concerning (ii7), recall that the second order differential of Fpy is equal

to
d2Fpy(A) = A2 Fo(F) + 2 F4(A) + d*R(A).

Since F3 is quadratic and Fj is quartic, estimate (2.27) appears as a conse-
quence of Formula (2.20), and inequalities (4.19) and (4.57). This completes
the proof of Theorem 2.2. O
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