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CONSTRUCTION OF THE PAULI-VILLARS-REGULATED

DIRAC VACUUM IN ELECTROMAGNETIC FIELDS

PHILIPPE GRAVEJAT, CHRISTIAN HAINZL, MATHIEU LEWIN, AND ÉRIC SÉRÉ

Abstract. Using the Pauli-Villars regularization and arguments from
convex analysis, we construct the polarized Dirac vacuum, in the pres-
ence of small external electromagnetic fields. We describe the electrons
by a Hartree-Fock-type theory and the photons by a self-consistent clas-
sical magnetic potential. The resulting vacuum polarization coincides
on first order with that of full Quantum Electrodynamics.
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1. Introduction

Quantum Electrodynamics (QED) is a powerful theory which describes
the interactions of matter with light. Even if it is very well documented in
the Physics literature, its mathematical properties are far from being fully
understood. A non-perturbative rigorous formulation of QED is indeed still
missing.
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One possibility to attack this fundamental problem is via Lattice QED [28,
35, 26]. With J.-P. Solovej, we followed another route in a series of works [17,
18, 20, 19, 14, 15] which originated from a fundamental paper of Chaix and
Iracane [4]. We considered the simpler Hartree-Fock approximation of QED,
in which only the instantaneous Coulomb interactions between particles are
taken into account. We were able to study this model in the non-perturbative
regime, that is for all values of the bare coupling constant 0 < α < 4/π. It
is remarkable that this ‘no-photon’ mean-field theory can be formulated in
a fully non-perturbative way, but certainly disappointing that transversal
quantized photons have been neglected. The purpose of the present work
is to make a first step towards the inclusion of photons in Hartree-Fock
QED, by considering the interaction of Dirac’s vacuum with classical, but
optimized, electromagnetic fields. This is equivalent to assuming that pho-
tons are described by a coherent state in Fock space (the simpler mean-field
approximation for bosons). Our theory will be based on a famous regular-
ization procedure introduced by Pauli and Villars in [29].

1.1. Hamiltonian and Lagrangian formalism. We explain here the ori-
gin of the model. Our starting point is the formal Hamiltonian of QED,
written in Coulomb gauge, in the presence of an external electromagnetic
four-potential Aext := (Vext, Aext), see [22, 23, 38, 33, 3, 19],

H
Aext =

∫
Ψ∗(x)

[
α · (−i∇− eA(x)− eAext(x)) +mβ

]
Ψ(x) dx

+e

∫
Vext(x)ρ(x) dx +

e2

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy +Hf .

(1.1)

Here the four Dirac matrices α = (α1,α2,α3) and β are equal to

αk :=

(
0 σk

σk 0

)
and β :=

(
I2 0
0 −I2

)
,

the Pauli matrices σ1, σ2 and σ3 being defined by

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
and σ3 :=

(
1 0
0 −1

)
.

For later purposes we introduce the Dirac operator with mass m and elec-
tromagnetic four-potential A = (V,A),

Dm,eA := α ·
(
− i∇− eA(x)

)
+ eV (x) +mβ. (1.2)

In Formula (1.1), Ψ(x) is the second quantized field operator which anni-
hilates an electron at x and satisfies the anti-commutation relation

Ψ∗(x)σΨ(y)ν +Ψ(y)νΨ
∗(x)σ = 2δσ,νδ(x− y). (1.3)

Here Ψ(x)σ is an operator-valued distribution. The operator ρ(x) is the
density operator defined by

ρ(x) :=
1

2

4∑

σ=1

[Ψ∗
σ(x),Ψσ(x)], (1.4)
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where [a, b] := ab−ba. The operator Hf in (1.1) describes the kinetic energy
of the photons given by

Hf =
1

8π

∫
| curlA(x)|2 dx =

∑

λ=1,2

∫

R3

|k|a∗λ(k)aλ(k) dk +Cst,

where Cst indicates a constant which diverges in infinite volume. The vector
A(x) is the magnetic field operator for the photons and a∗λ(k) is the creation
operator of a photon with momentum k and polarization λ. The Hamilton-
ian HAext formally acts on the Fock space F = Fe ⊗ Fph where Fe is the
fermionic Fock space for the electrons and Fph is the bosonic Fock space for
the photons.

We now restrict the above (formal) Hamiltonian to states of the special
form

Ω = ΩHF ⊗ ΩCoh,

where ΩHF is an electronic (generalized) Hartree-Fock state characterized
by its one-particle density matrix 0 ≤ γ ≤ 1, and ΩCoh is a coherent state
characterized by its magnetic potential A(x) (a given classical vector field
on R3). In other terms, γ(x, y) = 〈Ψ∗(x)Ψ(y)〉ΩHF

, and A(x) = 〈A(x)〉ΩCoh
.

The coherent state ΩCoh is always pure but the generalized Hartree-Fock
state ΩHF is mixed when γ is not an orthogonal projection [2]. Computing
the corresponding energy yields (up to a universal constant which diverges
in infinite volume)

〈HAext〉Ω =tr
{(

α · (−i∇− eA− eAext) +mβ
)
(γ − 1/2)

}

+ e

∫

R3

Vext(x)ργ−1/2(x) dx+
e2

2

∫

R3

∫

R3

ργ−1/2(x)ργ−1/2(y)

|x− y| dx dy

− e2

2

∫

R3

∫

R3

|(γ − 1/2)(x, y)|2
|x− y| dx dy +

1

8π

∫

R3

| curlA(x)|2 dx,

see [20] for some computational details. The nonlinear terms appearing on
the second and third lines are the so-called direct and exchange terms. That
the energy depends on γ − 1/2 is due to the charge-conjugation invariant
choice (1.4) for the density operator ρ(x).

It is more convenient to express the previous energy by introducing the
Coulomb potential V induced by the density ργ−1/2 and which solves Pois-
son’s equation

−∆V = 4πe ργ−1/2, (1.5)

that is,

V (x) = e

∫

R3

ργ−1/2(y)

|x− y| dy.

We can then write

e2

2

∫

R3

∫

R3

ργ−1/2(x)ργ−1/2(y)

|x− y| dx dy

= e

∫

R3

ργ−1/2(x)V (x) dx− 1

8π

∫

R3

|∇V (x)|2 dx.
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Indeed, the potential V solving (1.5) is the unique solution to the maximiza-
tion problem

e2

2

∫

R3

∫

R3

ργ−1/2(x)ργ−1/2(y)

|x− y| dx dy

= sup
V

{
e

∫

R3

ργ−1/2(x)V (x) dx− 1

8π

∫

R3

|∇V (x)|2 dx
}
.

It is a useful technique to introduce an auxiliary unknown field V which
can vary freely, and over which the functional is maximized in the end.
Introducing the (time-independent) four potential A := (V,A), we arrive at
the Hartree-Fock Lagrangian

tr
(
Dm,e(A+Aext)(γ − 1/2)

)
− e2

2

∫

R3

∫

R3

|(γ − 1/2)(x, y)|2
|x− y| dx dy

+
1

8π

∫

R3

(
| curlA(x)|2 − |∇V (x)|2

)
dx.

All the terms in this expression are actually infinite, but they make sense
when the system is restricted to a box with an ultraviolet cut-off.

We now neglect the exchange term, that is we work in reduced Hartree-
Fock (rHF) theory. This leads us to considering the rHF Lagrangian

LAext
rHF (γ,A) = tr

(
Dm,e(A+Aext)(γ − 1/2)

)

+
1

8π

∫

R3

(
| curlA(x)|2 − |∇V (x)|2

)
dx.

(1.6)

It will be clearer later why the no-exchange model is easier to handle. In
relativistic density functional theory [10], this term would be approximated
by a function of ργ−1/2 only.

Remark 1.1. Another way to derive the same rHF Lagrangian (1.6) is to
start from the formal Lagrangian of QED [33], with a classical electromag-
netic field instead of a quantized one. In the time-independent case one
arrives at (1.6) (with a different sign). Since there are only one-body poten-
tials in this model, the electrons are automatically in a Hartree-Fock state
and no further approximation is necessary. This approach was undertaken
by J. Schwinger in his celebrated paper [34] on vacuum polarization, where
he derived the probability of pair creation by tunneling in a strong electro-
static field. The functional defined in this paper is therefore suitable for a
rigorous examination of this so-called Schwinger effect.

1.2. The self-consistent equations. Our goal is to construct rHF ground
states. They are obtained by minimizing the functional (1.6) with respect
to both the electronic density matrix γ and the classical photon field A,
and maximizing over V . If no constraint (other than the Pauli principle
0 ≤ γ ≤ 1) is imposed on γ, then we are considering the rHF polarized
vacuum in the presence of the external field Aext. For atoms and molecules,
a charge constraint of the form

tr
(
γ − 1

2

)
= N,

is needed. In this paper we restrict ourselves to the vacuum case.
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Any optimal state is a formal solution of the following self-consistent
equations





γ = 1(−∞,0)

(
α · (−i∇− eA− eAext) +mβ + eV + eVext

)
,

−∆A = 4π e jγ−1/2,

−∆V = 4π e ργ−1/2,

divA = divAext = 0,

(1.7)

where

jγ−1/2(x) = trC4

(
α
(
γ − 1

2

)
(x, x)

)
,

and

ργ−1/2(x) = trC4

((
γ − 1

2

)
(x, x)

)
,

are respectively the current and charge density of the polarized vacuum.
The equation on γ (the first line of (1.7)) means that the polarized vacuum
consists of particles filling all the negative energies of the mean-field Dirac
operator (appearing in the parenthesis), in accordance with the original
ideas of Dirac [6, 7, 8]. The equations (1.7) are well-known in the literature,
see, e.g., [10, Eq. (62)-(64)]. For atoms and molecules, the vacuum pro-
jection 1(−∞,0)(· · · ) has to be replaced by a spectral projection of the form
1(−∞,µ)(· · · ), for some chemical potential µ which is chosen to ensure the
correct number N of electrons in the gap (more precisely the correct total
charge of the system). Except from this change of chemical potential, the
equations take exactly the same form.

1.3. The Pauli-Villars regularization. After having discussed the gen-
eral idea of the method, we now present the technique that we have employed
to give it a rigorous meaning. First, it is not obvious whether we are solving
the same problem when we change the order of the minimization in A and γ
and the maximization in V . Since the theory is divergent for large momenta,
we will have to put some ultraviolet cut-off. This regularization might also
not commute with the minγ , minA and maxV . In this paper we choose the
following route:

(1) We minimize with respect to the density matrix γ and obtain a
formal Lagrangian action functional depending on V and A only;

(2) We regularize the functional by using the Pauli-Villars scheme [29];
(3) We finally show that the order of the minA and maxV do not matter,

and we prove the existence of a corresponding (unique) saddle point.
This unique state is the free vacuum when Aext ≡ 0 and it is the
polarized vacuum when Aext 6= 0.

Summarizing, we solve the following variational problem:

max
V

min
A

(
min
γ

LAext
rHF (γ, V,A)

)

︸ ︷︷ ︸
Pauli−Villars−regulated

= min
A

max
V

(
min
γ

LAext
rHF (γ, V,A)

)

︸ ︷︷ ︸
Pauli−Villars−regulated

,

for Aext ≡ 0 and for Aext 6= 0. The main advantage of our approach is
that the minimization with respect to γ can be solved explicitly, since the
functional is linear in γ. In principle the same technique could be used to
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handle the exchange term (or a density functional approximation of it) as
well. However, the minimization over γ becomes nonlinear in this case.

When A = Aext = 0, the formal solution of

min
γ

L0
rHF(γ, 0, 0) = min

γ
tr
(
Dm,0

(
γ − 1

2

))
,

is the free Dirac sea
γ = P 0

− = 1(−∞,0)

(
Dm,0

)
.

The electrons fill in completely the negative Dirac energies. The correspond-
ing energy, namely

tr
(
Dm,0

(
γ − 1

2

))
=

1

2
trDm,0

(
1(−∞,0)

(
Dm,0

)
− 1(0,∞)

(
Dm,0

))

= −1

2
tr
∣∣Dm,0

∣∣,
is infinite, except if we are in a box with an ultraviolet cut-off.

Here and everywhere in the paper, the absolute value of an operator is
defined by the functional calculus

|A| :=
√
A∗A.

It is in general not a scalar operator, that is, it may still depend on the spin.
In the special case of Dm,0, it does not depend on the spin, however, since
it is the scalar pseudo-differential operator

∣∣Dm,0

∣∣ =
√

−∆+m2.

In the general case, the formal solution is

γ = 1(−∞,0)

(
Dm,e(A+Aext)

)
,

and the associated minimum is

min
γ

LAext
rHF (γ, V,A) = −1

2
tr
∣∣Dm,e(A+Aext)

∣∣+ 1

8π

∫

R3

(
| curlA|2 − |∇V |2

)
.

(1.8)
Again this quantity is always infinite. However, it can be given a clear math-
ematical meaning as follows. First, we can subtract the (infinite) energy of
the free Dirac sea and define the relative Lagrangian as

L
Aext
rel (A) :=

1

2
tr
(∣∣Dm,0

∣∣−
∣∣Dm,e(A+Aext)

∣∣
)
+

1

8π

∫

R3

(
| curlA|2 − |∇V |2

)
.

(1.9)
Since we have removed an (infinite) constant, we formally do not change the
initial variational problem in which we are interested, hence we also do not
change the self-consistent equations. Unfortunately, this functional is not
yet well-defined, because the model is known to have important ultraviolet
divergences. Indeed, the operator |Dm,0| − |Dm,e(A+Aext)| is not trace-class
when A+Aext 6= 0 and its trace is not well-defined. This is reminiscent of the
fact that the difference of the two corresponding negative projectors is never
Hilbert-Schmidt [27]. In order to remove these divergences, an ultraviolet
cut-off has to be imposed. The choice of this regularization is extremely
important. Some simple choices in the spirit of what we have done in the
purely electrostatic case (see, e.g. [14] for two different choices) would not
work here, because of their lack of gauge symmetry.
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In 1949, Pauli and Villars [29] have proposed a very clever way to regular-
ize QED, while keeping the appropriate invariances. It is this technique that
we will use in this paper (but there are other choices). In our language,1 it
consists in introducing the following Lagrangian functional

L
Aext
PV (A) :=

1

2
tr

(
J∑

j=0

cj

(∣∣Dmj ,0

∣∣−
∣∣Dmj ,e(A+Aext)

∣∣
))

+
1

8π

∫

R3

(
| curlA|2 − |∇V |2

)
.

(1.10)

Here m0 = m and c0 = 1, whereas the other cj and mj describe fictitious
particles with very large masses mj ≫ 1 such that

J∑

j=0

cj =

J∑

j=0

cj m
2
j = 0. (1.11)

The role of this constraint is to remove the worst ultraviolet divergences.2

We will show in this paper that it does actually remove divergences since
we can define the trace of

∑J
j=0 cj(|Dmj ,0| − |Dmj ,e(A+Aext)|) under these

conditions.
The purpose of this paper is twofold. First we prove that L

Aext
PV (A) can

be properly defined under the natural conditions that the fields B = curlA,
Bext = curlAext, E = −∇V and Eext = −∇Vext have a finite energy, i.e. are
square integrable, and that

divAext = divA = 0,

which is the Coulomb gauge condition. We then show that

L
0
PV(0, 0) = max

V
L

0
PV(V, 0) = min

A
L

0
PV(0, A), (1.12)

for V (resp. A) varying in a neighborhood of 0 for the norm ‖∇V ‖L2(R3)

(resp. ‖ curlA‖L2(R3)). The interpretation of (1.12) is that the free vacuum

γ = P 0
− is stationary under its own electromagnetic excitations. We conjec-

ture that it is also a global saddle point, but we are unable to prove this
with our present technology.

In a second step, we show that the functional L
Aext
PV admits a local saddle

point in a neighborhood of 0, when the norms ‖Eext‖L2(R3) and ‖Bext‖L2(R3)

are sufficiently small. This proves the existence of the polarized vacuum
in weak external electromagnetic fields. This state is not a solution to the
original equations (1.7), but instead it solves the Pauli-Villars regulated

1If we describe the fictitious particles by the density matrices γj , with γ0 = γ, then the

Pauli-Villars scheme consists in optimizing the functional
∑J

j=0 cj trDmj ,e(A+Aext)(γj −

1/2), subject to the Pauli principles 0 ≤ γj ≤ 1. The energy must be minimized over the
matrices γj such that cj > 0 and maximized over those such that cj < 0. Adding the

infinite constant
∑J

j=0 cj tr |Dmj ,0|/2 gives Formula (1.10).
2More precisely, the role of (1.11) is to remove the linear ultraviolet divergence. The

model is still logarithmically divergent, see (2.9) below.
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equations




Q =
2∑

j=0
cj 1(−∞,0)

(
α · (−i∇− eA− eAext) +mjβ + eV + eVext

)
,

−∆A = 4π e jQ,

−∆V = 4π e ρQ,

divA = divAext = 0.

(1.13)
Our approach to prove the existence of such solutions consists in expand-

ing the energy in powers of the elementary charge e. All the odd order terms
vanish (by charge-conjugation invariance). Then we compute explicitly the
second order term which is responsible of the ultraviolet divergences. It is
important for our existence proof that this term be strictly convex in A and
strictly concave in V . We also have to deal with the fourth order term in
some detail. The latter was computed in the Physics literature in [24] and
our task will be to estimate it. The higher order terms are then bounded in
a rather crude way, following techniques of [17]. The main difficulty in our
work is to verify that the Pauli-Villars conditions (1.11) induce the appro-
priate cancellations in the few first order terms, and to estimate them using
the L2–norm of the electromagnetic fields and nothing else.

In spite of its widespread use in quantum electrodynamics, the Pauli-
Villars scheme [29] has not attracted a lot of attention on the mathematical
side so far (see [12, 40, 41, 42, 11] for some previous results). The results of
this paper seem to be among the first in this direction.

Acknowledgements. M.L. and É.S. acknowledge support from the French
Ministry of Research (Grant ANR-10-0101). M.L. acknowledges support
from the European Research Council under the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement MNIQS
258023).

2. Main results

Our goal is to study the Pauli-Villars Lagrangian functional which is
formally given by

L
Aext
PV (A) :=

1

2
tr

2∑

j=0

cj

(∣∣Dmj ,0

∣∣−
∣∣Dmj ,e(A+Aext)

∣∣
)
+

1

8π

∫

R3

(
|B|2 − |E|2

)
,

(2.1)
where we recall that B := curlA, E := −∇V , and

Dm,e(A+Aext) := α ·
(
− i∇− e(A+Aext)

)
+ e(V + Vext) +mβ.

In Section 2.1, we recall some elementary spectral properties of Dm,A when
the field F = (−∇V, curlA) associated to A = (V,A) has a finite energy. In
Section 2.2, we properly define the nonlinear term in (2.1), whereas in Sec-
tions 2.3 and 2.4, we show the existence of a saddle point for this functional,
either when Aext ≡ 0, or when Aext 6= 0 is small enough.
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2.1. Elementary properties of electromagnetic Dirac operators. Be-
fore entering the main subject of this article, we recall some elementary
spectral properties of the Dirac operator in the presence of electromagnetic
fields [43, Chap. 4]. The natural space in our setting is the Coulomb-gauge
homogeneous Sobolev space

Ḣ1
div(R

3) :=
{
A = (V,A) ∈ L6(R3,R4) :

divA = 0 and F = (−∇V, curlA) ∈ L2(R3,R6)
}
, (2.2)

endowed with its norm

‖A‖2
Ḣ1

div(R
3)

:= ‖∇V ‖2L2(R3) + ‖ curlA‖2L2(R3) = ‖F ‖2L2(R3). (2.3)

Here and everywhere, the equation divA = 0 is understood in the sense of
distributions.

Lemma 2.1 (Elementary spectral properties of Dm,A). Let m > 0.

(i) Any four-potential A ∈ Ḣ1
div(R

3) is Dm,0–compact. The operator Dm,A

is self-adjoint on H1(R3) and its essential spectrum is

σess(Dm,A) = (−∞,−m] ∪ [m,∞).

(ii) The eigenvalues of Dm,A in (−m,m) are Lipschitz functions of A in
the norm ‖A‖Ḣ1

div(R
3).

(iii) There exists a universal constant C such that, if

‖A‖Ḣ1
div(R

3) ≤ η
√
m, (2.4)

for some number η < 1/C, then

σ(Dm,A) ∩ (−m(1− Cη), (1 − Cη)m) = ∅.

(iv) Finally, if V ≡ 0, then σ(Dm,A) ∩ (−m,m) = ∅.
Proof. Recall the Kato-Seiler-Simon inequality [36, 39]

∀p ≥ 2,
∥∥f(x)g(−i∇)

∥∥
Sp

≤ 1

(2π)
3
p

∥∥f
∥∥
Lp

∥∥g
∥∥
Lp , (2.5)

whereSp is the usual Schatten class [39]. Applying (2.5) with p = 6 together
with the Sobolev inequality, we obtain

∥∥∥V 1

Dm,0

∥∥∥
S6

≤ C√
m

∥∥V
∥∥
L6 ≤ C√

m

∥∥∇V
∥∥
L2 ,

and, similarly,
∥∥∥α ·A 1

Dm,0

∥∥∥
S6

≤ C√
m

∥∥A
∥∥
L6 ≤ C√

m

∥∥ curlA
∥∥
L2 ,

where we have used that divA = 0. Since all the operators in S6 are
compact, statements (i) and (ii) follow from usual perturbation theory [25,
32]. Concerning (iii), we notice that

Dm,A (Dm,0)
−1 =

(
I +

(
V −α ·A

) 1

Dm,0

)
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so that, under condition (2.4),
∣∣Dm,A

∣∣ ≥
(
1− Cη)

∣∣Dm,0

∣∣.
Statement (iii) then follows from (i), whereas (iv) is [43, Thm 7.1]. �

2.2. Rigorous definition of the electron-positron energy. Here, we
explain how to provide a rigorous meaning to the functional

FPV

(
A
)
:=

1

2
tr

2∑

j=0

cj

(∣∣Dmj ,0

∣∣−
∣∣Dmj ,A

∣∣
)

(2.6)

for a general four-potential A = (V,A) in the energy space Ḣ1
div(R

3) (and
which therefore satisfies the Coulomb gauge condition divA = 0). Note that
the first term in our functional (2.1) is nothing else but FPV(e(A +Aext)).

As we have said, in Formula (2.6), the index j = 0 corresponds to the
physical electron-positron field, while the other indices j = 1, 2 describe
fictitious heavy particle fields. In particular, m0 > 0 is the (bare) mass of
the electron. We always take

c0 = 1.

The role of the auxiliary particle fields is to provide an ultraviolet regular-
ization. It is well-known in the Physics literature [29, 16, 3] that a sufficient
condition to properly regularize the model is that the coefficients cj and the
masses mj appearing in (2.1) satisfy

∑

j

cj =
∑

j

cjm
2
j = 0. (2.7)

For this condition to be fulfilled, at least two additional distinct masses
m1 and m2 are necessary. When there are exactly two fictitious fields, the
condition (2.7) is equivalent to

c1 =
m2

0 −m2
2

m2
2 −m2

1

and c2 =
m2

1 −m2
0

m2
2 −m2

1

. (2.8)

We will always assume that m0 < m1 < m2, which implies that c1 < 0 and
c2 > 0.

In the limit m1,m2 → ∞, the regularization does not prevent a logarith-
mic divergence, which is best understood in terms of the averaged ultraviolet
cut-off Λ defined as

log(Λ2) := −
2∑

j=0

cj log(m
2
j). (2.9)

The value of Λ does not determine m1 and m2 uniquely. In practice, the
latter are chosen as functions of Λ such that c1 and c2 remain bounded when
Λ goes to infinity.

As we now explain, the Pauli-Villars regularization allows to give a rigor-
ous meaning to the nonlinear term FPV defined in (2.6).
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Theorem 2.1 (Proper definition of FPV). Assume that cj and mj satisfy

c0 = 1, m2 > m1 > m0 > 0 and

2∑

j=0

cj =

2∑

j=0

cjm
2
j = 0. (2.10)

(i) Let

TA :=
1

2

2∑

j=0

cj

(∣∣Dmj ,0

∣∣−
∣∣Dmj ,A

∣∣
)
. (2.11)

For any A ∈ L1(R3,R4) ∩ Ḣ1
div(R

3), the operator trC4 TA is trace-class on
L2(R3,C). In particular, FPV(A) is well-defined in this case, by

FPV(A) = tr
(
trC4 TA

)
. (2.12)

(ii) The functional FPV can be uniquely extended to a continuous mapping

on Ḣ1
div(R

3).

(iii) Let A ∈ Ḣ1
div(R

3). We have

FPV(A) = F2(F ) +R(A), (2.13)

where F := (E,B), with E = −∇V and B = curlA. The functional R is

continuous on Ḣ1
div(R

3) and satisfies

|R(A)| ≤ K

(( 2∑

j=0

|cj |
mj

)∥∥F
∥∥4
L2 +

( 2∑

j=0

|cj |
m2

j

)∥∥F
∥∥6
L2

)
, (2.14)

for a universal constant K.

(iv) The functional F2 is the non-negative and bounded quadratic form on
L2(R3,R4) given by

F2(F ) =
1

8π

∫

R3

M(k)
(∣∣B̂(k)

∣∣2 −
∣∣Ê(k)

∣∣2
)
dk, (2.15)

where

M(k) := − 2

π

2∑

j=0

cj

∫ 1

0
u(1− u) log

(
m2

j + u(1− u)|k|2
)
du. (2.16)

The function M is positive and satisfies the uniform estimate

0 < M(k) ≤M(0) =
2 log(Λ)

3π
, (2.17)

where Λ was defined previously in (2.9).

Let us emphasize the presence of the C4–trace in statement (i) about
the trace-class property of trC4 TA. We do not believe that the operator
is trace-class without taking first the C4–trace, except when V ≡ 0. If we
are allowed to take more fictitious particles by increasing the numbers of
auxiliary masses, it is possible to obtain a trace-class operator under the
additional conditions ∑

j

cj mj =
∑

j

cj m
3
j = 0.
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At least four auxiliary masses are then necessary. The terms which are not
trace-class when only two fictitious particles are used, actually do not con-
tribute to the final value of the energy functional FPV (their trace formally
vanishes). For this reason, we have found more convenient to first take the
C4–trace (which is enough to discard the problematic terms) and limit our-
selves to two fictitious particles, as is usually done in the Physics literature.
This suffices to provide a clear meaning to the energy.

The function M describes the linear response of the Dirac sea. It is well-
known in the Physics literature [16, Eq. (5.39)]. We will see below that

lim
Λ→∞

(2 log Λ
3π

−M(k)
)
= U(k) :=

|k|2
4π

∫ 1

0

z2 − z4/3

1 + |k|2(1− z2)/4
dz. (2.18)

The function in the right-hand side of (2.18) was first computed by Ser-
ber [37] and Uehling [44]. The same function U already appeared in our
previous works dealing with pure electrostatic potentials [21, 18, 15]. This
is a consequence of the gauge and relativistic invariances of full QED.

After having properly defined the functional FPV, we need some of its
differentiability properties. In this direction, we can prove the following

Theorem 2.2 (Differentiability of FPV). Assume that cj and mj satisfy
conditions (2.10).

(i) Let A ∈ Ḣ1
div(R

3) be such that 0 is not an eigenvalue of the operators
Dmj ,A for j = 0, 1, 2. Then the functional FPV is C∞ in a neighborhood of
A.

(ii) The first derivative of FPV is given by

〈dFPV(A), (v, a)〉 =
∫

R3

〈
(ρA,−jA, ), (v, a)

〉
R4 , (2.19)

for all (v, a) ∈ Ḣ1
div(R

3), where the density ρA and the current jA are defined
as

ρA(x) :=
[
trC4 QA

]
(x, x) and jA(x) :=

[
trC4 αQA

]
(x, x), (2.20)

and with QA refering to the kernel of the operator

QA :=
2∑

j=0

cj 1(−∞,0)

(
Dmj ,A

)
.

The operators trC4 QA and trC4 αkQA for k = 1, 2, 3 are locally trace-class
on L2(R3,C4), and ρA and jA are well-defined functions in L1

loc(R
3) ∩ C,

where C is the Coulomb space

C :=
{
f : R3 → C :

∫

R3

|f̂(k)|2
|k|2 dk <∞

}
= Ḣ−1(R3). (2.21)

(iii) There exists a universal constant η > 0 such that the second derivative
of FPV satisfies the estimate

∥∥∥∥∥d
2FPV(A)− 1

4π

(
−M 0
0 M

)∥∥∥∥∥ ≤ 2K

( 2∑

j=0

|cj |
mj

)
‖A‖2

Ḣ1
div(R

3)
(2.22)

for all A such that ‖A‖Ḣ1
div(R

3) ≤ η
√
m0 = η

√
m.
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Our estimate (2.22) means more precisely that
∣∣∣∣
〈
A′,d2FPV(A)A′

〉
− 1

4π

∫

R3

M(k)
(∣∣B̂′(k)

∣∣2 −
∣∣Ê′(k)

∣∣2
)
dk

∣∣∣∣

≤ 2K

( 2∑

j=0

|cj |
mj

)∥∥A
∥∥2
Ḣ1

div(R
3)

∥∥A′
∥∥2
Ḣ1

div(R
3)
,

when A is small enough in Ḣ1
div(R

3).
As a consequence of Lemma 2.1 and Theorem 2.2, we obtain

Corollary 2.1 (Regularity in a neighborhood of 0). There exists a positive
radius η such that the functional FPV is C∞ on the ball B(η) :=

{
A ∈

Ḣ1
div(R

3) : ‖A‖Ḣ1
div(R

3) < η
√
m0

}
. On this ball, the differential dFPV is

given by (2.19), whereas d2FPV satisfies estimate (2.22).

Proof. We fix η such that

Cη < 1,

where C is the constant in statement (iii) of Lemma 2.1. For this choice,
given any four-potential A in the ball B(η), 0 is not an eigenvalue of each
of the operators Dmj ,A. Corollary 2.1 then follows from Theorem 2.2. �

In the next sections, we explain how to use Theorems 2.1 and 2.2 in order
to get the desired stability of the free Dirac vacuum, and to construct the
polarized vacuum. We then come back to the proofs of Theorems 2.1 and 2.2
afterwards.

2.3. Stability of the free Dirac vacuum. Let e > 0 be the (bare) charge
of the electron. Assume that c0 = 1, and that cj and mj satisfy (2.7). We
work under the condition that e ≤ ē for some fixed constant ē (e is not
allowed to be too large, but it can be arbitrarily small). All our constants
will depend on ē, but not on e. Note that e is dimensionless here because we
have already set the speed of light equal to 1. Using Theorem 2.1, we can
properly define the Pauli-Villars Lagrangian in the absence of any external
electromagnetic field, i.e. for Aext ≡ 0, by

L
0
PV(A) := FPV

(
eA
)
+

1

8π

∫

R3

(
|B|2 − |E|2

)
,

on the Coulomb-gauge homogeneous Sobolev space Ḣ1
div(R

3). The following
result is a direct consequence of the properties of the functional F2 defined
in (2.15), as well as on the regularity properties of FPV.

Theorem 2.3 (Stability of the free Dirac vacuum). Assume that cj and mj

satisfy (2.10). The four-potential A ≡ 0 is a saddle point of L 0
PV. It is the

unique solution to the min-max problem

L
0
PV(0, 0) = max

‖∇V ‖
L2<

r
√

m0
e

L
0
PV(V, 0) = min

‖ curlA‖
L2<

r
√
m0
e

L
0
PV(0, A), (2.23)
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or, equivalently,

L
0
PV(0, 0) = min

‖ curlA‖
L2<

r
√
m0
e

sup
‖∇V ‖

L2<
r
√
m0
e

L
0
PV(V,A)

= max
‖∇V ‖

L2<
r
√
m0
e

inf
‖ curlA‖

L2<
r
√
m0
e

L
0
PV(V,A),

(2.24)

for some positive radius r which only depends on
∑2

j=0 |cj |(m0/mj) and ē

(the largest possible value of e).

As we have seen we can take the cut-off Λ → ∞ which implies that
m0/mj → 0 for j = 1, 2, while keeping c1 and c2 bounded. We therefore see
that the radius r of the ball of stability of the free vacuum does not depend
on Λ if the bare parameters e and m0 are kept fixed.

The electrostatic stability of the free Dirac vacuum was pointed out first
by Chaix, Iracane and Lions [4, 5] and proved later in [1, 17, 18]. It is
possible to include the exchange term and even establish the global stability
of the free Dirac vacuum [17, 18, 19]. Dealing with magnetic fields is more
complicated and, so far, we are only able to prove local stability, using the
Pauli-Villars regularization. Because of lack of gauge symmetry, it is not
clear whether the free Dirac sea is still stable under magnetic excitations
when a sharp ultraviolet cut-off is used.

Proof. We choose r > 0 such that

r ≤ η/
√
2 and 2K

( 2∑

j=0

|cj |
mj

)
m0

(
r2 + 2m0r

4
)
≤ 1

8πē2
, (2.25)

where K is the constant appearing in (2.14), and where η is the constant
in statement (iii) of Theorem 2.2. We recall that e ≤ ē. Consider now any
A such that ‖∇V ‖L2 ≤ r

√
m0/e and ‖ curlA‖L2 ≤ r

√
m0/e (which implies

‖A‖Ḣ1
div(R

3) = ‖F ‖L2 ≤ √
2m0r/e). By (2.14), we have

∣∣FPV(eA)−F2(eF )
∣∣ ≤ K

(( 2∑

j=0

|cj |
mj

)
e4‖F ‖4L2 +

( 2∑

j=0

|cj |
m2

j

)
e6‖F ‖6L2

)

≤ 2K

( 2∑

j=0

|cj |
mj

)
m0

(
r2 + 2m0r

4
)
e2‖F ‖2L2

≤ 1

8π

∥∥F
∥∥2
L2 .

(2.26)

Using Formula (2.15) for F2, we get

L
0
PV(0, A) ≥

e2

8π

∫

R3

M(k)|B̂(k)|2 dk ≥ 0,

with equality if and only A ≡ 0, since M > 0. Similarly,

L
0
PV(V, 0) ≤ − e2

8π

∫

R3

M(k)|Ê(k)|2 dk ≤ 0,
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with equality if and only V ≡ 0. Thus we have shown (2.23). The equiva-
lence between (2.23) and (2.24) is a classical fact of convex analysis, see [9,
Prop. 1.2, Chap. VI].

Finally, since we can deduce from (2.22) that
∥∥∥∥d2L 0

PV(A)− 1

4π

(
−1− e2M 0

0 1 + e2M

)∥∥∥∥ ≤ 2Ke2
( 2∑

j=0

|cj |
mj

)
‖F ‖2L2

≤ 4Km0

( 2∑

j=0

|cj |
mj

)
r2,

for e‖A‖Ḣ1
div(R

3) ≤ r
√
2m0 ≤ η

√
m0, we deduce that L 0

PV is strictly convex

with respect to A and strictly concave with respect to V , provided that r
satisfies the additional condition

4Km0

( 2∑

j=0

|cj |
mj

)
r2 <

1

4π
. (2.27)

This implies uniqueness of the saddle point by [9, Prop 1.5, Chap. VI]. �

2.4. Polarized Dirac vacuum in external electromagnetic fields. Fi-
nally, we include an external electromagnetic field Aext and we look for the
corresponding stable polarized Dirac vacuum, which is a stationary state of
the Pauli-Villars Lagrangian functional

L
Aext
PV (A) := FPV

(
e(A+Aext)

)
+

1

8π

∫

R3

(
|B|2 − |E|2

)
,

in Ḣ1
div(R

3). Our main result is

Theorem 2.4 (Existence of the polarized vacuum in small external fields).
Assume that cj and mj satisfy (2.10). Let r be the same constant as in
Theorem 2.3.

(i) For any

e‖Aext‖Ḣ1
div(R

3) <
r
√
m0

8
, (2.28)

there exists a unique solution A∗ = (V∗, A∗) ∈ Ḣ1
div(R

3) to the min-max
problem

L
Aext
PV (A∗) = max

‖∇V ‖
L2<

r
√

m0
4e

L
Aext
PV (V,A∗) = min

‖ curlA‖
L2<

r
√
m0

4e

L
Aext
PV (V∗, A),

or, equivalently, to

L
Aext
PV (A∗) = max

‖∇V ‖
L2<

r
√
m0

4e

inf
‖ curlA‖

L2<
r
√
m0

4e

L
Aext
PV (A)

= min
‖ curlA‖

L2<
r
√
m0

4e

sup
‖∇V ‖

L2<
r
√
m0

4e

L
Aext
PV (A).

(2.29)

(ii) The four-potential A∗ is a solution to the nonlinear equations
{

−∆V∗ = 4πe ρA∗+Aext ,
−∆A∗ = 4πe jA∗+Aext ,

(2.30)
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where ρA∗+Aext and jA∗+Aext refer to the charge and current densities de-
fined in Theorem 2.2, that is, associated with the operator

Q∗ =

2∑

j=0

cj 1(−∞,0)

(
Dmj ,e(A∗+Aext)

)
. (2.31)

Solutions to the self-consistent equation (2.30) have been constructed in
the previous works [17, 18, 20], with a sharp ultraviolet cut-off and including
the exchange term, but in the purely electrostatic case Aext = A∗ = 0. In
this special case it is possible to obtain the polarized vacuum as a global
minimizer. The method of [17, 18, 20] does not seem to be applicable with
magnetic fields, however. To our knowledge, Theorem 2.4 is the first result
dealing with self-consistent magnetic fields in the Hartree-Fock approxima-
tion of QED.

Equations (2.30) and (2.31) are well known in the Physics literature (see,
e.g., [10, Eq. (62)–(64)]). In Relativistic Density Functional Theory, the
exchange term is replaced by an effective functional of the density, which
leads to formally similar equations.

The proof of Theorem 2.4 is based on tools of convex analysis, using that
L

Aext
PV has the local saddle point geometry by Theorem 2.1.

Proof. Let us define the balls

BV(r) :=
{
V ∈ L6(R3,R) : e‖∇V ‖L2 ≤ r

√
m0

}
,

and

BA(r) :=
{
A ∈ L6(R3,R3) : e‖ curlA‖L2 ≤ r

√
m0

}
.

As we have already shown in the proof of Theorem 2.3, when r satisfies
condition (2.25), the function A 7→ L 0

PV(A) is strictly convex with respect
to A and strictly concave with respect to V on BV(r)× BA(r).

We now assume that the external field Aext ∈ BV(εr)× BA(εr) for some
ε < 1/3 to be chosen later. Then A + Aext is in BV(r) × BA(r) for all
A ∈ BV(2εr) × BA(2εr). Therefore, A 7→ L 0

PV(A + Aext) is also strictly
convex with respect to A and strictly concave with respect to V on BV(2εr)×
BA(2εr). Now we remark that

L
Aext
PV (A) = L

0
PV(A+Aext)+

1

8π

∫

R3

(
2E ·Eext−2B ·Bext+|Eext|2−|Bext|2

)
,

which shows that A 7→ L
Aext
PV (A) has the same convexity and concavity

properties on BV(2εr)× BA(2εr).

Since L
Aext
PV is strongly continuous on BV(2εr)×BA(2εr) by Theorem 2.1,

a classical result from convex analysis implies that L
Aext
PV possesses at least

one saddle point A∗ = (V∗, A∗) ∈ BV(2εr)× BA(2εr), solving

L
Aext
PV (A∗) = max

V ∈BV (2εr)
L

Aext
PV (V,A∗) = min

A∈BA(2εr)
L

Aext
PV (V∗, A).

See for instance [9, Prop. 2.1, Chap. VI]. Uniqueness follows from the strict
concavity and convexity, by [9, Prop 1.5, Chap. VI].
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It only remains to verify thatA∗ does not lie on the boundary of BV(2εr)×
BA(2εr). Similarly as in (2.26), we first compute

∣∣FPV(eA
′)−F2(eF

′)
∣∣ ≤ K

( 2∑

j=0

|cj |
mj

)(
e4‖F ′‖4L2 +

e6

m0
‖F ′‖6L2

)

≤ 9 ε2

8π
‖F ′‖2L2 ,

(2.32)

for all A′ ∈ BV(3εr) × BA(3εr), when r satisfies (2.25) and ε < 1/3. Using
that A+Aext ∈ BV(3εr)× BA(3εr), we obtain

L
Aext
PV (V,A)− L

Aext
PV (V,−Aext)

≥ e2F2(0, B +Bext) +
1

8π

∫

R3

| curlA|2 − 1

8π

∫

R3

| curlAext|2 −
81 ε4r2m0

4πe2

≥ 1

8π

∫

R3

| curlA|2 − ε2r2m0(162 ε
2 + 1)

8πe2
,

since F2 is a non-negative functional. When A belongs to the boundary of
BA(2εr), we obtain

L
Aext
PV (V,A) ≥ L

Aext
PV (V,−Aext) +

3ε2r2

8π

(
1− 54ε2

)
m0.

Choosing for instance ε = 1/8, the right-hand side is positive, so that

e2
∫

R3

| curlA∗|2 < 4ε2r2m0,

otherwise we would have L
Aext
PV (V∗, A∗) > L

Aext
PV (V∗,−Aext), which contra-

dicts the fact that A∗ minimizes A 7→ L
Aext
PV (V∗, A). Similarly, we have

L
Aext
PV (V,A)− L

Aext
PV (−Vext, A) ≤ − 1

8π

∫

R3

|∇V |2 + ε2r2m0(162 ε
2 + 1)

8πe2
,

(2.33)
which can be used to show that

e2
∫

R3

|∇V∗|2 < 4ε2r2m0.

The unique saddle point A∗ = (V∗, A∗) being in the interior of the set

BV(2εr)× BA(2εr), the derivative of L
Aext
PV must vanish at this point. The

self-consistent equation (2.30) follows from Theorem 2.2. �

The rest of the paper is devoted to the proofs of Theorems 2.1 and 2.2.
Our strategy is as follows. First, in Section 3, we show that the functional
FPV is well-defined for four-potentials A with an appropriate decay in x-
space (the integrability of A on R3 is enough). Then, we compute things
more precisely in Section 4, and we exhibit the cancellations which show
that this functional can be uniquely extended by continuity to Ḣ1

div(R
3).
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3. Proper definition of the Pauli-Villars functional for
potentials with fast decay

The purpose of this section is to prove that the operator

trC4 TA :=
1

2

2∑

j=0

cj trC4

(
|Dmj ,0| − |Dmj ,A|

)
, (3.1)

is trace-class, when the four-potential A := (V,A) decays sufficiently fast.
The proof relies on an expansion of FPV(A) with respect to the four-
potential A using the resolvent formula, but for which we actually do not
need that A is small. Our precise statement is the following

Proposition 3.1 (trC4 TA is in S1). Assume that cj and mj satisfy con-
ditions (2.10). Then, the operator trC4 TA is trace-class whenever A ∈
L1(R3,R4) ∩H1(R3,R4).

Remark 3.1. For this result, it is not important that divA = 0, hence we
do not require that A ∈ Ḣ1

div(R
3).

The rest of this section is devoted to the proof of Proposition 3.1.

Proof. Our starting point is the integral formula

|x| = 1

π

∫

R

x2

x2 + ω2
dω =

1

2π

∫

R

(
2− iω

x+ iω
+

iω

x− iω

)
dω. (3.2)

When T is a self-adjoint operator on L2(R3,R4), with domain D(T ), it
follows from (3.2) using standard functional calculus (see e.g. [31]), that the
absolute value |T | of T is given by

|T | = 1

2π

∫

R

(
2− iω

T + iω
+

iω

T − iω

)
dω. (3.3)

Let us remark that this integral is convergent when seen as an operator from
D(T 2) to the ambient Hilbert space. In particular,

∥∥∥∥
T 2

T 2 + ω2

∥∥∥∥
D(T 2)→L2(R3,C4)

≤ min
{
1, ω−2

∥∥T 2
∥∥
D(T 2)→L2(R3,C4)

}
.

Since the domains of D2
mj ,0

and D2
mj ,A

are both equal to H2(R3,C4), we

deduce that we can write

TA =
1

4π

∫

R

2∑

j=0

cj

( iω

Dmj ,A + iω
− iω

Dmj ,A − iω

− iω

Dmj ,0 + iω
+

iω

Dmj ,0 − iω

)
dω

(3.4)

on H2(R3,C4). Here and everywhere else it is not a problem if Dmj ,A has
0 as an eigenvalue. The operator Dmj ,A + iω is invertible for ω 6= 0, and

(iω)(Dmj ,A + iω)−1 stays uniformly bounded in the limit ω → 0.

In order to establish Proposition 3.1, we will prove that the C4–trace of
the integral in the right-hand side of (3.4) defines a trace-class operator
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according to the inequality

∫

R

∥∥∥∥
2∑

j=0

cj trC4

( iω

Dmj ,A + iω
− iω

Dmj ,A − iω

− iω

Dmj ,0 + iω
+

iω

Dmj ,0 − iω

)∥∥∥∥
S1

dω <∞, (3.5)

which we can establish when A ∈ L1(R3,R4) ∩H1(R3,R4). This will com-
plete the proof of Proposition 3.1.

As a consequence, our task reduces to derive estimates in Schatten spaces
on the integrand operator

R(ω,A) :=
2∑

j=0

cj trC4

( iω

Dmj ,A + iω
− iω

Dmj ,A − iω

− iω

Dmj ,0 + iω
+

iω

Dmj ,0 − iω

)
,

which we can integrate with respect to ω. To this end, we use the resolvent
expansion, truncated at the sixth order,

iω

Dmj ,A + iω
− iω

Dmj ,0 + iω
=

5∑

n=1

iω

Dmj ,0 + iω

((
α ·A− V

) 1

Dmj ,0 + iω

)n

+
iω

Dmj ,A + iω

((
α · A− V

) 1

Dmj ,0 + iω

)6
,

(3.6)

and the similar expression for the term with −iω instead of +iω. Again, we
insist on the fact that this expansion makes perfect sense for ω 6= 0, even if
the spectrum of Dmj ,A contains 0. This allows us to write

R(ω,A) =
5∑

n=1

trC4

(
Rn(ω,A) +Rn(−ω,A)

)

+ trC4

(
R′

6(ω,A) +R′
6(−ω,A)

)
,

(3.7)

with

Rn(ω,A) :=
2∑

j=0

cj
iω

Dmj ,0 + iω

((
α · A− V

) 1

Dmj ,0 + iω

)n
, (3.8)

and

R′
6(ω,A) :=

2∑

j=0

cj
iω

Dmj ,A + iω

((
α · A− V

) 1

Dmj ,0 + iω

)6
. (3.9)

Our purpose is to prove that

∫

R

( 5∑

n=1

∥∥ trC4

(
Rn(ω,A) +Rn(−ω,A)

)∥∥
S1

+
∥∥ trC4

(
R′

6(ω,A) +R′
6(−ω,A)

)∥∥
S1

)
dω <∞. (3.10)
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Estimate on the sixth order term. We first estimate the sixth order
term R′

6(ω,A) in (3.7) which is the simplest one. The C4–trace is not going
to be helpful for us here. First we use the inequality

∥∥∥ iω

Dmj ,A + iω

∥∥∥ ≤ 1,

which, in particular, takes care of the possibility of having 0 in the spectrum
of Dmj ,A. Combining with Hölder’s inequality in Schatten spaces, we obtain

∥∥∥ iω

Dmj ,A + iω

((
α ·A− V

) 1

Dmj ,0 + iω

)6∥∥∥
S1

≤
∥∥∥
(
α ·A− V

) 1

Dmj ,0 + iω

∥∥∥
6

S6

.

(3.11)

We next use the Kato-Seiler-Simon inequality (2.5), similarly as in the proof
of Lemma 2.1, which gives us

∀p > 3,
∥∥∥
(
α ·A− V

) 1

Dmj ,0 + iω

∥∥∥
Sp

≤ (Ip)
1
p (m2

j + ω2)
3
2p

− 1
2
∥∥A
∥∥
Lp ,

where

Ip :=
1

2π2

∫ ∞

0

r2 dr

(1 + r2)
p
2

.

For p = 6, we can use the Sobolev inequalities

‖V ‖L6 ≤ S‖∇V ‖L2 and ‖A‖L6 ≤ S‖∇A‖L2 , (3.12)

to obtain an estimate in terms of the gradient ∇A by

∥∥∥
(
α · A− V

) 1

Dmj ,0 + iω

∥∥∥
S6

≤ (I6)
1
6S

(m2
j + ω2)

1
4

∥∥∇A
∥∥
L2 .

Inserting in (3.11), we have

∥∥R′
6(ω,A)

∥∥
S1

≤
2∑

j=0

|cj |
S6I6

(m2
j + ω2)

3
2

∥∥∇A
∥∥6
L2 , (3.13)

so that
∫

R

‖R′
6(ω,A)‖S1 dω ≤ S6I6

( 2∑

j=0

|cj |
m2

j

)
‖∇A‖6L2

∫

R

dω

(1 + ω2)
3
2

. (3.14)

The term with +iω replaced by −iω is treated similarly.

Estimate on the fifth order term. The method that we have used for
the sixth order term of (3.6) can be applied in a similar fashion to the fifth
order term, leading to the estimate

∫

R

‖R5(±ω,A)‖S1dω ≤ I5

( 2∑

j=0

|cj |
mj

)
‖A‖5L5

∫

R

|ω| dω
(1 + ω2)

3
2

. (3.15)

None of these estimates use simplifications coming from the C4–trace. The
latter is only useful for lower order terms.
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Estimate on the fourth order term. For the other terms in (3.6), we
need more precise estimates based on conditions (2.8) satisfied by the co-
efficients cj and the masses mj . We start by considering the fourth order
term, for which we use the identity c0 + c1 + c2 = 0 to write

R4(ω,A) =

2∑

j=0

cj

4∑

k=0

( 1

Dm0,0 + iω

(
α · A− V

))k
×

×
( iω

Dmj ,0 + iω
− iω

Dm0,0 + iω

)((
α · A− V

) 1

Dmj ,0 + iω

)4−k
.

Next we use that∥∥∥ iω

Dmj ,0 + iω
− iω

Dm0,0 + iω

∥∥∥ =
∥∥∥ m0 −mj

Dmj ,0 + iω
β

iω

Dm0,0 + iω

∥∥∥

≤
(
mj −m0

) |ω|
m2

0 + ω2
,

(3.16)

since mj ≥ m0, and we argue as before, using this time A ∈ L4(R3,R4). We
obtain

∥∥R4(±ω,A)
∥∥
S1

≤ 5I4|ω|
(m2

0 + ω2)
3
2

2∑

j=0

|cj |
(
mj −m0

)
‖A‖4L4 , (3.17)

hence
∫

R

∥∥R4(±ω,A)
∥∥
S1
dω ≤ 5I4‖A‖4L4

2∑

j=0

|cj |
mj −m0

m0

∫

R

|ω| dω
(1 + ω2)

3
2

. (3.18)

Notice again that we have not used the C4–trace in our estimate of the
fourth order term.

Estimate on the first order term. In order to deal with the first, second
and third order terms, we need to use more cancellations. We start by
considering the first order term for which we can write

iω

Dmj ,0 + iω

(
α · A− V

) 1

Dmj ,0 + iω
− iω

Dmj ,0 − iω

(
α ·A− V

) 1

Dmj ,0 − iω

=
2ω2

D2
mj ,0

+ ω2

(
α · A− V

) 1

Dmj ,0 + iω
+

1

Dmj ,0 − iω

(
α · A− V

) 2ω2

D2
mj ,0

+ ω2
.

Inserting
1

Dmj ,0 ± iω
=
Dmj ,0 ∓ iω

D2
mj ,0

+ ω2
, (3.19)

we obtain
iω

Dmj ,0 + iω

(
α ·A− V

) 1

Dmj ,0 + iω
− iω

Dmj ,0 − iω

(
α ·A− V

) 1

Dmj ,0 − iω

=
2ω2

D2
mj ,0

+ ω2

{
α ·A− V,Dmj ,0

} 1

D2
mj ,0

+ ω2
,

where the notation {T1, T2} refers to the anti-commutator operator

{T1, T2} := T1T2 + T2T1.
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At this stage, we recall that
(
α ·X

) (
α · Y

)
= X · Y + i(X × Y ) ·Σ, (3.20)

for all (X,Y ) ∈ (R3)2. In this formula, X × Y is the cross product of
the vectors X and Y , whereas the notation Σ = (Σ1,Σ2,Σ3) refers to the
matrices

Σj :=

(
σj 0
0 σj

)
. (3.21)

As a consequence, we obtain
{
α · p,α ·A

}
=
{
p,A

}
R3 + i

(
p×A+A× p

)
·Σ =

{
p,A

}
R3 +B ·Σ,

where {·, ·}R3 is a notation for
{
S, T

}
R3 := S · T + T · S.

Since βαk +αkβ = 0, we deduce that
{
α ·A− V,Dmj ,0

}
=
{
p,A− Vα

}
R3 +B ·Σ− 2mjV β. (3.22)

This finally gives us

R1(ω,A) +R1(−ω,A) = 2ω2
(
R1,1 +R1,2

)
, (3.23)

where

R1,1 :=

2∑

j=0

cj
1

p2 +m2
j + ω2

({
p,A−V α

}
R3 +B ·Σ

) 1

p2 +m2
j + ω2

, (3.24)

and

R1,2 := −2
2∑

j=0

cjmj
1

p2 +m2
j + ω2

V β
1

p2 +m2
j + ω2

. (3.25)

Concerning the operator R1,1, the last step consists in using identities (2.7)
and the two expansions

1

p2 +m2
j + ω2

=
1

p2 +m2
0 + ω2

+
m2

0 −m2
j

(p2 +m2
0 + ω2)(p2 +m2

j + ω2)

=
1

p2 +m2
0 + ω2

+
m2

0 −m2
j

(p2 +m2
0 + ω2)2

+
(m2

0 −m2
j )

2

(p2 +m2
j + ω2)(p2 +m2

0 + ω2)2
.

(3.26)

This gives

R1,1 =
2∑

j=0

cj(m
2
0 −m2

j)
2

(

1

(p2 +m2
0 + ω2)2

({p,A − Vα}R3 +B ·Σ)
1

(p2 +m2
0 + ω2)(p2 +m2

j + ω2)

+
1

(p2 +m2
j + ω2)(p2 +m2

0 + ω2)2
({p,A − V α}R3 +B ·Σ)

1

p2 +m2
j + ω2

+
1

p2 +m2
0 + ω2

({p,A − Vα}R3 +B ·Σ)
1

(p2 +m2
j + ω2)(p2 +m2

0 + ω2)2

)
.
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We now use the fact that A ∈ L1(R3,R4), B = i(p×A+A× p), as well as
the Kato-Seiler-Simon inequality (2.5) to get

∥∥R1,1

∥∥
S1

≤ 18

2∑

j=0

|cj |(m2
0 −m2

j)
2 I7
(m2

0 + ω2)2

∥∥A
∥∥
L1 . (3.27)

The analysis of the operatorR1,2 is more involved. Under conditions (2.7),
we are not able to prove that R1,2 is trace-class. However we can compute
first the C4–trace before taking the operator trace. We obtain

trC4 R1,2 = 0, (3.28)

since trC4 β = 0.

Remark 3.2. By this argument, we do not prove that R1,2 is trace-class.
Under the additional conditions

∑

j

cj mj =
∑

j

cj m
3
j = 0,

the operator R1,2 becomes a trace-class operator, and its trace is equal to
0. This strategy however requires to introduce additional fictitious particles
in our model. Introducing more fictitious particles in order to justify the
computation of a term which is anyway 0 does not seem very reasonable
from a physical point of view. This explains why we prefer here to first take
the C4–trace.

As a consequence, we can conclude our estimate of the first order term
by combining (3.27) and (3.28) in order to obtain

∫

R

∥∥∥ trC4

(
R1(ω,A) +R1(−ω,A)

)∥∥∥
S1

dω

≤ 36 I7

2∑

j=0

|cj |
(m2

0 −m2
j )

2

m0
‖A‖L1

∫

R

ω2 dω

(1 + ω2)2
. (3.29)

The second and third order terms are treated following the same method,
except that the algebra is a little more tedious. We start by writing that

Rn(ω,A) +Rn(−ω,A) = 2ω2
2∑

j=0

cj

n∑

k=0

( 1

Dmj ,0 − iω

(
α · A− V

))k
×

× 1

D2
mj ,0

+ ω2

((
α ·A− V

) 1

Dmj ,0 + iω

)n−k
.

We next expand as before using (3.19).
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Estimate on the second order term. For the second order term, we are
left with

R2(ω,A)+R2(−ω,A) = −2ω2
2∑

j=0

cj×

×
(

ω2

D2
mj ,0

+ ω2

((
α ·A− V

) 1

D2
mj ,0

+ ω2

)2
−

2∑

k=0

( Dmj ,0

D2
mj ,0

+ ω2
×

×
(
α ·A− V

))k 1

D2
mj ,0

+ ω2

((
α ·A− V

) Dmj ,0

D2
mj ,0

+ ω2

)2−k
)
,

which may also be written as

R2(ω,A) +R2(−ω,A) = −2ω2
2∑

j=0

cj

(
1

D2
mj ,0

+ ω2

(
α · A− V

)2 1

D2
mj ,0

+ ω2

− 1

D2
mj ,0

+ ω2

({
α ·A− V,Dmj ,0

} 1

D2
mj ,0

+ ω2

)2)
.

(3.30)

Inserting

(α · A− V )2 = |A|2 + V 2 − 2α · AV,
and (3.22) into (3.30), we are led to

R2(ω,A) +R2(−ω,A) = −2ω2
(
R2,1 +R2,2

)
, (3.31)

where

R2,1 :=

2∑

j=0

cj
1

p2 +m2
j + ω2

((
|A|2 + V 2 − 2α ·AV

) 1

p2 +m2
j + ω2

−4m2
j

(
V

1

p2 +m2
j + ω2

)2
−
(({

p,A− Vα
}
R3 +B ·Σ

) 1

p2 +m2
j + ω2

)2)
,

and

R2,2 := 2
2∑

j=0

cj mj
1

p2 +m2
j + ω2

×

×
{
V β

1

p2 +m2
j + ω2

,
({
p,A− V α

}
R3 +B ·Σ

) 1

p2 +m2
j + ω2

}
.

The proof that R2,1 is trace-class is similar to the first order case, us-
ing (3.26). The final estimate is

∥∥R2,1

∥∥
S1

≤
2∑

j=0

|cj |
(
8 I7

m2
j −m2

0

(m2
0 + ω2)2

∥∥A
∥∥
L2

∥∥B
∥∥
L2 + I8

m2
j −m2

0

(m2
0 + ω2)

5
2

×

×
(
4m2

j

∥∥V
∥∥2
L2 +

∥∥B
∥∥2
L2 + 8(m2

j −m2
0)
∥∥A
∥∥2
L2

))
.

Since

trC4 R2,2 = 0, (3.32)
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as for the first-order term, our final estimate is

∫

R

∥∥∥ trC4

(
R2(ω,A) +R2(−ω,A)

)∥∥∥
S1

dω

≤
2∑

j=0

|cj |
(
8 I7

m2
j −m2

0

m0

∥∥A
∥∥
L2

∥∥B
∥∥
L2

∫

R

ω2 dω

(1 + ω2)2
+ I8

m2
j −m2

0

m2
0

×

×
(
4m2

j

∥∥V
∥∥2
L2 +

∥∥B
∥∥2
L2 + 8(m2

j −m2
0)
∥∥A
∥∥2
L2

)∫

R

ω2 dω

(1 + ω2)
5
2

)
. (3.33)

Estimate on the third order term. Similar computations give for the
third order term

R3(ω,A) +R3(−ω,A) =

2∑

j=0

cj

(
2ω2

p2 +m2
j + ω2

(({
p,A− Vα

}
R3 +B ·Σ

− 2mjV β
) 1

p2 +m2
j + ω2

)3
− 2ω2

p2 +m2
j + ω2

{(
|A|2 + V 2 − 2α · AV

)

× 1

p2 +m2
j + ω2

,
({
p,A− V α

}
R3 +B ·Σ− 2mjV β

) 1

p2 +m2
j + ω2

})
.

(3.34)

Using once again (3.26), we deduce

∫

R

∥∥∥ trC4

(
R3(ω,A) +R3(−ω,A)

)∥∥∥
S1

dω ≤ K

2∑

j=0

|cj |
∫

R

ω2 dω

(1 + ω2)
13
8

×

×
(
mjI8‖V ‖3L3 + I8‖V ‖2L4‖B‖L2 +

I6(I8)
1
4

m
1
4
j

‖B‖2L2‖V ‖L4 +
(I16/3)

3
2

m
1
2
j

‖B‖3L2

+mjI7‖A‖L3‖V ‖2L3 +
(I4)

1
4 I6

m
1
4
j

‖B‖2L2‖A‖L4 +
I8
mj

‖A‖2L3‖V ‖L3

+ (m2
j −m2

0)
( I8
m2

j

‖A‖2L4‖B‖L2 +
I7
mj

‖A‖3L3

))
,

for some universal constant K.

Combining with (3.14), (3.15), (3.18), (3.29) and (3.33), we obtain (3.10),
provided that A is in L1(R3,R3) ∩H1(R3,R3). This concludes the proof of
Proposition 3.1. �

4. Estimates involving the field energy

In Proposition 3.1 above we have shown that the operator

trC4 TA :=
1

2

2∑

j=0

cj trC4

(
|Dmj ,0| − |Dmj ,A|

)
,
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is trace-class when A decays fast enough. More precisely, in the proof of
Proposition 3.1, we have written

TA =
5∑

n=1

Tn(A) + T ′
6(A) :=

1

4π

5∑

n=1

∫

R

(
Rn(ω,A) +Rn(−ω,A)

)
dω

+
1

4π

∫

R

(
R′

6(ω,A) +R′
6(−ω,A)

)
dω,

(4.1)

with Rn and R′
6 given by (3.8) and (3.9), and we have proved that the op-

erators trC4 Tn(A) and trC4 T ′
6(A) are trace-class. However our estimates

involve non gauge-invariant quantities (some Lp norms of A) and they re-
quire that A decays fast enough at infinity.

In this section, we establish better bounds on these different terms. We are
interested in having estimates which only involve the field F = (−∇V, curlA)
through the norms ‖∇V ‖L2 and ‖ curlA‖L2 . Our simple estimate (3.14) on
the sixth order only depends on the field F . But we will also need to know
that the sixth order is continuous, which will require some more work. For
the other terms, we have to get the exact cancellations.

With these estimates at hand, it will be easy to show that FPV can be
uniquely extended to a continuous function on the Coulomb-gauge homoge-
neous Sobolev space Ḣ1

div(R
3), as stated in Theorem 2.1, and which we do

in the next section.

Remark 4.1. In the estimates of the previous section, it was not important
that divA = 0. We have to use this property now.

4.1. The odd orders vanish. The following lemma says that the trace
of the odd order operators trC4 T1(A), trC4 T3(A) and trC4 T5(A) vanish.
This consequence of the charge-conjugation invariance is sometimes called
Furry’s theorem [13].

Lemma 4.1 (The odd orders vanish). For A ∈ Ḣ1
div(R

3) ∩ L1(R3,R4) and
n = 1, 3, 5, we have

tr
(
trC4 Tn(A)

)
=

1

4π

∫

R

tr
(
trC4

(
Rn(ω,A) +Rn(−ω,A)

))
dω = 0. (4.2)

Proof. Let Cψ := iβα2ψ be the (anti-unitary) charge-conjugation operator.
Since CDmj ,0 C−1 = −Dmj ,0, we have

C
(
Dmj ,0 ± iω

)−1 C−1 = −
(
Dmj ,0 ± iω

)−1
.

Similarly, since A and V are real-valued, we can write

Cα · A C−1 = α · A and C V C−1 = V,

so that
CRn(±ω,A) C−1 = (−1)nRn(±ω,A). (4.3)

At this stage, we can compute

trC4

(
CTC−1

)
= trC4 T , (4.4)

for any operator T on L2(R3,C4). Here, T refers to the operator defined as

T (f) := T (f).
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When trC4 T is trace-class, so is the operator trC4 T , and its trace is equal
to

tr
(
trC4 T

)
= tr(trC4 T ). (4.5)

As a consequence, the operator trC4(CTC−1) is trace-class, as soon as T is
trace-class, and its trace is the complex conjugate of the trace of T .

Finally, recall that we have established in the proof of Proposition 3.1 that
the operators trC4(Rn(ω,A) + Rn(−ω,A)) are trace-class for n = 1, 3, 5.
Combining (4.3) with (4.4) and (4.5), we obtain

tr
(
trC4

(
Rn(ω,A) +Rn(−ω,A)

))

= (−1)ntr
(
trC4

(
Rn(ω,A) +Rn(−ω,A)

))
.

We deduce that the quantity tr
(
trC4(Rn(ω,A) + Rn(−ω,A))

)
is purely

imaginary when n is odd, so that the trace of trC4 Tn(A) is purely imaginary.
Since the operator trC4 Tn(A) is self-adjoint, its trace is necessarily equal to
0. This gives Formula (4.2). �

4.2. The second order term. We now compute exactly the second order
term T2(A) appearing in the decomposition of TA, assuming that A belongs
to H1(R3,R4) and divA = 0. We will verify that it only depends on the
electromagnetic fields E := −∇V and B := curlA.

Lemma 4.2 (Formula for the second order term). For A ∈ Ḣ1
div(R

3) ∩
L2(R3,R4), we have

tr
(
trC4 T2(A)

)
=

1

8π

∫

R3

M(k)
(
|B̂(k)|2 − |Ê(k)|2

)
dk := F2(F ), (4.6)

where M is the function defined in (2.16) and F = (E,B).

Proof. In the course of the proof of Proposition 3.1, we have shown that
the operator trC4 T2(A) is trace-class when A ∈ H1(R3,R3) (see inequal-
ity (3.33)). As a consequence, its trace is well-defined and given by

tr
(
trC4 T2(A)

)
=

∫

R3

̂
(
trC4 T2(A)

)
(p, p) dp. (4.7)

Here, ̂trC4 T2(A) refers to the Fourier transform of the trace-class opera-
tor trC4 T2(A). Our convention for the Fourier transform of a trace-class
operator T is the following

T̂ (p, q) :=
1

(2π)3

∫

R6

T (x, y)e−ip·xeiq·y dx dy.
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In view of (3.31), the operator trC4 T2(A) is given by

trC4T2(A)(p, p) =
2

π

∫

R

2∑

j=0

cj
1

p2 +m2
j + ω2

(
−
(
|A|2 + V 2

) 1

p2 +m2
j + ω2

+
({
p,A

}
R3

1

p2 +m2
j + ω2

)2
+

3∑

k=1

Bk
1

p2 +m2
j + ω2

Bk
1

p2 +m2
j + ω2

+
3∑

k=1

{
pk, V

} 1

p2 +m2
j + ω2

{
pk, V

} 1

p2 +m2
j + ω2

+ 4m2
j

(
V

1

p2 +m2
j + ω2

)2)
ω2 dω.

(4.8)

Since A is written in Coulomb gauge, we deduce that

tr
(
trC4 T2(A)

)
=

3∑

k=1

T2,k, (4.9)

where

T2,1 := − 1
√
2π

5
2

∫

R4

2∑

j=0

cj
ω2 dω dp

(p2 +m2
j + ω2)2

(
|̂A|2(0) + V̂ 2(0)

)
, (4.10)

T2,2 :=
1

π4

∫

R7

2∑

j=0

cj
dk ω2 dω dp

(p2 +m2
j + ω2)2((p − k)2 +m2

j + ω2)
×

×
((
p · Â(k)

)(
p · Â(−k)

)
+
(
p2 +m2

j

)
|V̂ (k)|2

)

:= T2,2(A) + T2,2(V ),

(4.11)

and

T2,3 :=
1

4π4

∫

R7

2∑

j=0

cj
k2|Â(k)|2 + (k2 − 4p · k)|V̂ (k)|2

(p2 +m2
j + ω2)2((p− k)2 +m2

j + ω2)
dk ω2 dω dp.

(4.12)
We next use the following Ward identities [45]

∫

R3

2∑

j=0

cj
pmpn dp

(p2 +m2
j + ω2)2((p− k)2 +m2

j + ω2)

=

∫

R3

2∑

j=0

cj
(km − qm)(kn − qn) dq

((q − k)2 +m2
j + ω2)2(q2 +m2

j + ω2)
,

(4.13)

for all (m,n) ∈ {1, 2, 3}2 and all k ∈ R3. This equation is nothing else
than a change of variables p = k − q, which makes perfect sense thanks
to conditions (2.7) which guarantee the convergence of the integral. Its
importance is well-known in the Physics literature, see, e.g., [30, Sec. 7.4].
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Since divA = 0, we infer that

T2,2(A) = − 1

4π4

∫

R4

3∑

m=1

3∑

n=1

Âm(k)Ân(−k) dk ω2 dω×

×
∫

R3

2∑

j=0

cjpm∂pn

( 1

(p2 +m2
j + ω2)((p − k)2 +m2

j + ω2)

)
dp.

Integrating by parts, we are led to

T2,2(A) =
1

4π4

∫

R7

2∑

j=0

cj
|Â(k)|2 dk ω2 dω dp

(p2 +m2
j + ω2)((p − k)2 +m2

j + ω2)
. (4.14)

Similarly, we can compute

T2,2(V ) =
1

π4

∫

R7

2∑

j=0

cj
|V̂ (k)|2 dk ω2 dω dp

(p2 +m2
j + ω2)((p − k)2 +m2

j + ω2)

− 1

π4

∫

R7

2∑

j=0

cj
|V̂ (k)|2 dk ω4 dω dp

(p2 +m2
j + ω2)2((p − k)2 +m2

j + ω2)
.

Integrating by parts with respect to ω, one can check that

∫

R4

2∑

j=0

cj
ω4 dω dp

(p2 +m2
j + ω2)2((p − k)2 +m2

j + ω2)

=
3

4

∫

R4

2∑

j=0

cj
ω2 dω dp

(p2 +m2
j + ω2)((p − k)2 +m2

j + ω2)
,

so that

T2,2(V ) =
1

4π4

∫

R7

2∑

j=0

cj
|V̂ (k)|2 dk ω2 dω dp

(p2 +m2
j + ω2)((p − k)2 +m2

j + ω2)
. (4.15)

On the other hand, since A and V are real-valued, we have

|̂A|2(0) + V̂ 2(0) =
1

(2π)
3
2

∫

R3

(
|Â(k)|2 + |V̂ (k)|2

)
dk,

hence

T2,1 = − 1

4π4

∫

R7

2∑

j=0

cj
|Â(k)|2 + |V̂ (k)|2
(p2 +m2

j + ω2)2
ω2 dω dk dp.

Combining with (4.14) and (4.15), we arrive at

T2,1+T2,2 =
1

4π4

∫

R7

2∑

j=0

cj

(
2p · k − |k|2

)(
|Â(k)|2 + |V̂ (k)|2

)

(p2 +m2
j + ω2)2((p − k)2 +m2

j + ω2)
ω2 dω dk dp.

In view of (4.9) and (4.12), this provides

tr
(
trC4 T2(A)

)
=

∫

R3

G(k)
(
|Â(k)|2 − |V̂ (k)|2

)
dk, (4.16)
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where

G(k) :=
1

2π4

∫

R4

2∑

j=0

cj
p · k ω2 dω dp

(p2 +m2
j + ω2)2((p− k)2 +m2

j + ω2)
.

We next use the identity

1

a2b
=

∫ 1

0

(∫ ∞

0
s2e−s(ua+(1−u)b) ds

)
u du,

see [16, Chap. 5], to rewrite

G(k) =
1

2π4

∫

R4

2∑

j=0

cj ω
2 dω p · k dp×

×
(∫ 1

0

∫ ∞

0
e−s(p2+m2

j+ω2)−s(1−u)(k2−2p·k) s2 ds u du

)
.

(4.17)

Using conditions (2.7), we can invoke Fubini’s theorem to recombine the
integrals in (4.17) as

G(k) =
1

2π4

∫ 1

0

∫ ∞

0

2∑

j=0

cj e
−s(m2

j+(1−u)k2)s2 ds u du×

×
∫

R3

p · k e−s(p2−2(1−u)p·k)

(∫

R

e−sω2
ω2 dω

)
dp.

Since ∫

R

e−sω2
ω2 dω =

√
π

2s
3
2

,

and
∫

R3

p · k e−s(p2−2(1−u)p·k) dp =k · ∇
(∫

R3

ep·x−sp2−2s(1−u)p·k dp

)

|x=0

=
(π
s

) 3
2
(1− u)k2es(1−u)2k2 ,

we deduce that

G(k) =
k2

4π2

∫ 1

0

∫ ∞

0

2∑

j=0

cj e
−s(m2

j+u(1−u)k2)s−1 ds u(1− u) du. (4.18)

Integrating by parts, we now compute

∫ ∞

0

2∑

j=0

cj e
−s(m2

j+u(1−u)k2)s−1 ds

=

∫ ∞

0

2∑

j=0

cj log(s)e−s(m2
j+u(1−u)k2) (m2

j + u(1− u)k2) ds,



DIRAC’S VACUUM IN ELECTROMAGNETIC FIELDS 31

which is justified again thanks to conditions (2.7). Letting σ = s(m2
j +u(1−

u)k2), we infer again from (2.7) that

∫ ∞

0

2∑

j=0

cje
−s(m2

j+u(1−u)k2)s−1 ds =

∫ ∞

0

2∑

j=0

cj log
( σ

m2
j + u(1− u)k2

)
e−σ dσ

=−
2∑

j=0

cj log(m2
j + u(1− u)k2).

Inserting into (4.18), we get

G(k) = − k2

4π2

∫ 1

0

2∑

j=0

cj u(1− u) log(m2
j + u(1 − u)k2) du =

k2

8π
M(k).

Combining with (4.16), we obtain Formula (4.6). �

We complete our analysis of the second order term by giving the main
properties of the function M .

Lemma 4.3 (Main properties ofM). Assume that cj and mj satisfy (2.10).
The function M given by (2.16) is well-defined and positive on R3, and
satisfies

0 < M(k) ≤M(0) =
2 log(Λ)

3π
,

where Λ is defined by (2.9). Moreover,

2 log(Λ)

3π
−M(k) → |k|2

4π

∫ 1

0

z2 − z4/3

1 + |k|2(1− z2)/4
dz,

when m1 → ∞ and m2 → ∞.

Proof. In view of (2.16), the function M is well-defined on R3. Concerning
its positivity, we set

Φ(t) :=

2∑

j=0

cj log(m2
j + t),

for all t ≥ 0. Using (2.8), we compute

Φ′(t) =

2∑

j=0

cj
m2

j + t
=

(m2
1 −m2

0)(m
2
2 −m2

0)

(m2
0 + t)(m2

1 + t)(m2
2 + t)

> 0.

Since Φ(0) = −2 log Λ < 0 and

Φ(t) =
2∑

j=0

cj log
(
1 +

m2
j

t

)
→ 0, as t→ ∞,

by (2.7), we deduce that

−2 log Λ < Φ(t) < 0,

for all t > 0. Inserting into (2.16), we obtain (2.17).
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As for (2.18), we first write

M(k) =− 2

π

∫ 1

0

2∑

j=0

cj u(1− u)
(
log(m2

j ) + log
(
1 +

u(1− u)k2

m2
j

))
du

=
2 log Λ

3π
− 2

π

∫ 1

0

2∑

j=0

cj u(1− u) log
(
1 +

u(1− u)k2

m2
j

)
du.

When m1 → ∞ and m2 → ∞, we infer that

2 log Λ

3π
−M(k) → 2

π

∫ 1

0
u(1− u) log

(
1 + u(1− u)k2

)
du.

Integrating by parts, we compute

∫ 1

0
u(1 − u) log

(
1 + u(1− u)k2

)
du = −

∫ 1

0

(u
2

2 − u3

3 )(1− 2u) du

1 + u(1− u)k2
,

so that it only remains to set z = 1 − 2u to derive (2.18). This concludes
the proof of Lemma 4.3. �

4.3. The fourth order term. Our goal is now to provide an estimate on
the fourth order term T4(A). We have estimated this term in (3.18), and
we know that T4(A) is trace-class when A ∈ L4(R3,R4). Here, we want to

get an estimate involving only the norm of A in Ḣ1
div(R

3).

Lemma 4.4 (Estimate for the fourth order term). Let A = (A,V ) ∈
L4(R3,R4) ∩ Ḣ1

div(R
3) and set B := curlA and E := −∇V . There exists a

universal constant K such that

∣∣ tr
(
trC4 T4(A)

)∣∣ =
∣∣ tr T4(A)

∣∣ ≤ K

( 2∑

j=0

|cj |
mj

)(
‖B‖L2 + ‖E‖L2

)4
. (4.19)

Proof. Arguing as in the proof of Proposition 3.1 (see the proof of Formu-
las (3.31) and (3.34)), we decompose T4(A) as

T4(A) = T4,1(A)− T4,2(A) + T4,3(A), (4.20)

where

T4,1(A) :=
1

2π

∫

R

2∑

j=0

cj ω
2 dω

1

p2 +m2
j + ω2

(
W2

1

p2 +m2
j + ω2

)2

, (4.21)

T4,2(A) :=
1

2π

∫

R

2∑

j=0

cj ω
2 dω

1

p2 +m2
j + ω2

(
W2

1

p2 +m2
j + ω2

×

×
(
W1

1

p2 +m2
j + ω2

)2
+
(
W1

1

p2 +m2
j + ω2

)2
W2

1

p2 +m2
j + ω2

+W1
1

p2 +m2
j + ω2

W2
1

p2 +m2
j + ω2

W1
1

p2 +m2
j + ω2

)
,

(4.22)
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and

T4,3(A) :=
1

2π

∫

R

2∑

j=0

cj ω
2 dω

1

p2 +m2
j + ω2

(
W1

1

p2 +m2
j + ω2

)4

. (4.23)

Here, we have set for shortness,

W1 :=
{
p,A− Vα

}
R3 +B ·Σ− 2mjV β,

and

W2 := |A|2 + V 2 − 2
(
α ·A

)
V.

Let us now explain our method to establish (4.19). When looking at T4,k
with k = 1, 2, 3, we are worried about several terms. First the function
W2 does not decay too fast, it is only in L3(R3) if we only want to use
the L6 norm of A. Furthermore, it involves quantities which are not gauge
invariant. Similarly, the term involving p in W1 is clearly the worst. It
also involves non-gauge invariant quantities. On the other hand, the term
involving B is in L2(R3) and it is gauge invariant. The term involving V
alone is also not gauge invariant but it has the matrix β which will help
us, and it has no p. Since the result should be gauge invariant, these terms
cannot be a problem. They should not contribute to the total (fourth order)
energy.

In order to see this, we use the following technique. In Formulas (4.21)–
(4.23), we commute all the operators involving p in order to place them either
completely on the left or completely on the right. We have to commute the
terms (p2 +m2

j + ω2)−1 as well as the p appearing in W1. We think that it
does not matter how many terms we put on the left and on the right. It is
just important to have some functions of p on both sides (to get a trace-class
operator under suitable assumptions on A), and we do not want to put them
all on one side only. All the commutators obtained by these manipulations
are better behaved and they will be estimated using the Kato-Seiler-Simon
inequality (2.5), only in terms of ‖A‖Ḣ1

div(R
3).

In the end of the process, we will be left with a sum of terms of the form

|p|c
(p2 +m2

j + ω2)a
f(x)

|p|d
(p2 +m2

j + ω2)b
,

where f(x) is W2
2 or a product of W2 with some of the functions appearing

in W1, or only these functions. For instance, when we take the trace, the
worst term involving only V is

(∫

R3

V 4

)(∫

R3

dp

(p2 +m2
j + ω2)3

+3

∫

R3

|p|2 dp
(p2 +m2

j + ω2)4

+

∫

R3

|p|4 dp
(p2 +m2

j + ω2)5

)
.

Here the integrals over p come respectively from T4,1, T4,2 and T4,3 and they

behave exactly like (ω2 +m2
j)

−5/2. So we run into problems when we want

to multiply by ω2 and then integrate with respect to ω. But this term
cannot be a problem here because

∫
R3 V

4 is not a gauge invariant quantity.
This is where the Pauli-Villars scheme helps us. Not only these integrals
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will become well-defined, but also their sum will simply vanish because the
regularization was precisely designed to preserve gauge invariance.

But before we explain all this in details, let us indicate how to handle the
multiple commutators that we get when commuting the operators involving
p. We start with T4,1, for instance. Following the general strategy explained
above, we write

T4,1(A) =
1

2π

∫

R

2∑

j=0

cj ω
2 dω

(
1

p2 +m2
j + ω2

(W2)
2 1

(p2 +m2
j + ω2)2

+
1

p2 +m2
j + ω2

W2

[ 1

(p2 +m2
j + ω2)

,W2

] 1

p2 +m2
j + ω2

)
,

where, as usual, [S, T ] := ST − TS. We notice that
[
W2,

1

p2 +m2
j + ω2

]
=

1

p2 +m2
j + ω2

[
p2,W2

] 1

p2 +m2
j + ω2

,

while [
p2,W2

]
= p
[
p,W2

]
+
[
p,W2

]
p = −i

{
p,∇W2

}
R3 .

Hence, we have

T4,1(A) =
1

2π

∫

R

2∑

j=0

cj ω
2 dω

(
1

p2 +m2
j + ω2

(W2)
2 1

(p2 +m2
j + ω2)2

+ i
1

p2 +m2
j + ω2

W2
1

p2 +m2
j + ω2

{
p,∇W2

}
R3

1

(p2 +m2
j + ω2)2

)
, (4.24)

where

∇W2 = 2A · ∇A+ 2V ∇V − 2V
(
α · ∇A

)
− 2∇V

(
α · A

)
.

We then argue as in the proof of Proposition 3.1. We use that W2 ∈ L3(R3),
with

‖W2‖L3 ≤ K‖A‖2L6 ≤ K‖A‖2
Ḣ1

div(R
3)
,

and that ∇W2 ∈ L
3
2 (R3), with

‖∇W2‖
L

3
2
≤ K‖A‖L6‖A‖Ḣ1

div(R
3) ≤ K‖A‖2

Ḣ1
div(R

3)
,

by the Sobolev inequality. By the Kato-Seiler-Simon inequality (2.5), we
obtain for the term involving p · ∇W2,

∥∥∥ 1

p2 +m2
j + ω2

W2
1

p2 +m2
j + ω2

p · ∇W2
1

(p2 +m2
j + ω2)2

∥∥∥
S1

≤ K
∥∥∥ 1

p2 +m2
j + ω2

W2

∥∥∥
S3

∥∥∥ |p|
p2 +m2

j + ω2
|∇W2|

1
4

∥∥∥
S6

×

×
∥∥∥|∇W2|

3
4

1

(p2 +m2
j + ω2)2

∥∥∥
S2

≤ K

(m2
j + ω2)2

∥∥A
∥∥4
Ḣ1

div(R
3)
,
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for some universal constant K. The argument is exactly the same for the
term involving ∇W2 · p instead of p · ∇W2. Therefore, we obtain the bound

∫

R

2∑

j=0

|cj |
∥∥∥ 1

(p2 +m2
j + ω2)3

{
p,∇W2

}
R3

1

p2 +m2
j + ω2

W2

∥∥∥
S1

ω2 dω

≤K
( 2∑

j=0

|cj |
mj

)∥∥A
∥∥4
Ḣ1

div(R
3)
.

In particular, we have shown that the operator T4,1(A) can be written in
the form

T4,1(A) = T4,1(A) + S4,1(A), (4.25)

with

∥∥T4,1(A)
∥∥
S1

≤ K

( 2∑

j=0

|cj |
mj

)∥∥A
∥∥4
Ḣ1

div(R
3)
, (4.26)

and

S4,1(A) :=
1

2π

∫

R

2∑

j=0

cj
1

p2 +m2
j + ω2

(W2)
2 1

(p2 +m2
j + ω2)2

ω2 dω.

(4.27)
By the Kato-Seiler-Simon inequality, this term is trace-class when A ∈
L4(R3,R4) and conditions (2.7) are fulfilled. On the other hand, there is
no evidence that the trace-class norm of S4,1(A) can be bounded using only
the norm ‖∇A‖L2 . Fortunately, this term will cancel with the other ones of
the same type, as we will explain later.

Our strategy to handle the operators T4,2(A) and T4,3(A) follows exactly
the same lines. We first simplify the expressions of T4,2(A) and T4,3(A) by
discarding the terms containing the operator B ·Σ. Concerning T4,3(A), we
can compute

∥∥∥ 1

p2 +m2
j + ω2

(
W1

1

p2 +m2
j + ω2

)3
B ·Σ 1

p2 +m2
j + ω2

∥∥∥
S1

≤ K

(m2
j + ω2)2

‖B‖L2

(
‖∇A‖3L2 +

m3
j

(m2
j + ω2)

3
2

‖∇V ‖3L2 + ‖B‖3L2

)
,

so that

T4,3(A) = T a
4,3(A)+

1

2π

∫

R

2∑

j=0

cj ω
2 dω

p2 +m2
j + ω2

((
W1−B ·Σ

) 1

p2 +m2
j + ω2

)4

,

with

∥∥T a
4,3(A)

∥∥
S1

≤ K

( 2∑

j=0

|cj |
mj

)∥∥A
∥∥4
Ḣ1

div(R
3)
. (4.28)
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We next commute, as above, the operator W1 − B · Σ with the operator
1/(p2 +m2

j + ω2) in order to establish that

1

2π

∫

R

ω2 dω
2∑

j=0

cj
1

p2 +m2
j + ω2

((
W1 −B ·Σ

) 1

p2 +m2
j + ω2

)4

= T b
4,3(A) +

1

2π

∫

R

ω2 dω
2∑

j=0

cj×

× 1

(p2 +m2
j + ω2)4

({
p,A− Vα

}
R3 − 2mjV β

)4 1

p2 +m2
j + ω2

,

where T b
4,3(A) also satisfies (4.28). Finally, we use that

{
p,A−α · V

}
R3 = 2p ·

(
A−α · V

)
− iα · ∇V,

as well as the anti-commutation formulas for the matrices αk and β, to
obtain the formula

1

2π

∫

R

ω2 dω
2∑

j=0

cj
1

(p2 +m2
j + ω2)4

×

×
({
p,A− Vα

}
R3 − 2mjV β

)4 1

p2 +m2
j + ω2

= T c
4,3(A) + S4,3(A),

with T c
4,3(A) satisfying again (4.28), and

S4,3(A) :=
8

π

∫

R

ω2 dω

2∑

j=0

cj
1

(p2 +m2
j + ω2)4

(
(p2 +m2

j)
2V 4

− 4(p2 +m2
j )(mjβ + p ·α)(p · A)V 3β + 6(p2 +m2

j)
3∑

l=1

pl
(
p ·A)AℓV

2

− 4mj

3∑

l=1

3∑

m=1

plpm(mjβ + p · α)(p ·A)AlAmV

+

3∑

l=1

3∑

m=1

3∑

n=1

plpmpn(p ·A)AlAmAn

)
1

p2 +m2
j + ω2

.

(4.29)

The computation leading to this formula is tedious but elementary. In con-
clusion, setting T4,3(A) := T a

4,3(A) + T b
4,3(A) + T c

4,3(A), we have established
that

T4,3(A) = T4,3(A) + S4,3(A), (4.30)

where T4,3(A) satisfies (4.28). Similarly, one can check that

T4,2(A) = T4,2(A) + S4,2(A), (4.31)

with

∥∥T4,2(A)
∥∥
S1

≤ K

( 2∑

j=0

|cj |
mj

)∥∥A
∥∥4
Ḣ1

div(R
3)
, (4.32)



DIRAC’S VACUUM IN ELECTROMAGNETIC FIELDS 37

and

S4,2(A) :=
2

π

∫

R

ω2 dω
2∑

j=0

cj
1

(p2 +m2
j + ω2)3

(
(p2 +m2

j )
(
3|A|2 + 3V 2

− 2(α ·A)
)
V 2 − 2(p ·α+mjβ)(p ·A)

(
3|A|2 + 5V 2

)
V

+ 3
3∑

l=1

pl(p ·A)Al

(
|A|2 + 5V 2 − 2(α ·A)V

)) 1

p2 +m2
j + ω2

.

(4.33)

Notice here again that the Kato-Seiler-Simon inequality implies that S4,2(A)
and S4,3(A) are trace-class when A ∈ L4(R3,R4) and conditions (2.7) are
satisfied. Therefore, we always assume that A ∈ L4(R3,R4) to make our
calculations meaningful.

The last step in the proof is to compute the traces of the singular operators
S4,1(A), S4,2(A) and S4,3(A) for A ∈ L4(R3,R4). As announced before we
claim that

trS4,1(A)− trS4,2(A) + trS4,3(A) = 0, (4.34)

an identity which is enough to complete the proof of Lemma 4.4. To prove
this we could make up an abstract argument based on gauge invariance.
However we have to be careful with the fact that even if we can freely
exchange the trace with the integration over ω, these only make sense after
we have taken the sum over the coefficients cj . The order matters and
this complicates the mathematical analysis. Instead, we calculate the sum
explicitly and verify that it is equal to 0.

A simple computation in Fourier space shows that

trS4,1(A) =
2

π(2π)
3
2

∫

R3

dp

∫

R

ω2 dω

( 2∑

j=0

cj
1

(p2 +m2
j + ω2)3

)
×

×
∫

R3

(
|A|4 + 6|A|2V 2 + V 4

)
.

(4.35)

Similarly, one can check that

trS4,2(A) =
8

π(2π)
3
2

∫

R3

dp

∫

R

ω2 dω

( 2∑

j=0

cj
1

(p2 +m2
j + ω2)4

)
×

×
(
3
(
p2 +m2

j

) ∫

R3

(
|A|2V 2 + V 4

)

+ 3
3∑

l=1

3∑

m=1

plpm

∫

R3

(
AlAm|A|2 + 5AlAmV

2
))
.

An integration by parts shows that

∫

R3

2∑

j=0

cj
pl pm dp

(p2 +m2
j + ω2)4

=
δl,m
6

∫

R3

2∑

j=0

cj
dp

(p2 +m2
j + ω2)3

,
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and we obtain

trS4,2(A)

=
24

π(2π)
3
2

∫

R3

dp

∫

R

ω2 dω

( 2∑

j=0

cj
p2 +m2

j

(p2 +m2
j + ω2)4

)∫

R3

(
|A|2V 2 + V 4

)

+
4

π(2π)
3
2

∫

R3

dp

∫

R

ω2 dω

( 2∑

j=0

cj
1

(p2 +m2
j + ω2)3

)∫

R3

(
|A|4 + 5|A|2V 2

)
.

(4.36)

Similar computations lead to the expression

trS4,3(A) :=
32

π(2π)
3
2

(∫

R

∫

R3

2∑

j=0

cj
(p2 +m2

j )
2 dpω2 dω

(p2 +m2
j + ω2)5

)∫

R3

V 4

+
8

π(2π)
3
2

(∫

R

∫

R3

2∑

j=0

cj
dpω2 dω

(p2 +m2
j + ω2)3

(
1 +

3(p2 +m2
j)

p2 +m2
j + ω2

))∫

R3

|A|2V 2

+
2

π(2π)
3
2

(∫

R

∫

R3

2∑

j=0

cj
dpω2 dω

(p2 +m2
j + ω2)3

)∫

R3

|A|4.

(4.37)

In view of (4.35) and (4.36), we obtain

trS4,1(A)− trS4,2(A) + trS4,3(A) =
2

π(2π)
3
2

(∫

R3

V 4

)∫

R

ω2 dω

∫

R3

dp×

×
2∑

j=0

cj

(
1

(p2 +m2
j + ω2)3

− 12
p2 +m2

j

(p2 +m2
j + ω2)4

+ 16
(p2 +m2

j)
2

(p2 +m2
j + ω2)5

)
.

A direct computation then shows that
∫

R

(
1

(1 + ω2)3
− 12

(1 + ω2)4
+

16

(1 + ω2)5

)
ω2 dω = 0.

This is enough to deduce (4.34), and complete the proof of Lemma 4.4. �

4.4. Regularity of the sixth order term. In this section, we come back
to the sixth order term studied in the proof of Proposition 3.1. The sixth
order term is defined as

R6(A) =
1

4π

∫

R

tr
(
R′

6(ω,A) +R′
6(−ω,A)

)
dω, (4.38)

where

R′
6(ω,A) :=

2∑

j=0

cj
iω

Dmj ,A + iω

((
α ·A− V

) 1

Dmj ,0 + iω

)6
.

We have shown that it is trace-class when A ∈ Ḣ1
div(R

3). We can indeed
write estimate (3.14) as

∥∥R6(A)
∥∥
S1

≤ 1

2π

∫

R

∥∥R′
6(ω,A)

∥∥
S1
dω ≤ K

( 2∑

j=0

|cj |
m2

j

)∥∥A
∥∥6
Ḣ1

div(R
3)
. (4.39)
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Here we want to prove that R6 is actually smooth, under suitable assump-
tions on A. We first establish the continuity of R6 through

Lemma 4.5 (Continuity of the sixth order term). The functional R6 is

locally θ–Hölder continuous on the space Ḣ1
div(R

3) for any 0 < θ < 1.

Proof. We consider the difference R′
6(ω,A) − R′

6(ω,A
′) for four-potentials

A and A′ in a given ball of Ḣ1
div(R

3), which we write as

R′
6(ω,A)−R′

6(ω,A
′)

=
2∑

j=0

cj

(
iω
( 1

Dmj ,A + iω
− 1

Dmj ,A′ + iω

)((
α · A− V

) 1

Dmj ,0 + iω

)6

+
5∑

k=0

iω

Dmj ,A′ + iω

((
α · A′ − V ′

) 1

Dmj ,0 + iω

)k
×

×
(
α · (A−A′)− V + V ′

) 1

Dmj ,0 + iω

((
α · A− V

) 1

Dmj ,0 + iω

)5−k
)
.

(4.40)

The five terms in the sum over the index k can be estimated similarly as in
the proof of (3.14). Their S1–norms are bounded by a universal constant
K times

2∑

j=0

|cj |
(m2

j + ω2)
3
2

(
‖A‖5

Ḣ1
div(R

3)
+ ‖A′‖5

Ḣ1
div(R

3)

)∥∥A−A′
∥∥
Ḣ1

div(R
3)
.

If we follow the same proof for the first term, we need an estimate on the
operator norm

∥∥∥∥iω
( 1

Dmj ,A + iω
− 1

Dmj ,A′ + iω

)∥∥∥∥.

On one hand, we remark that ‖(Dmj ,A + iω)−1‖ ≤ 1/ω, so that

∥∥∥∥iω
( 1

Dmj ,A + iω
− 1

Dmj ,A′ + iω

)∥∥∥∥ ≤ 2. (4.41)

On the other hand, we can use the resolvent formula to write

1

Dmj ,A + iω
− 1

Dmj ,A′ + iω

=
1

Dmj ,A + iω

(
α · (A−A′) + V ′ − V

) 1

Dmj ,A′ + iω
.

(4.42)

For small A, or small A′, we have no problem in estimating this term using
that the spectrum of Dmj ,A stays away from 0 by Lemma 2.1, and that

(Dmj ,A + iω)−1(Dmj ,0 + iω) is bounded uniformly. The argument is essen-
tially the same in the general case. We decompose the expression in the
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right-hand side of (4.42) as

iω

(
1

Dmj ,A + iω

(
α · (A−A′) + V ′ − V

) 1

Dmj ,A′ + iω

)

=
( 1

Dmj ,A + iω

(
Dmj ,A + iµ

))
×
( 1

Dmj ,A + iµ

(
Dmj ,0 + iµ

))
×

×
( 1

Dmj ,0 + iµ

(
α · (A−A′) + V ′ − V

))
× iω

Dmj ,A′ + iω
,

(4.43)

for some positive number µ. We check that

∥∥∥ 1

Dmj ,A + iω

(
Dmj ,A + iµ

)∥∥∥ ≤
∥∥∥

Dmj ,A

Dmj ,A + iω

∥∥∥+
∥∥∥ iµ

Dmj ,A + iω

∥∥∥ ≤ 1 +
µ

|ω| .
(4.44)

Setting µ := 4K2‖A‖2
Ḣ1

div(R
3)
, we also remark that

∥∥∥ 1

Dmj ,A + iµ
(Dmj ,0 + iµ)

∥∥∥ =
∥∥∥
(
1 +

1

Dmj ,0 + iµ

(
V −α ·A

))−1∥∥∥

≤
∞∑

n=0

∥∥∥ 1

Dmj ,0 + iµ

(
V −α · A

)∥∥∥
n

≤
∞∑

n=0

Kn

(m2
j + µ2)

n
4

‖A‖n
Ḣ1

div(R
3)

≤ 2.

(4.45)

Recalling that (iω)‖(Dmj ,A′+iω)−1‖ ≤ 1, we infer from (4.42), (4.43), (4.44)
and (4.45) that

∥∥∥∥(iω)
( 1

Dmj ,A + iω
− 1

Dmj ,A′ + iω

)∥∥∥∥

≤ K
(
m2

j + µ2
) 1

4

(
1 +

µ

|ω|
)
‖A−A′‖Ḣ1

div(R
3)

≤K
( 1
√
mj

+
1

|ω| ‖A‖Ḣ1
div(R

3)

)∥∥A−A′
∥∥
Ḣ1

div(R
3)
.

(4.46)

In this bound, we can replace A by A′ by symmetry. Recall that we are in
a given ball in Ḣ1

div(R
3), so that ‖A‖Ḣ1

div(R
3) is bounded by some constant.

Collecting estimates (4.41) and (4.46), we have shown that

∫

R

‖R′
6(ω,A)−R′

6(ω,A
′)‖S1 dω

≤ K

( 2∑

j=0

|cj |
m2

j

)(
‖A‖5

Ḣ1
div(R

3)
+ ‖A′‖5

Ḣ1
div(R

3)

)∥∥A−A′
∥∥
Ḣ1

div(R
3)

+K

( 2∑

j=0

|cj |
m2

j

)(
‖A‖6

Ḣ1
div(R

3)
+ ‖A′‖6

Ḣ1
div(R

3)

)
I(mj,A,A

′),

(4.47)
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where

I(mj,A,A
′) :=

∫ ∞

0

dω

(1 + ω2)
3
2

×

×min
{
2,
( 1
√
mj

+
1

mjω
‖A‖Ḣ1

div(R
3)

)∥∥A−A′
∥∥
Ḣ1

div(R
3)

}
.

Assuming that ‖A − A′‖Ḣ1
div(R

3) ≤ mj/(
√
mj + ‖A‖Ḣ1

div(R
3)) for any j =

0, 1, 2, we can estimate the integral I(mj,A,A
′) as

∣∣I(mj,A,A
′)
∣∣ ≤ 1

√
mj

(∫ ∞

0

dω

(1 + ω2)
3
2

)∥∥A−A′
∥∥
Ḣ1

div(R
3)

+ 2J
( 1

2mj
‖A‖Ḣ1

div(R
3)‖A−A′‖Ḣ1

div(R
3)

)
,

with

J (t) :=

∫ t

0

dω

(1 + ω2)
3
2

+ t

∫ ∞

t

dω

ω(1 + ω2)
3
2

.

It remains to observe that

J (t) ≤ Kt
(
1 + | log t|

)
,

and to combine with (4.38) and (4.47), to conclude that the functional R6

is locally θ–Hölder for any 0 < θ < 1. �

We next turn to the differentiability of R6.

Lemma 4.6 (Regularity of the sixth order term). The functional R6 is of

class C∞ on the open subset H of Ḣ1
div(R

3) containing all the four-potentials
A such that 0 /∈ σ(Dmj ,A) for each j = 0, 1, 2. Moreover, there exists a
universal constant K such that

∥∥d2R6(A)
∥∥ ≤ K

2∑

j=0

|cj |
m2

j

(
1 +

L2
A

mj
‖A‖2

Ḣ1
div(R

3)

)∥∥A
∥∥4
Ḣ1

div(R
3)
, (4.48)

where

LA := max
{
‖(Dmj ,A + iω)−1(Dmj ,0 + iω)‖, ω ∈ R, j = 0, 1, 2

}
<∞.

Proof. The proof relies on elements in the proof of Lemma 4.5. When 0 is not
an eigenvalue of Dmj ,A for each j = 0, 1, 2, we can deduce from Lemma 2.1
the existence of a positive constant KA such that

∥∥∥ 1

Dmj ,A′ + iω

∥∥∥ ≤ min
{
KA,

1

|ω|
}
, (4.49)

for any A′ ∈ Ḣ1
div(R

3), with ‖A′ − A‖Ḣ1
div(R

3) small enough. As a conse-

quence, we can replace estimate (4.44) by the inequality

∥∥∥ 1

Dmj ,A + iω

(
Dmj ,A + iµ

)∥∥∥ ≤ 1 +KAµ.



42 P. GRAVEJAT, C. HAINZL, M. LEWIN, AND É. SÉRÉ

Since
∥∥∥ 1

Dmj ,A + iω

(
Dmj ,0 + iω

)∥∥∥

≤
∥∥∥ 1

Dmj ,A + iω

(
Dmj ,0 + iµ

)∥∥∥+ |ω − µ|min
{
KA,

1

|ω|
}
,

it follows that
∥∥∥ 1

Dmj ,A + iω

(
Dmj ,0 + iω

)∥∥∥

≤
(
1 +KAµ

)∥∥∥ 1

Dmj ,A + iµ

(
Dmj ,0 + iµ

)∥∥∥+ |ω − µ|min
{
KA,

1

|ω|
}
.

(4.50)

Following the lines of the proof of (4.45), we deduce that the quantity in
the right-hand side of (4.50) is bounded independently on ω by a positive
constant LA, depending only on the four-potential A and the mass mj.
Actually, we can claim, up to a possible larger choice of LA, that

∥∥∥ 1

Dmj ,A′ + iω

(
Dmj ,0 + iω

)∥∥∥ ≤ LA,

for any ω ∈ R, j = 0, 1, 2, and A′ ∈ Ḣ1
div(R

3), with ‖A′ −A‖Ḣ1
div(R

3) small

enough.
As a result, we can upgrade (4.46) into

∥∥∥∥iω
( 1

Dmj ,A + iω
− 1

Dmj ,A′ + iω

)∥∥∥∥ ≤ KLA

(m2
j + ω2)

1
4

∥∥A−A′
∥∥
Ḣ1

div(R
3)
.

Similarly, we can compute

∥∥∥∥
iω

Dmj ,A + iω

(
α · (A−A′) + V ′ − V

) 1

Dmj ,A + iω

∥∥∥∥

≤ KLA

(m2
j + ω2)

1
4

∥∥A−A′
∥∥
Ḣ1

div(R
3)
.

(4.51)

At this stage, we can iterate the resolvent expansion in (4.42) to obtain

1

Dmj ,A + iω
− 1

Dmj ,A′ + iω

=
1

Dmj ,A + iω

(
α · (A−A′) + V ′ − V

) 1

Dmj ,A + iω

+
( 1

Dmj ,A + iω

(
α · (A−A′) + V ′ − V

))2 1

Dmj ,A′ + iω
.

Inserting this identity into (4.40), we can write

R′
6(ω,A) −R′

6(ω,A
′) = dAR

′
6(ω,A)(A −A′) + r′6

(
ω,A,A′

)
. (4.52)
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Here, dAR
′
6(ω,A) refers to the continuous linear mapping from Ḣ1

div(R
3) to

S1(R
3,R4) given by

dAR
′
6(ω,A)(v, a)

=
2∑

j=0

cj

(
iω

Dmj ,A + iω

(
α · a− v

) 1

Dmj ,A + iω

((
α ·A− V

) 1

Dmj ,0 + iω

)6

+
5∑

k=0

iω

Dmj ,A + iω

((
α · A− V

) 1

Dmj ,0 + iω

)5−k((
α · a− v

) 1

Dmj ,0 + iω

)
×

×
((

α · A− V
) 1

Dmj ,0 + iω

)k)
.

(4.53)

In view of (4.51), and again the computations in the proof of estimate (3.14),
the operator norm of dAR

′
6(ω,A) is indeed bounded by

∥∥dAR′
6(ω,A)

∥∥

≤ K
2∑

j=0

|cj |
(m2

j + ω2)
3
2

‖A‖5
Ḣ1

div(R
3)

(
1 +

LA

(m2
j + ω2)

1
4

‖A‖Ḣ1
div(R

3)

)
.

(4.54)

Similarly, the remainder r′6
(
ω,A,A′

)
in (4.52) may be estimated as

∥∥∥r′6
(
ω,A,A′

)∥∥∥
S1

≤ K‖A−A′‖2
Ḣ1

div(R
3)

2∑

j=0

|cj |
(m2

j + ω2)
3
2

(
‖A‖4

Ḣ1
div(R

3)
+ ‖A′‖4

Ḣ1
div(R

3)

)
×

×
(
1 +

L2
A

(m2
j + ω2)

1
2

(
‖A‖2

Ḣ1
div(R

3)
+ ‖A′‖2

Ḣ1
div(R

3)

))
.

(4.55)

Collecting (4.38), (4.52), (4.54) and (4.55) is enough to establish the con-
tinuous differentiability of the function R6 on a neighborhood of A, with a
differential given by

dR6(A)(v, a) =
1

4π

∫

R

tr
(
dAR

′
6(ω,A)(v, a) + dAR

′
6(−ω,A)(v, a)

)
dω.

(4.56)
Finally, we can extend the previous arguments for the continuous differ-

entiability of R6 to the proof that it is actually of class C∞. In particular,
we can check that the norm of the quadratic form d2

A
R′

6 is bounded by
∥∥∥d2AR′

6

(
ω,A

)∥∥∥

≤ K

2∑

j=0

|cj |
(m2

j + ω2)
3
2

‖A‖4
Ḣ1

div(R
3)

(
1 +

L2
A

(m2
j + ω2)

1
2

‖A‖2
Ḣ1

div(R
3)

)
.

Estimate (4.48) follows integrating with respect to ω. �
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When ‖A‖Ḣ1
div(R

3) is small enough, we can prove that the constant LA

does not depend on A.

Corollary 4.1 (Estimate in a neighborhood of zero). Assume that cj and
mj satisfy (2.10). There exists a universal constant η such that, given any

A ∈ Ḣ1
div(R

3) with ‖A‖Ḣ1
div(R

3) ≤ η
√
m0, the functional R6 is of class C∞

on the ball

BA(η
√
m0) =

{
A ∈ Ḣ1

div(R
3) : ‖A‖Ḣ1

div(R
3) ≤ η

√
m0

}
,

and satisfies the estimate

∥∥d2R6(A)
∥∥ ≤ K

( 2∑

j=0

|cj |
m2

j

)∥∥A
∥∥4
Ḣ1

div(R
3)
. (4.57)

Proof. When A is small enough, the spectrum of Dmj ,A does not contain 0
by Lemma 2.1. Moreover, when

∥∥A
∥∥
Ḣ1

div(R
3)

≤ ηmin
{√

m0,
√
m1,

√
m2

}
= η

√
m0,

for η small enough, we can infer from (4.45) that

LA ≤ 2.

Inserting in (4.48), and using the inequality ‖A‖Ḣ1
div(R

3) ≤ η
√
mj , gives

estimate (4.57). �

5. Proof of Theorem 2.1

With the results of the previous section at hand, the proof of Theorem 2.1
is only a few lines. As a matter of fact, given any A ∈ L1(R3,R4)∩Ḣ1

div(R
3),

we have shown that the functional FPV(A) is well-defined by the expression

FPV(A) = F2(F ) +R(A), (5.1)

where

F2(F ) := tr
(
trC4 T2(A)

)
,

and

R(A) := tr
(
trC4 T4(A)

)
+ tr

(
trC4 T ′

6(A)
)
,

are defined in (4.1). By Lemma 4.2, the function F2 is given by (2.15) and
it is quadratic with respect to F . Since M is bounded, we deduce that F2

is smooth on L2(R3,R6). On the other hand, the function A 7→ F4(A) :=
tr(trC4 T4(A)) is quartic and satisfies (4.19). Hence, it is a smooth func-

tion on Ḣ1
div(R

3). We have proved separately in Lemma 4.5 above that

R6(A) = tr(trC4 T ′
6(A)) is an Hölder continuous function on Ḣ1

div(R
3), which

satisfies (3.14). We deduce from all this that FPV has a unique continuous

extension to Ḣ1
div(R

3), which is given by (5.1), and that R satisfies esti-
mate (2.14). The properties of M can be found in Lemma 4.3.
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6. Proof of Theorem 2.2

In view of the results in Sections 3 and 4, the functional FPV is smooth
on the open subset H of Ḣ1

div(R
3) containing all the four-potentials A such

that 0 /∈ σ(Dmj ,A) for each j = 0, 1, 2. Indeed, the function A 7→ F4(A) :=
tr(trC4 T4(A)) is quartic and satisfies (4.19). Hence, it is of class C∞ on

Ḣ1
div(R

3). Similarly, in view of Lemmas 4.2 and 4.3, the quadratic map F2

is smooth on L2(R3,R6). On the other hand, we have shown in Section 4.4
that R6 is smooth when 0 is not an eigenvalue of Dmj ,A for j = 0, 1, 2. We
deduce that FPV is smooth on the set H.

In order to complete the proof of Theorem 2.2, it remains to identify
dFPV(A). As mentioned in Formulas (2.19) and (2.20), this differential is
related to the operator

QA :=

2∑

j=0

cj 1(−∞,0)

(
Dmj ,A

)
.

Concerning the properties of the operator QA, we can establish the following

Lemma 6.1 (Properties of ρA and jA). Assume that cj and mj satisfy
conditions (2.10).

(i) Let A ∈ Ḣ1
div(R

3) be a four-potential such that 0 is not an eigenvalue of
Dmj ,A for j = 0, 1, 2. Then the operators trC4 QA and trC4 αQA are locally

trace-class on L2(R3,R4). More precisely, given any function χ ∈ L∞
c (R3)

(that is, bounded with compact support), the maps

A ∈ H 7→ χ
(
trC4 QA

)
χ ∈ S1

and

A ∈ H 7→ χ
(
trC4 αQA

)
χ ∈ S1

are continuous from H to S1. In particular, the density ρA and the current
jA, given by

ρA(x) :=
[
trC4 QA

]
(x, x) and jA(x) :=

[
trC4 αQA

]
(x, x),

are well-defined and locally integrable on R3. Moreover, the maps A 7→ ρA χ
2

and A 7→ jA χ
2 are continuous from H to L1(R3). Finally, for A ≡ 0, we

have

ρ0 ≡ 0 and j0 ≡ 0.

(ii) If moreover A ∈ L1(R3,R4), then, the operators trC4 (QA − Q0) and
trC4 α(QA −Q0) are trace-class on L2(R3,R4), and the density ρA and the
current jA are in L1(R3).

Proof. We split the proof into three steps. First, we consider the special
case A ≡ 0.

The operators trC4 Q0 and trC4 αQ0 are locally trace-class. Using that∑2
j=0 cj = 0, we can write

Q0 =

2∑

j=0

cj

(
1(−∞,0)

(
Dmj ,0

)
− 1

2

)
= −1

2
trC4

2∑

j=0

cj
Dmj ,0

|Dmj ,0|
.
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As a consequence, we obtain

trC4 Q0 = 0.

In particular, the density ρ0 is well-defined and it identically vanishes on R3.
Similarly, we have

trC4 αQ0 = −2

2∑

j=0

cj
p

(p2 +m2
j)

1
2

.

Due to conditions (2.7), the latter function behaves like

2∑

j=0

cj
p

(p2 +m2
j)

1
2

∼ 3

8

2∑

j=0

cj m
4
j

p

|p|5 ,

as |p| → ∞, hence it is in L1(R3). By the Kato-Seiler-Simon inequality (2.5),
we deduce that the operator trC4 αχQ0χ is trace-class for any χ ∈ L2(R3).
Hence, trC4 αQ0 is locally trace-class. In particular, the current j0 is well-
defined and locally integrable on R3. Moreover, we can compute∫

R3

j0 χ
2 =tr

(
trC4 αχQ0χ

)

=− 1

4π3

∫

R3

∫

R3

2∑

j=0

cj
p

(p2 +m2
j)

1
2

|χ̂(q − p)|2 dp dq,

which shows that

j0 = − 1

4π3

∫

R3

2∑

j=0

cj
p

(p2 +m2
j)

1
2

dp = 0

by rotational symmetry.
We next consider the general case.

The operators trC4 QA and trC4 αQA are (locally) trace-class. From
the previous discussion, we conclude that it is sufficient to prove that the
operators trC4(QA −Q0) and trC4 α(QA −Q0) are locally trace-class. The
corresponding charge and current densities will be the same as that of QA.

Concerning the (local) trace-class nature of the operator QA − Q0, we
follow the proof of Proposition 3.1. Our starting point is the integral formula

signx =
2

π

∫

R

xω2

(x2 + ω2)2
dω =

1

2π

∫

R

( iω

(x+ iω)2
− iω

(x− iω)2

)
dω. (6.1)

When T is a self-adjoint operator on L2(R3,R4) with domain D(T ), we
deduce that the sign of T is given by

sign T =
1

2π

∫

R

( iω

(T + iω)2
− iω

(T − iω)2

)
dω, (6.2)

the integral in the right-hand side of (6.2) being convergent as an operator
from D(T ) to L2(R3,C4).

In particular, the operator

QA −Q0 = −1

2

2∑

j=0

cj
(
signDmj ,A − signDmj ,0

)
,



DIRAC’S VACUUM IN ELECTROMAGNETIC FIELDS 47

is given by the expression

QA −Q0 = − 1

4π

∫

R

2∑

j=0

cj

( iω

(Dmj ,A + iω)2
− iω

(Dmj ,0 + iω)2

− iω

(Dmj ,A − iω)2
+

iω

(Dmj ,0 − iω)2

)
dω,

(6.3)

on H1(R3,C4). In order to establish statements (ii) and (iii) of Lemma 6.1,
we will prove that

∫

R

∥∥∥∥
2∑

j=0

cj trC4 mχ
( iω

(Dmj ,A + iω)2
− iω

(Dmj ,0 + iω)2

− iω

(Dmj ,A − iω)2
+

iω

(Dmj ,0 − iω)2

)
χ

∥∥∥∥
S1

dω <∞,

(6.4)

for any of the matrices m = I4,α1,α2,α3, and either whenA ∈ L1(R3,R4)∩
H1(R3,R4) and χ ≡ 1, or when A ∈ Ḣ1

div(R
3) and χ ∈ L∞

c (R3,R). In the
different cases, the C4–traces of the operators m(QA − Q0), respectively
mχ(QA − Q0)χ, will define trace-class operators on L2(R3,C4). Then the
operators trC4 mQA will be locally trace-class and the density ρA and the
current jA will be well-defined and locally integrable on R3. Moreover, they
will be integrable on R3 for any A ∈ L1(R3,R4) ∩H1(R3,R4).

In order to prove (6.4), we use the expansion

iω

(Dmj ,A + iω)2
− iω

(Dmj ,0 + iω)2
− iω

(Dmj ,A − iω)2
+

iω

(Dmj ,0 − iω)2

:=
5∑

n=1

(
Qn(ω,A) +Qn(−ω,A)

)
+Q′

6(ω,A) +Q′
6(−ω,A)

−Q′
7(ω,A)−Q′

7(−ω,A),

(6.5)

with

Qn(ω,A) := (n + 1)

2∑

j=0

cj
iω

(Dmj ,0 + iω)2

((
α ·A− V

) 1

Dmj ,0 + iω

)n
,

Q′
6(ω,A) := 7

2∑

j=0

cj
iω

(Dmj ,A + iω)2

((
α · A− V

) 1

Dmj ,0 + iω

)6
,

and

Q′
7(ω,A) := 6

2∑

j=0

cj
iω

(Dmj ,A + iω)2

((
α ·A− V

) 1

Dmj ,0 + iω

)7
.

We next estimate the terms related to the operators Qn(ω,A), Q′
6(ω,A)

and Q′
7(ω,A), as we have previously done for the operators Rn(ω,A) and

R′
6(ω,A) in Section 3.
Concerning Q′

6(ω,A) and Q′
7(ω,A), we recall that 0 is not an eigenvalue

of Dmj ,A for each j = 0, 1, 2. Hence, there exists a positive constant K such
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that ∥∥∥ 1

Dmj ,A + iω

∥∥∥ ≤ K, (6.6)

for all ω ∈ R and j = 0, 1, 2. Following the proof of (3.14), we deduce that
∫

R

(
‖Q′

6(ω,A)‖S1+‖Q′
7(ω,A)‖S1

)
dω

≤K
2∑

j=0

|cj |
m2

j

‖∇A‖6L2

(
1 +

1
√
mj

‖∇A‖L2

)
.

As a consequence, the integrals

Q′
6(A) :=

1

4π

∫

R

(
Q′

6(ω,A) +Q′
6(−ω,A)

)
dω,

and

Q′
7(A) :=

1

4π

∫

R

(
Q′

7(ω,A) +Q′
7(−ω,A)

)
dω,

define trace-class operators on L2(R3,R4) when A ∈ Ḣ1
div(R

3). The related
densities ρ′6(A) and ρ′7(A), and currents j′6(A) and j′7(A), are well-defined
and integrable on R3. Moreover, in view of (6.6), we can repeat the argu-
ments in the proof of Lemma 4.6 in order to establish the smoothness of the
maps A 7→ Q′

6(A) and A 7→ Q′
7(A) from H onto S1.

For 3 ≤ n ≤ 5, the operators Qn(ω,A) satisfy the estimates
∫

R

∥∥Qn(ω,A)
∥∥
S1
dω ≤ Kn

∥∥A
∥∥n
Ln , (6.7)

and ∫

R

∥∥χQn(ω,A)χ
∥∥
S1
dω ≤ Kn

∥∥A
∥∥n
L6

∥∥χ
∥∥2
L

12
6−n

, (6.8)

for any function χ ∈ L∞
c (R3). Here, Kn refers to a positive constant de-

pending only on the coefficients cj and the masses mj. For n = 4 and n = 5,
we can indeed use the Kato-Seiler-Simon inequality (2.5) to write

∥∥Qn(ω,A)
∥∥
S1

≤ K

2∑

j=0

|cj |
∥∥A
∥∥n
Ln

∫

R3

|ω| dp
(p2 +m2

j + ω2)
n+2
2

.

Integrating with respect to ω, we obtain inequality (6.7) with

Kn := K
2∑

j=0

|cj |
mn−3

j

.

For n = 3, we rely on the identity c0 + c1 + c2 = 0 to write

Q3(ω,A) = 4

2∑

j=0

cj

( 3∑

k=1

iω

Dm0,0 + iω

( 1

Dm0,0 + iω

(
α · A− V

))k
×

×
( iω

Dmj ,0 + iω
− iω

Dm0,0 + iω

)((
α · A− V

) 1

Dmj ,0 + iω

)3−k

+
( iω

(Dmj ,0 + iω)2
− iω

(Dm0,0 + iω)2

)((
α ·A− V

) 1

Dmj ,0 + iω

)3
.
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Using inequality (3.16), we deduce that

∥∥Q3(ω,A)
∥∥
S1

≤ K

( 2∑

j=0

|cj |(mj −m0)

) |ω|
(m2

0 + ω2)
3
2

∥∥A
∥∥3
L3 ,

which provides estimate (6.7) with

K3 :=

2∑

j=0

|cj |
mj −m0

m0
.

Inequalities (6.8) follow similarly. Applying the Sobolev inequality (3.12)
to (6.8), we deduce that the integrals

Qn(A) :=
1

4π

∫

R

(
Qn(ω,A) +Qn(−ω,A)

)
dω,

define locally trace-class operators on L2(R3,R4) for 3 ≤ n ≤ 5, as soon as

A ∈ Ḣ1
div(R

3). The related densities ρn(A) and currents jn(A) are well-
defined and locally integrable on R3. When A is moreover in Ln(R3), in-
equality (6.7) guarantees that the operators Qn(A) are trace-class, while the
functions ρn(A) and jn(A) are integrable on R3. The continuity in these
spaces follows from multi-linearity.

For n = 1, we refine our estimates using the cancellations provided by
conditions (2.7). Following the lines of the analysis of the operator R1(ω,A),
we start by writing

Q1(ω,A) +Q1(−ω,A) = Q1,1(ω,A)−Q1,2(ω,A), (6.9)

where

Q1,1(ω,A) := 8

2∑

j=0

cj ω
2 Dmj ,0

(D2
mj ,0

+ ω2)2
{
α ·A− V,Dmj ,0

}
R3

1

D2
mj ,0

+ ω2
,

(6.10)
and

Q1,2(ω,A) := 4

2∑

j=0

cj ω
2 1

D2
mj ,0

+ ω2

(
α · A− V

) 1

D2
mj ,0

+ ω2
.

As for the operator Q1,2(ω,A), we combine conditions (2.7) with identi-
ties (3.26) to estimate

∥∥Q1,2(ω,A)
∥∥
S1

≤ K

( 2∑

j=0

|cj |
(
m2

j −m2
0

)2
)

ω2

(m2
0 + ω2)

5
2

∥∥A
∥∥
L1 . (6.11)

In order to estimate the operator Q1,1(ω,A), we eliminate the odd powers
of the masses mj in the numerator of the right-hand side of (6.10) by taking
the C4–trace. Recall that

{
α · A− V,Dmj ,0

}
R3 =

{
p,A− V α

}
R3 +B ·Σ− 2mjV β.

Since

trC4

(
βd

3∏

k=1

α
dk
k

)
= 0, (6.12)
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when d is odd, we obtain

trC4

(
mQ1,1(ω,A)

)
:= 8

2∑

j=0

cj ω
2 1

(D2
mj ,0

+ ω2)2

(
− 2m2

jV trC4

(
m
)

+ trC4

(
m
(
α · p

)({
p,A− V α

}
R3 +B ·Σ

))) 1

D2
mj ,0

+ ω2
,

for any of the matrices m = I4,α1,α2,α3. On the other hand, we can
compute

1

(p2 +m2
j + ω2)2

=
1

(p2 +m2
0 + ω2)2

+
m2

0 −m2
j

(p2 +m2
j + ω2)(p2 +m2

0 + ω2)2

+
m2

0 −m2
j

(p2 +m2
j + ω2)2(p2 +m2

0 + ω2)
,

(6.13)

as well as

1

(p2 +m2
j + ω2)2

=
1

(p2 +m2
0 + ω2)2

+
2(m2

0 −m2
j)

(p2 +m2
0 + ω2)3

+
2(m2

0 −m2
j)

2

(p2 +m2
j + ω2)(p2 +m2

0 + ω2)3
+

(m2
0 −m2

j )
2

(p2 +m2
j + ω2)2(p2 +m2

0 + ω2)2
.

Combining again with conditions (2.7) and identities (3.26), we obtain the
estimate

∥∥∥ trC4

(
mQ1,1(ω,A)

)∥∥∥
S1

≤ K
2∑

j=0

|cj |
(
m2

j −m2
0

) ω2

(m2
0 + ω2)

5
2

×

×
(
m2

j

∥∥V
∥∥
L1 +

(
m2

j −m2
0

)∥∥A
∥∥
L1

)
.

In view of (6.9) and (6.11), we have
∫

R

∥∥∥ trC4

(
m
(
Q1(ω,A) +Q1(−ω,A)

))∥∥∥
S1

dω

≤ K

2∑

j=0

|cj |
(
m2

j −m2
0

)(m2
j

m2
0

∥∥V
∥∥
L1 +

m2
j −m2

0

m2
0

∥∥A
∥∥
L1

)
.

(6.14)

Similarly, we can check that
∫

R

∥∥∥ trC4

(
mχ
(
Q1(ω,A) +Q1(−ω,A)

)
χ
)∥∥∥

S1

dω

≤ K
2∑

j=0

|cj |
(
m2

j −m2
0

)(m2
j

m2
0

∥∥V
∥∥
L6 +

m2
j −m2

0

m2
0

∥∥A
∥∥
L6

)∥∥χ
∥∥2
L

12
5
.

(6.15)

For n = 2, the analysis is identical. We compute

Q2(ω,A) +Q2(−ω,A) = Q2,1(ω,A)−Q2,2(ω,A), (6.16)
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where

Q2,1(ω,A) := 12

2∑

j=0

cj ω
2×

×
(

Dmj ,0

(D2
mj ,0

+ ω2)2
{
α · A− V,Dmj ,0

} 1

D2
mj ,0

+ ω2
(α · A− V )

Dmj ,0

D2
mj ,0

+ ω2

+
D2

mj ,0

(D2
mj ,0

+ ω2)2
{
α · A− V,Dmj ,0

} 1

D2
mj ,0

+ ω2
(α · A− V )

1

D2
mj ,0

+ ω2

)
,

and

Q2,2(ω,A) := 6

2∑

j=0

cj ω
2

(
2Dmj ,0

D2
mj ,0

+ ω2

((
α · A− V

) 1

D2
mj ,0

+ ω2

)2

+
1

D2
mj ,0

+ ω2

(
α ·A− V

) Dmj ,0

D2
mj ,0

+ ω2

(
α ·A− V

) 1

D2
mj ,0

+ ω2

+
( 1

D2
mj ,0

+ ω2

(
α ·A− V

))2 Dmj ,0

D2
mj ,0

+ ω2

)
.

In order to estimate the operators Q2,1(ω,A) and Q2,2(ω,A), we again take
the C4–trace. For m = I4 or m = αk, we derive from (6.12) that

trC4

(
mQ2,1(ω,A)

)
= 12

2∑

j=0

cj ω
2×

× trC4

(
m(α · p)

(D2
mj ,0

+ ω2)2
{
α ·A− V,α · p

} 1

D2
mj ,0

+ ω2
(α ·A− V )

1

D2
mj ,0

+ ω2

−m2
j m

1

(D2
mj ,0

+ ω2)2
{
α · A+ V,α · p

} 1

D2
mj ,0

+ ω2
(α · A+ V )

1

D2
mj ,0

+ ω2

− 2m2
j m

1

(D2
mj ,0

+ ω2)2
V

1

D2
mj ,0

+ ω2
(α ·A− V )

α · p
D2

mj ,0
+ ω2

+ 2m2
j m

α · p
(D2

mj ,0
+ ω2)2

V
1

D2
mj ,0

+ ω2
(α ·A+ V )

1

D2
mj ,0

+ ω2

+m
p2 +m2

j

(D2
mj ,0

+ ω2)2
{
α ·A− V,α · p

} 1

D2
mj ,0

+ ω2
(α ·A− V )

1

D2
mj ,0

+ ω2

)
,

while

trC4

(
mQ2,2(ω,A)

)
= 6

2∑

j=0

cj ω
2 trC4

(
2m

α · p
D2

mj ,0
+ ω2

×

×
((

α ·A− V
) 1

D2
mj ,0

+ ω2

)2
+m

1

D2
mj ,0

+ ω2

(
α ·A− V

) α · p
D2

mj ,0
+ ω2

×

×
(
α · A− V

) 1

D2
mj ,0

+ ω2
+m

( 1

D2
mj ,0

+ ω2

(
α · A− V

))2 α · p
D2

mj ,0
+ ω2

)
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Invoking conditions (2.7), as well as identities (3.26) and (6.13), we deduce
that

∥∥∥ trC4

(
mQ2,1(ω,A)

)∥∥∥
S1

≤K
2∑

j=0

|cj |
((
m2

j −m2
0

) ∥∥A
∥∥2
L2

ω2

(m2
0 + ω2)2

+m2
j

∥∥A
∥∥
L2

(∥∥A
∥∥
L2 +

∥∥V
∥∥
L2

) ω2

(m2
j + ω2)2

)
,

and

∥∥∥ trC4

(
mQ2,2(ω,A)

)∥∥∥
S1

≤ K

( 2∑

j=0

|cj |
(
m2

j −m2
0

))∥∥A
∥∥2
L2

ω2

(m2
0 + ω2)2

.

It follows that
∫

R

∥∥∥ trC4

(
m
(
Q2(ω,A) +Q2(−ω,A)

))∥∥∥
S1

dω

≤ K

2∑

j=0

|cj |
(
m2

j −m2
0

m0

∥∥A
∥∥2
L2 +mj

∥∥A
∥∥
L2

(∥∥A
∥∥
L2 +

∥∥V
∥∥
L2

))
.

Similarly, we have
∫

R

∥∥∥ trC4

(
mχ
(
Q2(ω,A) +Q2(−ω,A)

)
χ
)∥∥∥

S1

dω

≤ K

2∑

j=0

|cj |
(
m2

j −m2
0

m0

∥∥A
∥∥2
L6 +mj

∥∥A
∥∥
L6

(∥∥A
∥∥
L6 +

∥∥V
∥∥
L6

))∥∥χ
∥∥2
L3 .

(6.17)

In view of (6.14) and (6.15), we conclude that the integrals

trC4

(
mQn

)
:=

1

4π

∫

R

trC4

(
m
(
Qn(ω,A) +Qn(−ω,A)

))
dω,

also define local trace-class operators on L2(R3,R4) for n = 1, 2, as soon

as A ∈ Ḣ1
div(R

3). The operators are trace-class when A is in Ln(R3).
Concerning the related densities ρn(A) and currents jn(A), they are well-

defined and locally integrable on R3 for A ∈ Ḣ1
div(R

3), and integrable on R3

for A ∈ Ln(R3). Their continuity follows again by multi-linearity.
At this stage, it remains to recall Formulas (6.3) and (6.5) to complete

the proof of Lemma 6.1. �

We are now in position to complete the proof of Theorem 2.2.

End of the proof of Theorem 2.2. We have shown that the functional FPV

is smooth on the open subset H of four-potentials A such that 0 is not
an eigenvalue of Dmj ,A for each j = 0, 1, 2. In particular, the differential

dFPV(A) is a bounded form on Ḣ1
div(R

3). By duality, it can be identified
with a couple of functions (ρ∗, j∗) in the Coulomb space C defined in (2.21).
Our task reduces to verify that ρ∗ = ρA and j∗ = −jA.
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We first restrict our attention to four-potentials A which are moreover
integrable on R3. In this case, the functional FPV(A) is given by For-
mula (2.12), which may be written in view of (4.1) as

FPV(A) =
5∑

n=1

Fn(A) +R6(A),

where we recall that

Fn(A) :=
1

4π

∫

R

tr
(
trC4

(
Rn(ω,A) +Rn(−ω,A)

))
dω,

and

R6(A) :=
1

4π

∫

R

tr
(
trC4

(
R′

6(ω,A) +R′
6(−ω,A)

)
dω.

We have computed the differential of dR6(A) in (4.56). On the other hand,
the functionals Fn are n-linear with respect to A, so that their differentials
are given by

dFn(A)(v, a)

=
1

4π

∫

R

tr
(
trC4

(
dARn(ω,A)(v, a) + dARn(−ω,A)(v, a)

))
dω,

with

dARn(ω,A)(v, a) =

2∑

j=0

cj
iω

Dmj ,0 + iω

n−1∑

k=0

((
α · A− V

) 1

Dmj ,0 + iω

)k
×

×
(
α · a− v

) 1

Dmj ,0 + iω

((
α ·A− V

) 1

Dmj ,0 + iω

)n−1−k
,

(6.18)

for any (v, a) ∈ L1(R3,R4) ∩ Ḣ1
div(R

3). It follows that the differential
dFPV(A) is equal to

dFPV(A)(v, a) =
1

4π

∫

R

Ξ(ω,A)(v, a) dω,

with

Ξ(ω,A)(v, a) := tr

( 5∑

n=1

tr
(
trC4

(
dARn(ω,A)(v, a) + dARn(−ω,A)(v, a)

))

+ tr
(
trC4

(
dAR

′
6(ω,A)(v, a) + dAR

′
6(−ω,A)(v, a)

)))
.

At this stage, we make use of Formulas (4.53) and (6.18) to check that

Ξ(ω,A)(v, a) = tr

(
trC4

( 2∑

j=0

cj
iω

(Dmj ,A + iω)2
(
α · a− v

)))
. (6.19)

Indeed, we have established in the course of Lemma 4.6 that each term in
the decomposition of dAR

′
6(ω,A)(v, a) which is provided by Formula (4.53)
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is trace-class. As a consequence, we can write

tr
(
trC4 dAR

′
6(ω,A)(v, a)

)

=

2∑

j=0

cj tr
iω

Dmj ,A + iω

(
α · a− v

) 1

Dmj ,A + iω

((
α · A− V

) 1

Dmj ,0 + iω

)6

+

2∑

j=0

cj

5∑

k=0

tr
iω

Dmj ,A + iω

((
α · A− V

) 1

Dmj ,0 + iω

)5−k
×

×
(
α · a− v

) 1

Dmj ,0 + iω

((
α ·A− V

) 1

Dmj ,0 + iω

)k
.

An advantage of this further decomposition is that we are allowed to com-
mute the products in the right-hand side, so as to obtain

tr
(
trC4 dAR

′
6(ω,A)(v, a)

)

=

2∑

j=0

cj tr
iω

Dmj ,A + iω

((
α ·A− V

) 1

Dmj ,0 + iω

)6 1

Dmj ,A + iω

(
α · a− v

)

+

2∑

j=0

cj

5∑

k=0

tr
iω

Dmj ,0 + iω

((
α · A− V

) 1

Dmj ,0 + iω

)k 1

Dmj ,A + iω
×

×
((

α · A− V
) 1

Dmj ,0 + iω

)5−k(
α · a− v

)
.

This follows from the property that the operator (iω)(Dmj ,A + iω)−1 is

bounded, while the operators (α · A − V )(Dmj ,0 + iω)−1 and (α · a −
v)(Dmj ,0 + iω)−1 belong to suitable Schatten spaces. Using the resolvent
expansion (3.6), we are led to

tr
(
trC4 dAR

′
6(ω,A)(v, a)

)
= tr

(
trC4

2∑

j=0

cj

(
iω

(Dmj ,A + iω)2
(
α · a− v

)

−
4∑

k=0

4−k∑

l=0

1

Dmj ,0 + iω

((
α · A− V

) 1

Dmj ,0 + iω

)k iω

Dmj ,0 + iω
×

×
((

α ·A− V
) 1

Dmj ,0 + iω

)l(
α · a− v

)))
.

(6.20)

Similarly, we can deduce from (6.18) that

tr
(
trC4 dARn(ω,A)(v, a)

)

=tr

(
trC4

2∑

j=0

cj

n−1∑

k=0

1

Dmj ,0 + iω

((
α · A− V

) 1

Dmj ,0 + iω

)n−1−k
×

× iω

Dmj ,0 + iω

((
α ·A− V

) 1

Dmj ,0 + iω

)k(
α · a− v

))
.

Formula (6.19) follows combining with (6.20).



DIRAC’S VACUUM IN ELECTROMAGNETIC FIELDS 55

As a conclusion, we have derived the following expression of dFPV(A),

dFPV(A)(v, a) =
1

4π

∫

R

tr

(
trC4

( 2∑

j=0

cj

( iω

(Dmj ,A + iω)2

− iω

(Dmj ,A − iω)2

)(
α · a− v

)
dω

))
.

In view of (6.1) and Lemma 6.1, we deduce that

dFPV(A)(v, a) = tr
(
trC4

(
QA

(
v−α · a

)))
=

∫

R3

(
ρAv− jA · a

)
,

so that ρ∗ = ρA and j∗ = jA, when A ∈ L1(R3,R4) ∩ Ḣ1
div(R

3).

In the general case where A is only in Ḣ1
div(R

3), we can construct a

sequence of maps (An)n∈N in L1(R3,R4)∩Ḣ1
div(R

3), for which 0 /∈ σ(Dmj ,An)
for any n ∈ N and each j = 0, 1, 2, and such that

An → A in Ḣ1
div(R

3),

as n → ∞. The existence of such a sequence follows from the density of
L1(R3,R4) ∩ Ḣ1

div(R
3) in Ḣ1

div(R
3), and statement (ii) in Lemma 2.1. For

each integer n, we know that

dFPV(An)(v, a) =

∫

R3

(
ρAnv− jAn · a

)
,

for any four-potential (v, a) ∈ C∞
c (R3,R4). Combining the continuous dif-

ferentiability of the functional FPV with statement (i) in Lemma 6.1, we
obtain, taking the limit n→ ∞,

dFPV(A)(v, a) =

∫

R3

(
ρAv− jA · a

)
,

which completes the proof of (ii) in Theorem 2.2.
Concerning (iii), recall that the second order differential of FPV is equal

to
d2FPV(A) = d2F2(F ) + d2F4(A) + d2R(A).

Since F2 is quadratic and F4 is quartic, estimate (2.22) appears as a conse-
quence of Formula (2.15), and inequalities (4.19) and (4.57). This completes
the proof of Theorem 2.2. �
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