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CONSTRUCTION OF THE PAULI-VILLARS-REGULATED

DIRAC VACUUM IN ELECTROMAGNETIC FIELDS

PHILIPPE GRAVEJAT, CHRISTIAN HAINZL, MATHIEU LEWIN, AND ERIC SERE

ABSTRACT. Using the Pauli-Villars regularization and arguments from
convex analysis, we construct the polarized Dirac vacuum, in the pres-
ence of small external electromagnetic fields. We describe the electrons
by a Hartree-Fock-type theory and the photons by a self-consistent clas-
sical magnetic potential. The resulting vacuum polarization coincides
on first order with that of full Quantum Electrodynamics.
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Quantum Electrodynamics (QED) is a powerful theory which describes
the interactions of matter with light. Even if it is very well documented in
the Physics literature, its mathematical properties are far from being fully
understood. A non-perturbative rigorous formulation of QED is indeed still

missing.
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One possibility to attack this fundamental problem is via Lattice QED [28,
35, 26]. With J.-P. Solovej, we followed another route in a series of works [17,
18, 20, 19, 14, 15] which originated from a fundamental paper of Chaix and
Iracane [4]. We considered the simpler Hartree-Fock approximation of QED,
in which only the instantaneous Coulomb interactions between particles are
taken into account. We were able to study this model in the non-perturbative
regime, that is for all values of the bare coupling constant 0 < o < 4/7. It
is remarkable that this ‘no-photon’ mean-field theory can be formulated in
a fully non-perturbative way, but certainly disappointing that transversal
quantized photons have been neglected. The purpose of the present work
is to make a first step towards the inclusion of photons in Hartree-Fock
QED, by considering the interaction of Dirac’s vacuum with classical, but
optimized, electromagnetic fields. This is equivalent to assuming that pho-
tons are described by a coherent state in Fock space (the simpler mean-field
approximation for bosons). Our theory will be based on a famous regular-
ization procedure introduced by Pauli and Villars in [29].

1.1. Hamiltonian and Lagrangian formalism. We explain here the ori-
gin of the model. Our starting point is the formal Hamiltonian of QED,
written in Coulomb gauge, in the presence of an external electromagnetic
four-potential Aext := (Vext, Aext), see [22, 23, 38, 33, 3, 19],

H At = /\I/*(x) [a (—iV — eA(z) — eAexs () + mﬁ] U(z)dx

e? x
—|—e/‘/ext(x)p(x)dx—i—5// pfx)i_p(j)d:cdy—l—ﬂﬂf.

Here the four Dirac matrices a = (a1, a9, @3) and 3 are equal to

(0 o (12 O
ak'_<0'k 0) and B.-(O _I2>,

the Pauli matrices o1, o9 and o3 being defined by

{01 (0 —i q (1 0
g] — 1 0/ g9 — i 0 an g3 — 0o —1/-

For later purposes we introduce the Dirac operator with mass m and elec-
tromagnetic four-potential A = (V, A),

Dea i=a- (—iV —eA(x)) + eV (z) + mB. (1.2)

(1.1)

In Formula (1.1), ¥(x) is the second quantized field operator which anni-
hilates an electron at = and satisfies the anti-commutation relation

ql*(x)o\l’(y)u + \I](y)u\I’*(x)o = 260,1/6(x - y) (1'3)
Here U(x), is an operator-valued distribution. The operator p(x) is the
density operator defined by

4

YW (), Uol)), (1.4)

o=1

o(r) = 5
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where [a, b] := ab—ba. The operator Hy in (1.1) describes the kinetic energy
of the photons given by

Hy = o 1 /]curlA( )2 da = Z/ lk|as (k)ax () dk + Cst,

A=1,2

where Cst indicates a constant which diverges in infinite volume. The vector
A(x) is the magnetic field operator for the photons and a3 (k) is the creation
operator of a photon with momentum &k and polarization A\. The Hamilton-
ian HA=¢ formally acts on the Fock space F = Fp ® Fpn where F. is the
fermionic Fock space for the electrons and F, is the bosonic Fock space for
the photons.

We now restrict the above (formal) Hamiltonian to states of the special
form

Q= Qnr ® Qcon,

where Qpp is an electronic (generalized) Hartree-Fock state characterized
by its one-particle density matrix 0 < v < 1, and Qcop is a coherent state
characterized by its magnetic potential A(x) (a given classical vector field
on R3). In other terms, v(z,y) = (V*(2)¥(y))ayp, and A(z) = (A(2))au,, -
The coherent state Qqon is always pure but the generalized Hartree-Fock
state Qpp is mixed when « is not an orthogonal projection [2]. Computing
the corresponding energy yields (up to a universal constant which diverges
in infinite volume)

(HAt)q = tr { (a (=i — A — eAe) + mB)( - 1/2)}

+6/ Vst (2)p, 1 o2 )dm+—/ / Py—1/2(2)py—1/2(Y) dz dy
R3JR3 [z —y|

v —1/2)(
——/ / /2@ )l da:dy—i——/ | curl A(x)|? dz,
R3 JR3 ]w—y[ 8w R3

see [20] for some computational details. The nonlinear terms appearing on
the second and third lines are the so-called direct and exchange terms. That
the energy depends on v — 1/2 is due to the charge-conjugation invariant
choice (1.4) for the density operator p(z).

It is more convenient to express the previous energy by introducing the
Coulomb potential V' induced by the density p,_;/2 and which solves Pois-
son’s equation

—AV =drep,_1/2, (1.5)
that is,
V(m) _ 6/ p'y—l/Z(y) dy
rs T — |
We can then write

_/ / Pry—1/2(T)py—1/2(y )dacdy
R3 JR3 |z —y

1
= 6/ Py—1/2(x) V(z) dx — S VV(2)] da.
R3 R3

s
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Indeed, the potential V solving (1.5) is the unique solution to the maximiza-
tion problem

_/ / Pry—1/2(T)py—1/2(y )dmdy
R3 JR3 |z — y

=sup<e p,\{,l/Q(.%')V(m')d.%'—i IVV (z)|* dx ¢.
L < L.

Vv Y

It is a useful technique to introduce an auxiliary unknown field V' which
can vary freely, and over which the functional is maximized in the end.
Introducing the (time-independent) four potential A := (V, A), we arrive at
the Hartree-Fock Lagrangian

—1/2)(z,y)?
tr (D,”,L,e(fHAext (v 1/2 /R3 /RS P dx dy
+ 8_7T (| curl A(z)|? — |[VV (2)?) da.

All the terms in this expression are actually infinite, but they make sense
when the system is restricted to a box with an ultraviolet cut-off.

We now neglect the exchange term, that is we work in reduced Hartree-
Fock (rHF) theory. This leads us to considering the rHF Lagrangian

LA (v, A) =t (Do e(as Aver) (Y — 1/2))

1.6
+ —/ (| curl A(z)|* — |VV($)|2)dx. (1.6)
It will be clearer later why the no-exchange model is easier to handle. In
relativistic density functional theory [10], this term would be approximated
by a function of p,_y/, only.

Remark 1.1. Another way to derive the same rHF Lagrangian (1.6) is to
start from the formal Lagrangian of QED [33], with a classical electromag-
netic field instead of a quantized one. In the time-independent case one
arrives at (1.6) (with a different sign). Since there are only one-body poten-
tials in this model, the electrons are automatically in a Hartree-Fock state
and no further approximation is necessary. This approach was undertaken
by J. Schwinger in his celebrated paper [34] on vacuum polarization, where
he derived the probability of pair creation by tunneling in a strong electro-
static field. The functional defined in this paper is therefore suitable for a
rigorous examination of this so-called Schwinger effect.

1.2. The self-consistent equations. Our goal is to construct rHF ground
states. They are obtained by minimizing the functional (1.6) with respect
to both the electronic density matrix v and the classical photon field A,
and maximizing over V. If no constraint (other than the Pauli principle
0 <~ < 1) is imposed on +, then we are considering the rHF polarized
vacuum in the presence of the external field Aqy. For atoms and molecules,
a charge constraint of the form

1
«f-3)=x
ri7y 5

is needed. In this paper we restrict ourselves to the vacuum case.
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Any optimal state is a formal solution of the following self-consistent
equations

7 =10 (a (—iV —eA — eAext) + mB + eV + e%xt),

(

—AA = 47T€j,\/,1/2,
—AV =drep, 1/,

divA = div Aexy = 0,
where

Jrajele) = trea (a(y = 5 ) @),
and

Py—1/2(T) = trea <<*y — %) (w,m)),

are respectively the current and charge density of the polarized vacuum.
The equation on ~ (the first line of (1.7)) means that the polarized vacuum
consists of particles filling all the negative energies of the mean-field Dirac
operator (appearing in the parenthesis), in accordance with the original
ideas of Dirac [6, 7, 8]. The equations (1.7) are well-known in the literature,
see, e.g., [10, Eq. (62)-(64)]. For atoms and molecules, the vacuum pro-
jection ]1(70070)(- -+ ) has to be replaced by a spectral projection of the form
1(—oou)(--+), for some chemical potential y which is chosen to ensure the
correct number N of electrons in the gap (more precisely the correct total
charge of the system). Except from this change of chemical potential, the
equations take exactly the same form.

1.3. The Pauli-Villars regularization. After having discussed the gen-
eral idea of the method, we now present the technique that we have employed
to give it a rigorous meaning. First, it is not obvious whether we are solving
the same problem when we change the order of the minimization in A and
and the maximization in V. Since the theory is divergent for large momenta,
we will have to put some ultraviolet cut-off. This regularization might also
not commute with the min,, mins and maxy . In this paper we choose the
following route:

(1) We minimize with respect to the density matrix v and obtain a
formal Lagrangian action functional depending on V and A only;

(2) We regularize the functional by using the Pauli-Villars scheme [29];

(3) We finally show that the order of the miny and maxy do not matter,
and we prove the existence of a corresponding (unique) saddle point.
This unique state is the free vacuum when Ao = 0 and it is the
polarized vacuum when Aqy # 0.

Summarizing, we solve the following variational problem:

max mf}n ( mﬁ}n Eﬁﬁ;“ (v, V, A)) = mjn max ( mﬂ}n Eﬁﬁ;“ (v, V, A)) ,

Pauli—Villars—regulated Pauli—Villars—regulated
for Aext = 0 and for Aexy # 0. The main advantage of our approach is

that the minimization with respect to « can be solved explicitly, since the
functional is linear in . In principle the same technique could be used to
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handle the exchange term (or a density functional approximation of it) as
well. However, the minimization over v becomes nonlinear in this case.
When A = Aqy = 0, the formal solution of

1
min £%r(7,0,0) = min tr (Dmo <7 - —)),
gl v 2

is the free Dirac sea

v =P =1(_s0)(Dmo)-
The electrons fill in completely the negative Dirac energies. The correspond-
ing energy, namely

tr (Dm,o <7 - %)) = %tr Dino (]1(—oo,0) (Dim.0) = (0.00) (Dm70)>

1
= —5 tr |Dm,0‘,

is infinite, except if we are in a box with an ultraviolet cut-off.
Here and everywhere in the paper, the absolute value of an operator is
defined by the functional calculus

A| = VA*A.

It is in general not a scalar operator, that is, it may still depend on the spin.
In the special case of D, q, it does not depend on the spin, however, since
it is the scalar pseudo-differential operator

‘Dm,0| =v-A —|—m2.

In the general case, the formal solution is

Y= ]1(700,0) (Dm,e(AJrAext))a

and the associated minimum is
. 1 1
min L4365 (y, V, A) = == tr |Dye(At A) | + —/ (Jeurl A]* — [VV[?).
v 2 87T R3

(1.8)
Again this quantity is always infinite. However, it can be given a clear math-
ematical meaning as follows. First, we can subtract the (infinite) energy of
the free Dirac sea and define the relative Lagrangian as

1 1
LA(A) = St <|Dm,0\ - \Dm,e(A+Aext>D + —/ (lewrl A2 — |VV]?).
R3

8

(1.9)
Since we have removed an (infinite) constant, we formally do not change the
initial variational problem in which we are interested, hence we also do not
change the self-consistent equations. Unfortunately, this functional is not
yet well-defined, because the model is known to have important ultraviolet
divergences. Indeed, the operator |Dp, o — | Dy e(A+Aue)| 1S DOt trace-class
when A+ Agyxy # 0 and its trace is not well-defined. This is reminiscent of the
fact that the difference of the two corresponding negative projectors is never
Hilbert-Schmidt [27]. In order to remove these divergences, an ultraviolet
cut-off has to be imposed. The choice of this regularization is extremely
important. Some simple choices in the spirit of what we have done in the
purely electrostatic case (see, e.g. [14] for two different choices) would not
work here, because of their lack of gauge symmetry.
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In 1949, Pauli and Villars [29] have proposed a very clever way to regular-
ize QED, while keeping the appropriate invariances. It is this technique that
we will use in this paper (but there are other choices). In our language,® it
consists in introducing the following Lagrangian functional

J
1
)= 3ix (s (1Pl - 1P ias )

j=0 (1.10)

1 2 2
+§/Rs (Jcurl A]* — |[VV %),

Here mo = m and cg = 1, whereas the other ¢; and m; describe fictitious
particles with very large masses m; > 1 such that

J J
¢j =Y ¢ymi=0. (1.11)
i=0 =0

J

The role of this constraint is to remove the worst ultraviolet divergences.?

We will show in this paper that it does actually remove divergences since
we can define the trace of Z}']:o ¢j(| Dm0l = |Dinj.e(A+Aeq)|) under these
conditions.

The purpose of this paper is twofold. First we prove that fff{?’“(A) can
be properly defined under the natural conditions that the fields B = curl A,
Boxt = curl Aext, E = —VV and Eey = —V Ve have a finite energy, i.e. are
square integrable, and that

div Aext = divA =0,
which is the Coulomb gauge condition. We then show that
Zpy (0,0) = max Zpy (V,0) = min Ly (0, ), (1.12)

for V' (resp. A) varying in a neighborhood of 0 for the norm [[VV||12gs)
(resp. || curl A|z2(gs)). The interpretation of (1.12) is that the free vacuum
v = PV is stationary under its own electromagnetic excitations. We conjec-
ture that it is also a global saddle point, but we are unable to prove this
with our present technology.

In a second step, we show that the functional .,%P‘,L‘V?’“ admits a local saddle
point in a neighborhood of 0, when the norms || Eext||2(rs) and || Bext|| £2(r3)
are sufficiently small. This proves the existence of the polarized vacuum
in weak external electromagnetic fields. This state is not a solution to the
original equations (1.7), but instead it solves the Pauli-Villars regulated

1f we describe the fictitious particles by the density matrices «;, with vo = 7, then the
Pauli-Villars scheme consists in optimizing the functional 23.]:0 ¢ tr ij’e(AjLAcxt)(fyj —
1/2), subject to the Pauli principles 0 < 7, < 1. The energy must be minimized over the
matrices «; such that ¢; > 0 and maximized over those such that ¢; < 0. Adding the
infinite constant 23.]:0 ¢j t1]Dm;,0]/2 gives Formula (1.10).

2More precisely, the role of (1.11) is to remove the linear ultraviolet divergence. The
model is still logarithmically divergent, see (2.9) below.
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equations
( 2
Q= cil_wp) (a (—iV — eA — eAext) + mjiB + eV + eVeXt>,
j=0

—AA=4rejg,
—AV =4mepg,

(div A = div Aeyy = 0.
(1.13)

Our approach to prove the existence of such solutions consists in expand-
ing the energy in powers of the elementary charge e. All the odd order terms
vanish (by charge-conjugation invariance). Then we compute explicitly the
second order term which is responsible of the ultraviolet divergences. It is
important for our existence proof that this term be strictly convex in A and
strictly concave in V. We also have to deal with the fourth order term in
some detail. The latter was computed in the Physics literature in [24] and
our task will be to estimate it. The higher order terms are then bounded in
a rather crude way, following techniques of [17]. The main difficulty in our
work is to verify that the Pauli-Villars conditions (1.11) induce the appro-
priate cancellations in the few first order terms, and to estimate them using
the L?-norm of the electromagnetic fields and nothing else.

In spite of its widespread use in quantum electrodynamics, the Pauli-
Villars scheme [29] has not attracted a lot of attention on the mathematical
side so far (see [12, 40, 41, 42, 11] for some previous results). The results of
this paper seem to be among the first in this direction.

Acknowledgements. M.L. and E.S. acknowledge support from the French
Ministry of Research (Grant ANR-10-0101). M.L. acknowledges support
from the European Research Council under the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement MNIQS
258023).

2. MAIN RESULTS

Our goal is to study the Pauli-Villars Lagrangian functional which is
formally given by

2
1
365 (Dm0l = Py ecaranal) + 5= [ (87 = |EP)
Jj=0

(2.1)

LA (A) =

DO | —

where we recall that B :=curl A, £ := —VV, and
Dm,e(A—l—Aext) = ( —iV — e(A + Aext)) + B(V + ‘/ext) + m/@

In Section 2.1, we recall some elementary spectral properties of D;, 4 when
the field F' = (—VV, curl A) associated to A = (V, A) has a finite energy. In
Section 2.2, we properly define the nonlinear term in (2.1), whereas in Sec-
tions 2.3 and 2.4, we show the existence of a saddle point for this functional,
either when Aqyy = 0, or when Aqy¢ # 0 is small enough.
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2.1. Elementary properties of electromagnetic Dirac operators. Be-
fore entering the main subject of this article, we recall some elementary
spectral properties of the Dirac operator in the presence of electromagnetic
fields [43, Chap. 4]. The natural space in our setting is the Coulomb-gauge
homogeneous Sobolev space
3, (R?) = {4 = (v, 4) € L°(R®,R?) -

divA =0and F = (—VV,curl A) € LQ(IR{?’,RG)}, (2.2)

endowed with its norm

LAR gy = IVV Bags) + lewl Al ) = IFIags)  (23)

Here and everywhere, the equation div A = 0 is understood in the sense of
distributions.

Lemma 2.1 (Elementary spectral properties of Dy, 4). Let m > 0.

(i) Any four-potential A € Hdliv(]R?’) s Dy, 0—compact. The operator Dy, A
is self-adjoint on H'(R?) and its essential spectrum is

Oess(Dm,a) = (—00, —m| U [m, 00).

(ti) The eigenvalues of Dy, o in (—m,m) are Lipschitz functions of A in
the norm HAHH} (R3)-

(791) There exists a universal constant C such that, if
1Al g3y < nvm, (2.4)
for some number n < 1/C, then
(D, a) N (=m(1 = Cn), (1 — Cn)m) = 0.
(iv) Finally, if V. =0, then 0(Dy,,a) N (—m,m) = 0.
Proof. Recall the Kato-Seiler-Simon inequality [36, 39]

wzzwmwmw%sjﬁwmwm7 (25)

where &, is the usual Schatten class [39]. Applying (2.5) with p = 6 together
with the Sobolev inequality, we obtain

1 C C
[V Bsle, = 71Vl < 19Vl

and, similarly,

‘a-A

1 C c
Dm,O‘GG = \/—EHAHLG = ﬁ“ curl Al| .,

where we have used that divA = 0. Since all the operators in &g are
compact, statements (7) and (iz) follow from usual perturbation theory [25,
32]. Concerning (7ii), we notice that

DA (Do)t = <I+ (V—a-A) Dl )

m,0
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so that, under condition (2.4),
|Dpm,a| = (1= Cn)|Dinyol.

Statement (zi¢) then follows from (i), whereas (iv) is [43, Thm 7.1]. O

2.2. Rigorous definition of the electron-positron energy. Here, we
explain how to provide a rigorous meaning to the functional

2
Fov(A) = 503" ¢;(| D] — [Dny ) (2.6)
=0

for a general four-potential A = (V, A) in the energy space H, L (R?) (and
which therefore satisfies the Coulomb gauge condition div A = 0). Note that
the first term in our functional (2.1) is nothing else but Fpy(e(A + Aext)).

As we have said, in Formula (2.6), the index j = 0 corresponds to the
physical electron-positron field, while the other indices j = 1,2 describe
fictitious heavy particle fields. In particular, mg > 0 is the (bare) mass of
the electron. We always take

00:1.

The role of the auxiliary particle fields is to provide an ultraviolet regular-
ization. It is well-known in the Physics literature [29, 16, 3] that a sufficient
condition to properly regularize the model is that the coefficients ¢; and the
masses m; appearing in (2.1) satisfy

ch = Z cjm? =0. (2.7)
J J

For this condition to be fulfilled, at least two additional distinct masses
m1 and mo are necessary. When there are exactly two fictitious fields, the
condition (2.7) is equivalent to

2 2 2 2
mg—m mi—m
cg=—"9—2 and c=—5—10. (2.8)
ma —my my —my
We will always assume that mg < m; < mg, which implies that ¢; < 0 and
co > 0.
In the limit mq,m9o — 00, the regularization does not prevent a logarith-

mic divergence, which is best understood in terms of the averaged ultraviolet
cut-off A defined as

2

log(A?) := = ¢;log(m3). (2.9)
j=0

The value of A does not determine my and ms uniquely. In practice, the
latter are chosen as functions of A such that ¢; and ¢y remain bounded when
A goes to infinity.

As we now explain, the Pauli-Villars regularization allows to give a rigor-
ous meaning to the nonlinear term Fpy defined in (2.6).
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Theorem 2.1 (Proper definition of Fpy). Assume that c; and m; satisfy

2 2
co=1 mo>my>mg>0 and ch = cjm? =0. (2.10)
=0 =0
(i) Let
12
Ta =5 ¢ (|Dmyol = | Dmy.a)- (2.11)
=0

For any A € L'(R3,RY) N HL (R3), the operator trca Ta is trace-class on
L?(R3,C). In particular, Fpv(A) is well-defined in this case, by

Fpv(A) =tr (trea Ta). (2.12)

(ii) The functional Fpy can be uniquely extended to a continuous mapping
on Héiv (Rg)
(iii) Let A € HL (R3). We have

‘fPV(A) = Fo(F) +R(A),

where F := (E,B), with E = —=VV and B = curl A. The functional R is
continuous on H} (R3) and satisfies

rean < (S )imis + (3 ) iely). e

=0 j=0 "7

(2.13)

for a universal constant K.
(iv) The functional Fo is the non-negative and bounded quadratic form on
L?(R3,R*) given by

1

T8

FoF) /RS M) (|BR)|* — |BW)[*) dk, (2.15)

where
2 & 1
M(k) = = > g / u(1 — u)log (m? + u(l — u)|k[*) du. (2.16)
j=0 70

The function M is positive and satisfies the uniform estimate
~ 2log(A)

0< M(k) < M(0) rr

(2.17)

where A was defined previously in (2.9).

Let us emphasize the presence of the C*-trace in statement (i) about
the trace-class property of trcaT4. We do not believe that the operator
is trace-class without taking first the C*-trace, except when V = 0. If we
are allowed to take more fictitious particles by increasing the numbers of
auxiliary masses, it is possible to obtain a trace-class operator under the

additional conditions
chmj = chm? =0.

J J
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At least four auxiliary masses are then necessary. The terms which are not
trace-class when only two fictitious particles are used, actually do not con-
tribute to the final value of the energy functional Fpy (their trace formally
vanishes). For this reason, we have found more convenient to first take the
C*-trace (which is enough to discard the problematic terms) and limit our-
selves to two fictitious particles, as is usually done in the Physics literature.
This suffices to provide a clear meaning to the energy.

The function M describes the linear response of the Dirac sea. It is well-
known in the Physics literature [16, Eq. (5.39)]. We will see below that

) 2log A k]2 ! 22— 24/3
1 ( —Mk):Uk::— dz. (218
Ao (k) = ULk) 477/0 [T RPa - 5y 318)
The function in the right-hand side of (2.18) was first computed by Ser-
ber [37] and Uehling [44]. The same function U already appeared in our
previous works dealing with pure electrostatic potentials [21, 18, 15]. This
is a consequence of the gauge and relativistic invariances of full QED.

After having properly defined the functional Fpy, we need some of its
differentiability properties. In this direction, we can prove the following

Theorem 2.2 (Differentiability of Fpy). Assume that ¢; and m; satisfy
conditions (2.10).

(i) Let A € H} (R3) be such that 0 is not an eigenvalue of the operators
Dy a for j =0,1,2. Then the functional Fpy 1s C* in a neighborhood of
A.

(i) The first derivative of Fpy is given by
<dfPV(A)7 (07 Cl)> = \/]R?’ <(pA7 _jA7 )7 (Ua a)>R47 (219)

forall (v,a) € HéiV(R?’), where the density ps and the current jao are defined
as

pa(r) = [trea Qa](z,2) and ja(z):= [tres @Qal(z,x),  (2:20)
and with Qo refering to the kernel of the operator

2
QA = Z Cj ]l(ioo’o) (ij7A) .
§=0
The operators trca Qa and trea apQa for k = 1,2,3 are locally trace-class
on L*(R3,C*), and pa and ja are well-defined functions in Li (R3)NC,
where C is the Coulomb space

C:= {f ‘R® = C: - ‘f|§<:]{|2‘2 dk < oo} = H1(R?). (2.21)

(791) There exists a universal constant n > 0 such that the second derivative
of Fpv satisfies the estimate

) 1 (=M 0

for all A such that HAHHéiV(R?’) < ny/mg = nym.

2
o
<o (L ag, o @2
] daiv

=0
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Our estimate (2.22) means more precisely that

(A, d*Fpy(A) A') — ﬁ /RS M (k) (@(k)ﬁ - \E\/(k)f) dk'

2
¢
< 2K<Z m‘]j>”AH%MRB)”A/”ifsw(wv
j=0

when A is small enough in H 3L (R3).
As a consequence of Lemma 2.1 and Theorem 2.2, we obtain

Corollary 2.1 (Regularity in a neighborhood of 0). There exists a positive
radius 1 such that the functional Fpy is C*° on the ball B(n) = {A €

HL (R - ||A||H51V(R3) < ny/mo}. On this ball, the differential dFpy is
given by (2.19), whereas d2Fpy satisfies estimate (2.22).

Proof. We fix n such that
Cn <1,

where C' is the constant in statement (7ii) of Lemma 2.1. For this choice,
given any four-potential A in the ball B(n), 0 is not an eigenvalue of each
of the operators Dy, a. Corollary 2.1 then follows from Theorem 2.2. [

In the next sections, we explain how to use Theorems 2.1 and 2.2 in order
to get the desired stability of the free Dirac vacuum, and to construct the
polarized vacuum. We then come back to the proofs of Theorems 2.1 and 2.2
afterwards.

2.3. Stability of the free Dirac vacuum. Let e > 0 be the (bare) charge
of the electron. Assume that ¢y = 1, and that ¢; and m; satisfy (2.7). We
work under the condition that e < e for some fixed constant € (e is not
allowed to be too large, but it can be arbitrarily small). All our constants
will depend on €, but not on e. Note that e is dimensionless here because we
have already set the speed of light equal to 1. Using Theorem 2.1, we can
properly define the Pauli-Villars Lagrangian in the absence of any external
electromagnetic field, i.e. for Aey = 0, by

1
Loy (A) = Fpy(eA) + . /RS (IBP? = [EP),

on the Coulomb-gauge homogeneous Sobolev space H Clﬁv(R?’). The following
result is a direct consequence of the properties of the functional F5 defined
in (2.15), as well as on the regularity properties of Fpy.

Theorem 2.3 (Stability of the free Dirac vacuum). Assume that ¢; and m;
satisfy (2.10). The four-potential A =0 is a saddle point of L. It is the
unique solution to the min-max problem

(0,00 = max  LN(V,0) = min Z0(0,4), (2.23)
[VV]|, 2 <0 [| curl A o <0

e e
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or, equivalently,

Z0(0,0) = min sup L0 (V, A)
leurl All 2 <22 vV, <D
. (2.24)
= max inf L (V, A),

[VV[2<20 leurl A o < D0

e e

for some positive radius r which only depends on Z?:o lcj|(mo/m;j) and e
(the largest possible value of e).

As we have seen we can take the cut-off A — oo which implies that
mg/m; — 0 for j = 1,2, while keeping ¢; and ¢ bounded. We therefore see
that the radius r of the ball of stability of the free vacuum does not depend
on A if the bare parameters e and mg are kept fixed.

The electrostatic stability of the free Dirac vacuum was pointed out first
by Chaix, Iracane and Lions [4, 5] and proved later in [1, 17, 18]. It is
possible to include the exchange term and even establish the global stability
of the free Dirac vacuum [17, 18, 19]. Dealing with magnetic fields is more
complicated and, so far, we are only able to prove local stability, using the
Pauli-Villars regularization. Because of lack of gauge symmetry, it is not
clear whether the free Dirac sea is still stable under magnetic excitations
when a sharp ultraviolet cut-off is used.

Proof. We choose r > 0 such that

2
; 1
r<n/vV2 and 2K<Z %)mo (r* + 2mor?) < (2.25)

. j — 8me?’
Jj=0

where K is the constant appearing in (2.14), and where 7 is the constant
in statement (i77) of Theorem 2.2. We recall that e < é. Consider now any

A such that ||VV||r2 < ry/mg/e and | curl A||;2 < ry/mg/e (which implies
HAHHSHV(R?’) = ||F||z2 < v2mgr/e). By (2.14), we have

= el = |
Frv(ed) = FafeF)| < K((Z GDepig+ (3 ;@)éum%)
i J

j=0 7

2
s
< 2K<Z M)mo(r2 + 2m0r4)e2\|F||%2

(2.26)

Using Formula (2.15) for Fa, we get

2
L0, 4) > — | M®)BR)P dk >0,

™ JR3
with equality if and only A = 0, since M > 0. Similarly,
2
L (V.0) < —— | ME)E®R) dk <0,

T JR3
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with equality if and only V' = 0. Thus we have shown (2.23). The equiva-
lence between (2.23) and (2.24) is a classical fact of convex analysis, see [9,
Prop. 1.2, Chap. VIJ.

Finally, since we can deduce from (2.22) that

2
e - (T ) [ e (i,
J_;) 51, 2
< 4Km0<j§0 E)T ,
for e|| Al @) < rv2mg < ny/myg, we deduce that .28 is strictly convex

with respect to A and strictly concave with respect to V', provided that r
satisfies the additional condition

2
: 1
4Kmo< » @>r2 <4 (2.27)
mi 7I

j=0 "

This implies uniqueness of the saddle point by [9, Prop 1.5, Chap. VI]. O

2.4. Polarized Dirac vacuum in external electromagnetic fields. Fi-
nally, we include an external electromagnetic field Acyt and we look for the
corresponding stable polarized Dirac vacuum, which is a stationary state of
the Pauli-Villars Lagrangian functional

1
.ZI;“\;xt(A) = Fpv(e(A+ Acx)) + = /R3 (|B|2 —|E]?),

in H} (R?). Our main result is

Theorem 2.4 (Existence of the polarized vacuum in small external fields).
Assume that c; and m; satisfy (2.10). Let r be the same constant as in
Theorem 2.3.

(i) For any
/Mo
eHAextHHcluv(RS) < g (2.28)
there exists a unique solution A, = (Vi,A,) € H} (R?) to the min-max
problem

.,S”P‘f{,e"t(A*) = max .,iﬂg{,e"t(V, A = min .,2”5{?’“(%, A),

T/ /MM
IVV]2< 450 [[curl Af| 2< 480

or, equivalently, to

f}f{}”‘t (A,) = max inf .,2”}‘)4\?’“ (A)

/M /MM
IVV]2< 480 [[curl Af| 2 < 480

| A (2.20)
= min sup Lo (A).
rV/mg rymg
[[curl Al 2< e VWV 2< 460
(ii) The four-potential Ay is a solution to the nonlinear equations
_A‘/:k = 47T6 pA*+Aext?
{ _AA* - 47TejA*+Aext’ (230)
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where pA,+ Ay, 0Nd JA,+A., Tefer to the charge and current densities de-
fined in Theorem 2.2, that is, associated with the operator

2
Q. = ZCJ‘ 1(—o0,0) (Drmj (At Acr)) - (2.31)
=0

Solutions to the self-consistent equation (2.30) have been constructed in
the previous works [17, 18, 20|, with a sharp ultraviolet cut-off and including
the exchange term, but in the purely electrostatic case Ayt = Ax = 0. In
this special case it is possible to obtain the polarized vacuum as a global
minimizer. The method of [17, 18, 20] does not seem to be applicable with
magnetic fields, however. To our knowledge, Theorem 2.4 is the first result
dealing with self-consistent magnetic fields in the Hartree-Fock approxima-
tion of QED.

Equations (2.30) and (2.31) are well known in the Physics literature (see,
e.g., [10, Eq. (62)-(64)]). In Relativistic Density Functional Theory, the
exchange term is replaced by an effective functional of the density, which
leads to formally similar equations.

The proof of Theorem 2.4 is based on tools of convex analysis, using that
.,%Pf‘ve"t has the local saddle point geometry by Theorem 2.1.

Proof. Let us define the balls
By(r):={V € LS(R3,R) : ¢|VV 2 < ry/mo},

and
Ba(r):={Ace€ LO(R3,R?) : ef curl 4|2 < /Mg }.

As we have already shown in the proof of Theorem 2.3, when r satisfies
condition (2.25), the function A — £, (A) is strictly convex with respect
to A and strictly concave with respect to V' on By (r) x Ba(r).

We now assume that the external field Aeyy € By (er) x Ba(er) for some
€ < 1/3 to be chosen later. Then A + Aey is in By (r) x Ba(r) for all
A € By(2er) x Ba(2er). Therefore, A — Z8(A + Aex) is also strictly
convex with respect to A and strictly concave with respect to V on By (2er) x
Ba(2er). Now we remark that

1
g}?\;xt (A) = glgv(A'i‘Aext)"i‘g /3 (QE'Eext _QB'Bext"HEext‘z_ ’BextP)’
R
which shows that A — fff{;’“(A) has the same convexity and concavity
properties on By (2er) x Ba(2er).
Since .fff{,e’“ is strongly continuous on By (2er) x Ba (2er) by Theorem 2.1,
a classical result from convex analysis implies that .fff{,e’“ possesses at least
one saddle point A, = (Vi, Ax) € By(2er) x Ba(2er), solving
LhAxt(A) = max LAV, A,)= min Lhe(V,,A).
PV (As) Ver();er) PV ( ) A€B (2er) v ( )

See for instance [9, Prop. 2.1, Chap. VI]. Uniqueness follows from the strict
concavity and convexity, by [9, Prop 1.5, Chap. VI].
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It only remains to verify that A, does not lie on the boundary of By (2e7) x
Ba(2er). Similarly as in (2.26), we first compute

2 6
:
[Fovted) = Aa(eF")] < K( 1) (1P + o1

(2.32)

for all A’ € By (3er) x Ba(3er), when r satisfies (2.25) and € < 1/3. Using
that A + Aex € By(3er) x Ba(3er), we obtain

LA (V, A) — L (V, — Aext)

81 e*r2myg

1 1
> €2 F5(0, B + Beox — 1472 — — 1 At |2 —
> e 720, B + et)+87r/RS\cur | 871_/1&3](:111“ extl 47e?

1 2r2mo (1622 + 1
Z—/ \curlA]Q—grmO( e+ )’
87 Jgs 8me?2

since F» is a non-negative functional. When A belongs to the boundary of
B4(2er), we obtain

3e2y2

"gISA\/?Xt (V7 A) Z "gISA\/?Xt (V7 _Aext) + (1 - 5452)m0.

Choosing for instance e = 1/8, the right-hand side is positive, so that

62/ |curl A,|? < 4e%r*my,
R3

otherwise we would have $F§4\;’X°(K, Ay) > $F§4\;’X°(K, —Aext ), which contra-
dicts the fact that A, minimizes A — .,5,@,4\;"“(%, A). Similarly, we have

e2r2mp (1622 + 1)
8re? ’
(2.33)

1
LNV, A) = L (Ve A) < == | VY4
™ JR3

which can be used to show that
62/ |VVL|? < 4e%r?my.
R3

The unique saddle point A, = (Vi, As) being in the interior of the set
By (2er) x Ba(2er), the derivative of .i”ﬁ%}’"“ must vanish at this point. The
self-consistent equation (2.30) follows from Theorem 2.2. O

The rest of the paper is devoted to the proofs of Theorems 2.1 and 2.2.
Our strategy is as follows. First, in Section 3, we show that the functional
Fpv is well-defined for four-potentials A with an appropriate decay in a-
space (the integrability of A on R? is enough). Then, we compute things
more precisely in Section 4, and we exhibit the cancellations which show
that this functional can be uniquely extended by continuity to H éiV(R?’).
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3. PROPER DEFINITION OF THE PAULI-VILLARS FUNCTIONAL FOR
POTENTIALS WITH FAST DECAY

The purpose of this section is to prove that the operator

2

1
trea Ta = 5 > ¢jtrcs (1D 0l = [Dim;.al), (3.1)
j=0

is trace-class, when the four-potential A := (V, A) decays sufficiently fast.
The proof relies on an expansion of Fpy(A) with respect to the four-
potential A using the resolvent formula, but for which we actually do not
need that A is small. Our precise statement is the following

Proposition 3.1 (trca T4 is in &1). Assume that ¢; and m; satisfy con-
ditions (2.10). Then, the operator trcaTa is trace-class whenever A €
LY(R3,R*) N HY(R3,RY).

Remark 3.1. For this result, it is not important that div A = 0, hence we
do not require that A € H}; (R3).

The rest of this section is devoted to the proof of Proposition 3.1.

Proof. Our starting point is the integral formula

1 9 1 . .
‘x,:_/%dw:_/ <2_ W >dw. (3.2)
T Jrp T4+ w 21 Jr TH+iw T —iw

When T is a self-adjoint operator on L?(R3 R?*), with domain D(T), it
follows from (3.2) using standard functional calculus (see e.g. [31]), that the
absolute value |T'| of T is given by

1 w W

T=— [ (2- ) de. 3.3

7l 27T/R T+iw+T—iw “ (3:3)

Let us remark that this integral is convergent when seen as an operator from
D(T?) to the ambient Hilbert space. In particular,

=+

S <mi1r1{1,(,u_2 T2 }
e I [ ——

Since the domains of D?nj,o and Dfnij are both equal to H?(R3 C*), we
deduce that we can write

2 . .
1 w w
oo L | _
A 47 /RJZ; K ij,A + tw ij,A —w

w + w > d
— w
ij,O + w ij,O — W

(3.4)

on H?(R3 C*). Here and everywhere else it is not a problem if Dy, 4 has
0 as an eigenvalue. The operator Dp,; o + iw is invertible for w # 0, and
(iw)(Dm,, 4 + iw) ! stays uniformly bounded in the limit w — 0.

In order to establish Proposition 3.1, we will prove that the C*-trace of
the integral in the right-hand side of (3.4) defines a trace-class operator
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according to the inequality

J

2 . .
Z ¢ ( W w
C; Trea — —
— J e ij,A—i—zw ij7A—zw
7=0

w w
B ij,O + w + ij,O - ZW) &1 o < 0 (35)
which we can establish when A € L'(R? R*) N H'(R3,R*). This will com-
plete the proof of Proposition 3.1.
As a consequence, our task reduces to derive estimates in Schatten spaces
on the integrand operator
2
R(w, A) = ch trea <

J=0

w w
ij7A+Z.w ij7A_

w n iw >
Do +iw Dy —iw/’
which we can integrate with respect to w. To this end, we use the resolvent
expansion, truncated at the sixth order,
5

W w W 1 n
_ __y —((a-A-V) 5—)
Dm].,A—i—zw Dm].,o—l—zw = Dmﬁo—l—zw Dmﬁo—l—zw

1
. 1 6
L((Q.A_v) 7) ,
ij,A + w ij,o + w
(3.6)

and the similar expression for the term with —iw instead of +iw. Again, we
insist on the fact that this expansion makes perfect sense for w # 0, even if
the spectrum of Dy;,; o contains 0. This allows us to write

Ztr@;( (w,A) + Ry (— w,A))

(3.7)
+ trea (Rg(w, A) + Ry(—w, A)),
with
2 .
1w 1 n
and
1 6
RG w, A ch mJ7A+Zw ((aA—V)W> . (39)

Our purpose is to prove that

[ (3 e () + R,

+ [ tres (Ri(w, A) + Rg<—w,A>>uGl) Qo < 0. (3.10)
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Estimate on the sixth order term. We first estimate the sixth order
term R§(w, A) in (3.7) which is the simplest one. The C*-trace is not going
to be helpful for us here. First we use the inequality

el B
ij7A+zw

)

which, in particular, takes care of the possibility of having 0 in the spectrum
of Dyn; a. Combining with Holder’s inequality in Schatten spaces, we obtain

W 1 6
— (A= V) —— ) ‘
HDmJ.,A—i—zw(( )ij70+zw

<[(a-a-v)

(G5
. ; (3.11)
ij’o + W ‘ Se

We next use the Kato-Seiler-Simon inequality (2.5), similarly as in the proof
of Lemma 2.1, which gives us

1 1
V>&‘ -A—V————f‘ <(I All,
b (o )ij,o Yiwlle, = ( p)p(m +w?) H HLF
where
1 2y
Ip = 2—2 72 .
™Jo (1412)2
For p = 6, we can use the Sobolev inequalities
IVl < SIVVIe and Al < SIVAL, (3.12)

to obtain an estimate in terms of the gradient VA by

< (I)7 S

1
H(a'A_V)ij,o-i-iw‘Gs - (mj_|_w HVAHL2
Inserting in (3.11), we have
2
175w, Alls, <> s HVAHLQ’ (3.13)
§=0 i
so that
2
, 6 lesl 6 dw
frrse Aoy o< S0 )il [ s @1

The term with 44w replaced by —iw is treated similarly.

Estimate on the fifth order term. The method that we have used for
the sixth order term of (3.6) can be applied in a similar fashion to the fifth
order term, leading to the estimate

|c j’> / |wl dw
Rs(tw, A dw < I, E A . 3.15
/ H 5( )HGl 5<j - m; H Hl (1 2)3 ( )

None of these estimates use simplifications coming from the C*-trace. The
latter is only useful for lower order terms.
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Estimate on the fourth order term. For the other terms in (3.6), we
need more precise estimates based on conditions (2.8) satisfied by the co-
efficients c¢; and the masses m;. We start by considering the fourth order
term, for which we use the identity ¢y 4+ ¢1 + co = 0 to write

ZOCJZ< mOOJrM(a-A—V))kx

iw w 1 4=k
X — — - a-A-V)———— ) .
<ij,0+zw Dmo,o—l—zw)(( )ij70+zw

Next we use that

H o b ey
Dyo+iw Do+ iw Dinjo+iw' Do+ iw
! o] (3.16)
< - S i B,
<(m; mo)mg +w?’

since m; > my, and we argue as before, using this time A € LA(R3,R*). We
obtain

2
514|lw

IRa(w, A, < —2L ™ e (my = mo) 14, (317)

(m + w?)2 j=0

hence
—my |w]| dw
Ry(Fw, A)|| s, dw < 5L A} le;] 2 / . (3.18)
[ IR, ), z el e

Notice again that we have not used the C*-trace in our estimate of the
fourth order term.

Estimate on the first order term. In order to deal with the first, second
and third order terms, we need to use more cancellations. We start by
considering the first order term for which we can write

Tw 1 w 1
ij7o+zw( )ij7o+zw ij,o—zw( )ij,o—zw
202 1 1 202
= —(a-A-V — + — (- A-V)—m5—"-—"-.
Dfnj70+w2( )ij7o+zw ij,o—zw( )D?nj,o"‘“ﬂ

Inserting
1 . ij70 F 1w (3 19)
Dpjo+iw D2, o +w? '
we obtain
Tw 1 Tw 1
— (- A-V — — — (- A=V
ij,o—i-zw( )ij,o—i—zw ij,o—zw( )ij,o—zw
2uw? 1
=———Ada-A-V,D,,. g} —5—"—,
D2, o+ w? { 0} D2, o+ w?

where the notation {7, T} refers to the anti-commutator operator

{Th, T} =TTy + ToTh.
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At this stage, we recall that
(- X)(a-Y)=X -Y+i(XxY) 3, (3.20)

for all (X,Y) € (R®)?2 In this formula, X x Y is the cross product of
the vectors X and Y, whereas the notation ¥ = (X, ¥y, X3) refers to the

matrices
X = (‘Bj £j> . (3.21)
As a consequence, we obtain
{a-p,a-A} = {p,A}RS +2'(p x A+ A ><p) - XY= {p,A}RS +B-X,
where {-, -}rs is a notation for
{S,T}]RS =5-T+T-85.
Since Bay, + B = 0, we deduce that

{a-A—V,ij,O} = {p,A—Va}RS—i—B-E—QmjV,B. (3.22)
This finally gives us
Ri(w,A) + Ri(~w, A) = 2w?(R11 + Riz2), (3.23)
where
2 1 1
Riq:= —( ,A=V B-E)—, 3.24
bt jgoc] P2+ m3 + w? {p g+ p? +m? + w? (3:24)
and
2 1 1
Rig:=—2 im.; \% . 3.25
b2 ],Z:%c]m]pQ—i-m?—i-wQ BpQ—l—m?—l—wZ (3:25)

Concerning the operator R 1, the last step consists in using identities (2.7)
and the two expansions

1 1 mé — m?
= +
p2+m§+w2 p? +m + w? (p2+m%+w2)(p2+m§+w2)

2 2

1 my — mj
_ 3.26
p2+m%+w2+(p2+m%+w2)2 ( )

(mé — m?)2

+ .
(p? + m? + w?)(p? + m3 + w?)?

This gives
2
Rig = Z cj(md — m?)2<
=0
1 1

JA—Valgs +B-3
(p? + m3 + w?)? ({p b )(pQ +m3 + w?)(p? + m? + w?)
1 1

A=V B 35—
T +m3 +w?)(p? + mj +w2)2({p e+ e +m? +w?

1 1
—————({p,A-V B-% .
i p2+mg+w2({p’ e ¥ )(p2 +m? + w?)(p? +mg+w2)2>
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We now use the fact that A € LY(R3,R*), B =i(p x A+ A x p), as well as
the Kato-Seiler-Simon inequality (2.5) to get

2
I
[Raslls, < 182 lesllmd —mi)* g Al 327
7=0

The analysis of the operator R 2 is more involved. Under conditions (2.7),
we are not able to prove that Rq is trace-class. However we can compute
first the C*-trace before taking the operator trace. We obtain

trea RLQ =0, (3.28)
since trcs B = 0.

Remark 3.2. By this argument, we do not prove that R is trace-class.
Under the additional conditions

o — S —
E cjmj—g c]mj—O,
J J

the operator R 2 becomes a trace-class operator, and its trace is equal to
0. This strategy however requires to introduce additional fictitious particles
in our model. Introducing more fictitious particles in order to justify the
computation of a term which is anyway 0 does not seem very reasonable
from a physical point of view. This explains why we prefer here to first take
the C*trace.

As a consequence, we can conclude our estimate of the first order term
by combining (3.27) and (3.28) in order to obtain

/.

dw
(S5

tree (Ri(w, A) + Ry (—w, A))‘

)2 w? dw
<36[7Z\cj] \\A\\Ll/m. (3.29)

The second and third order terms are treated following the same method,
except that the algebra is a little more tedious. We start by writing that

Rp(w, A) + Ry(—w, A) = 2u? ZC]Z( (o-A— V))kx
Jj=0 k=

mﬁo—w}

1 1 n—k
X ———((ax- A=V 7> .
DTan,O + w? <( )ij,o + w

We next expand as before using (3.19).
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Estimate on the second order term. For the second order term, we are
left with

2
Ro(w, A)+Ro(—w, A) = —2w? Z cj X

Y ((a-A-V 7> _ (71
8 <D72nj70+w2((a )Dfnﬁo%—w? kzzo D2 o+ w?

k 1 Do \2-k
(o d=V)) (e A=) ) >

which may also be written as

2
1
j=0

<.

2
Dfnj701+ w? ({a A=V, Dm”O}D%%l—i— w2) >
(3.30)
Inserting
(- A=V =|AP+V?-2a-AV,
and (3.22) into (3.30), we are led to
Ry(w, A) + Ro(~w, A) = —2w* (Ra,1 + Ra2), (3.31)

where

2
1
g S S —— (]A\2+V2—2a-AV>—2
2+ m3 +w2 p? +m? + w?

Jj=
—4m; (V 2+ m? +w2>2_<({p’A_Va}R3+B'2)pQ++W>2>7

and
2

1
Ra2 QJZOCJ m; p—+m o

1
{Vﬂp +m? +w2’({p’A_Va}R3+B'2)p2+m?+w2}'

The proof that Rg; is trace-class is similar to the first order case, us-
ing (3.26). The final estimate is

2 2_mg 2 mg
——||A B I
IRl < 3olel (8t Al Bl + s

(VI + 1+ 802~ m Al )

Since
tr@; RQ,Q == 0, (332)
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as for the first-order term, our final estimate is

dw
(S5

trea (RQ(W, A) + RQ(_W7 A)) ‘

2 ) . 2
Z w? dw m?= m
ol (31 VA s 5+

(VI + B s AL [ )

Estimate on the third order term. Similar computations give for the
third order term

2
202
R3(w, A) + R3(~w, A) = jZZ:OCj (m(({%fl —Vajg +B-%

— QmjVB)

1 >3 2uw?
p2+m?+w2 pQ—i—m?—i-wZ

1 1
- p2+m§+w2’({p’A_Va}RS+B‘2_2mﬂ'vﬂ)p2+m§+w2}>'

{(\A[2+V2—2a-AV)

(3.34)
Using once again (3.26), we deduce
2d
/ | s (Ro(w 4) + Ry, ) | do < KZ o) / _wdw
R ?
Is(Is) ( >3
6\48 16/3
x (mﬂsHVH?is + 5| VI2alBllze + 25 | BI2 IV [ 0+ L || B3,
m]4 m]?

1
(I4)1s Iy
+myl7 || Al sV 175 + ~—5—I1Bl 2| All s + — | Al Z: IV ]| 12
m# mj
J
1 I
2 2 8 2 7 3
2 m2) (=2 || A2 B A ) ,
) (T AL Bl + (A1) )
for some universal constant K.
Combining with (3.14), ( .15), (3.18), (3.29) and (3.33), we obtain (3.10),

provided that A is in L}(R3,R3) N H!(R3,R?). This concludes the proof of
Proposition 3.1. O

4. ESTIMATES INVOLVING THE FIELD ENERGY

In Proposition 3.1 above we have shown that the operator

2

1
trea Ta = 3 ch trea (|ij,0| - |Dm].7A|),
=0
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is trace-class when A decays fast enough. More precisely, in the proof of
Proposition 3.1, we have written

5
Ty =) Tu(A)+T(A): 4772/ n(w, A) + Ry (—w, A)) dw
n=1

+ o /]R (R%(w, A) + Ri(—w, A)) dw,

(4.1)

with R, and Ry given by (3.8) and (3.9), and we have proved that the op-
erators trca 1), (A) and tres Tg(A) are trace-class. However our estimates
involve non gauge-invariant quantities (some LP norms of A) and they re-
quire that A decays fast enough at infinity.

In this section, we establish better bounds on these different terms. We are
interested in having estimates which only involve the field F' = (—VV, curl A)
through the norms ||VV|2 and || curl A|| 2. Our simple estimate (3.14) on
the sixth order only depends on the field F'. But we will also need to know
that the sixth order is continuous, which will require some more work. For
the other terms, we have to get the exact cancellations.

With these estimates at hand, it will be easy to show that Fpy can be
uniquely extended to a continuous function on the Coulomb-gauge homoge-
neous Sobolev space H 1 (R?), as stated in Theorem 2.1, and which we do
in the next section.

Remark 4.1. In the estimates of the previous section, it was not important
that div A = 0. We have to use this property now.

4.1. The odd orders vanish. The following lemma says that the trace
of the odd order operators trca T1(A), trea T3(A) and trea T5(A) vanish.
This consequence of the charge-conjugation invariance is sometimes called
Furry’s theorem [13].

Lemma 4.1 (The odd orders vanish). For A € HL (R%®) N L'(R3,R*) and
n=1,3,5, we have
1
tr (trea Th(A)) = o / tr (tr@; (Rn(w, A) + Ry (—w, A))> dw =0. (4.2)
T JR
Proof. Let Ct := iBagi be the (anti-unitary) charge-conjugation operator.
Since C Dy, 0 c = =D, 0, we have
C (Dm0 +iw) € = = (D0 £ iw)
Similarly, since A and V are real-valued, we can write

Ca-AC'=a-A and CVC!=

so that
CRy(+w, A)C! = (—1)"R,(fw, A). (4.3)
At this stage, we can compute
tres (CTC™Y) = trea T, (4.4)

for any operator 7' on L%(R3,C*). Here, T refers to the operator defined as
T(f) :=T(f).
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When tres T is trace-class, so is the operator tres T, and its trace is equal
to

tr (trea T) = tr(trea 7). (4.5)

As a consequence, the operator trca (CTC™1) is trace-class, as soon as T is
trace-class, and its trace is the complex conjugate of the trace of T'.

Finally, recall that we have established in the proof of Proposition 3.1 that
the operators tresa(Ry(w, A) + R,(—w, A)) are trace-class for n = 1,3,5.
Combining (4.3) with (4.4) and (4.5), we obtain

tr <tr<c4 (Rn(w, A) + Ry (—w, A)))

= (=17t (trea (Bu(w, A) + Ral—, 4)) ).

We deduce that the quantity tr (trea(Rp(w, A) + Rn(—w, A))) is purely
imaginary when n is odd, so that the trace of trca 75, (A) is purely imaginary.
Since the operator trcs T),(A) is self-adjoint, its trace is necessarily equal to
0. This gives Formula (4.2). O

4.2. The second order term. We now compute exactly the second order
term T5(A) appearing in the decomposition of T4, assuming that A belongs
to H'(R3,R*) and divA = 0. We will verify that it only depends on the
electromagnetic fields F := —VV and B := curl A.

Lemma 4.2 (Formula for the second order term). For A € H} (R?) N
L?(R3,R*), we have

1

tr (tree Th(A)) = 8 oo

M(K)(|B(E)? — |E(K)[?) dk := Fo(F),  (4.6)

where M s the function defined in (2.16) and F = (E, B).

Proof. In the course of the proof of Proposition 3.1, we have shown that
the operator trca Th(A) is trace-class when A € H'(R3 R3) (see inequal-
ity (3.33)). As a consequence, its trace is well-defined and given by

o —

tr (trea Th(A)) = /]RS (trea To(A)) (p, p) dp. (4.7)

Here, trca TH(A) refers to the Fourier transform of the trace-class opera-
tor trca T2(A). Our convention for the Fourier transform of a trace-class
operator T is the following

T 1 —ip-x_ig-
T(p’Q) = (271')3 /]Rﬁ T(x’y)e P eqydﬁﬂdy.
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In view of (3.31), the operator trcs T2(A) is given by

2
2 1 1
treaTa(A)(p,p) = = ———( (AP + V) ————
resTo(A) (p,p) WAE}%+WMM< (AP V) e

1 1 1
+({p’A}R3m> kzl e+ ml EER +mj + w?
Y Ve V) e

I mE w2t m + w?

1 2
pTtmj+w

(4.8)
Since A is written in Coulomb gauge, we deduce that
3
tr (trea To(A)) = > Toms (4.9)
where
2 w2 dw dp — —
Toq:=— / Al2(0) + V2(0)), 4.10
2 2
Z dk w* dw dp "
— (P +mi +w)?((p - k)2 +mi +w?)
R R (4.11)
(p- AR) (p- A(=R) + (7 + m3) [V (R)?)
= Ta2(A) + T2,2(V),
and

7 .

k‘2|A B)? + (k2 = 4p - k)|[V (k)| 2
dk w? dw dp.
/WZ TR kP rmiyw)

(4.12)
We next use the following Ward identities [45]
/ Z PmPn dp
R e +m? +w?)? ((p—k)2+m?+w2)
(4.13)

/ Z Qm)(kn Qn) dq
RS 4 j +m +w?)2(g? +mf +w?)’

for all (m,n) € {1,2,3}? and all k¥ € R3. This equation is nothing else
than a change of variables p = k — ¢, which makes perfect sense thanks
to conditions (2.7) which guarantee the convergence of the integral. Its
importance is well-known in the Physics literature, see, e.g., [30, Sec. 7.4].
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Since div A = 0, we infer that
Ta2(A) = / ZZA k) dk w? dwx
R4m 1n=1
x/ chpmap < 5 ! 5 >dp.
o 2 PO\ G O (o — R+ o)
Integrating by parts, we are led to
|A(K)|? dk w? dw dp
T> / 4.14
22(4) = g R7zo e ) (P s ) M
Similarly, we can compute
V (k)2 dk w? dw dp
TV w4/R7ZJp +m? +w2)((p—k)2+m§+w2)
(k)|? dk w* dw dp
w?)((p — k)2 +m? + w?)

/R7sz—|—m—|—

Integrating by parts with respect to w, one can check that

/ 22: w dw dp
s
ri 7 (02 m) w22 ((p — k)2 Hm o+ w?)
/ Z w? dw dp
R TP ) (p - kR m +w?)
so that
V(k)|? dk w? dw dp
4.15
T22(V) = g /R7Z TR +w2><<p—k>2+m§+w2> (415
On the other hand, since A and V are real-valued, we have
_ — 1 ~ ~
APO) + 720) = —= [ (AR +7®F) dk
(2m)2 Jre
hence
&)+ V(R
— dw dk dp.
Tai=—qa /R7Zo T (0 + m? + w?)? W dwarap
Combining with (4.14) and (4.15), we arrive at
E12) (JAK)|2 + |V (k)2

2p k—
/ 2) WP+ md )2 ((p— B)? - md + w?)

) and (4.12), this provides
tr (tres To(A)) = . G(k)(JA(K)[? -

To1+T22 =
(4.16)

In view of (4.
|V (k)P?) dk,
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where

1 p- szdwdp
Gk) = — .
(k) 27r4/R4JZO T2+ m? + w2 ((p— k)2 + m? + w?)

We next use the identity

1 00
L :/ / SQefs(uaJr(lfu)b) ds |u du,
a2b 0 0

see [16, Chap. 5], to rewrite
1 2
) = ﬁ/ﬂg4ZCjW2de' k dpx

(/ / S Fm2 ) —s(L-u) (2 ~2p-k) 2 dsudu).

Using conditions (2.7), we can invoke Fubini’s theorem to recombine the
integrals in (4.17) as

/ / sm-‘r(l u)k)studuX
27T
X / p . ke_s(p2_2(1—u)p'k') </ e—SUJ2w2 dw> dp
R3 R

/ e 02 dw =
R 2s
and

/ p- ke s(®—2(1—u)pk) dp =k -V </ ePr—sp?—2s(1—u)p-k dp>
R3 R3 |z=0

-(3)

(4.17)

Since

S

)

N

Njw

(1 - u)k2 s(1—u)?k?

)

we deduce that

=1 2/ / Zc S5 u(l-u)k?) ;-1 dsu(l —u)du.  (4.18)
7T

Integrating by parts, we now compute

o 2 2 2
/ ch efs(ijru(lfu)k )8_1 ds
0 =

o 2
= [ ¢ loglope O (i a1 — k) ds,
0 -
7=0
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which is justified again thanks to conditions (2.7). Letting o = s(m? +u(l—
u)k?), we infer again from (2.7) that

/ Zce s(m?u(1-u)k?) lds—/ chlog m —|—u(0 )kQ)e*UdU

= ch log( mj +u(l — u)k?).
=0

Inserting into (4.18), we get

L2 1 2 2
G(k) = 2 2 u(l —u) 10g(m§ +u(l — u)k?) du = 8—7TM(k:)
Combining with (4.16), we obtain Formula (4.6). O

We complete our analysis of the second order term by giving the main
properties of the function M.

Lemma 4.3 (Main properties of M). Assume that c; and m; satisfy (2.10).
The function M given by (2.16) is well-defined and positive on R3, and
satisfies
2 log(A
0 < M(k) < M(0) = %,
T

where A is defined by (2.9). Moreover,

2 log(A) k|2 /1 22 —24/3
il =X AN Vs i
3 (k) = At Jo 1+ |k2(1—22)/4 4z,

when m1 — oo and My — 00.

Proof. In view of (2.16), the function M is well-defined on R3. Concerning
its positivity, we set

2

t) = ch log(m? +1),

=0
for all t > 0. Using (2.8), we compute

(m3 — mg)(m3 — mj)

= > 0.
mi -+t (mg+t)(mi +t)(m5+1)

Il
S
M-
o

Since ®(0) = —2log A < 0 and

2

Zglog( >—>0 as t — oo,

by (2.7), we deduce that
—2log A < ®(t) <0,
for all ¢ > 0. Inserting into (2.16), we obtain (2.17).
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As for (2.18), we first write

M(k) = — ;/0 ch u(l —u) (log(mj) + log <1 + T)) du
j=0 ’
_210gA_g/1ZQ:C}u(1_u) o (1+M>du
- 3T m™Jo =0 I & mj2 .

When m; — oo and my — oo, we infer that

2 log A
3T

M(k) — 2 /1 u(l —u) log (1 +u(l — u)k?) du.
T Jo

Integrating by parts, we compute

1 L — 251 —2u) du
1—w) log (1+u(l—u)k?) du=— 23
/0“( w) log (1+u(l — w)k?) du /0 T+u(l—u)k?
so that it only remains to set z = 1 — 2u to derive (2.18). This concludes

the proof of Lemma 4.3. U

4.3. The fourth order term. Our goal is now to provide an estimate on
the fourth order term T4(A). We have estimated this term in (3.18), and
we know that Ty(A) is trace-class when A € L*(R? R*). Here, we want to
get an estimate involving only the norm of A in H 1 (R3).

Lemma 4.4 (Estimate for the fourth order term). Let A = (A, V) €
LAR3,RY) N HL (R®) and set B := curl A and E := —VV. There ezists a
universal constant K such that

2 .
[t (trga Th(A))| = | e Tu(A)] < K(Z %) (IBllz + | Eli2). (4.19)
=0

Proof. Arguing as in the proof of Proposition 3.1 (see the proof of Formu-
las (3.31) and (3.34)), we decompose T4(A) as

Ty(A) =Ty 1(A) — Tuo(A) + Ty 3(A), (4.20)

where

2 2
1 1 1
Ti1(A) == — § ciwldo ————(Wo—-——], 421
4,1( ) 27_‘_/1\%.]‘:0 J p2+m§+w2< 2p2+m?+w2> ( )

2
1 5 1 1
Ty2(A) = %/Rchw dwp2 T m2 + w2 <W2 PAmitwt

1 2 1 2 1
< (W —) +(W )W
< 1p2+m?+w2 1p2+m?+w2 2p2+m?+w2

1 1 1
w. W w )
+ 1p2—|—m?—i—w2 2p2—|—m?—|—w2 1p2+m?+w2>

(4.22)
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and

2 4
1 ) 1 1
T4,3(A) = %/R E cjw dw m (Wl m) . (423)
7=0 J J

Here, we have set for shortness,
Wi = {p,A — Va}R3 +B-X-2m;Vg,

and
Wy = |AP? +V? = 2(a- A)V.

Let us now explain our method to establish (4.19). When looking at 74,
with £ = 1,2,3, we are worried about several terms. First the function
W, does not decay too fast, it is only in L3(R3) if we only want to use
the L% norm of A. Furthermore, it involves quantities which are not gauge
invariant. Similarly, the term involving p in W is clearly the worst. It
also involves non-gauge invariant quantities. On the other hand, the term
involving B is in L?(R?) and it is gauge invariant. The term involving V/
alone is also not gauge invariant but it has the matrix 8 which will help
us, and it has no p. Since the result should be gauge invariant, these terms
cannot be a problem. They should not contribute to the total (fourth order)
energy.

In order to see this, we use the following technique. In Formulas (4.21)—
(4.23), we commute all the operators involving p in order to place them either
completely on the left or completely on the right. We have to commute the
terms (p? + mj2 +w?)~! as well as the p appearing in Wi. We think that it
does not matter how many terms we put on the left and on the right. It is
just important to have some functions of p on both sides (to get a trace-class
operator under suitable assumptions on A), and we do not want to put them
all on one side only. All the commutators obtained by these manipulations
are better behaved and they will be estimated using the Kato-Seiler-Simon
inequality (2.5), only in terms of ”A”Hclhv(R?’)'

In the end of the process, we will be left with a sum of terms of the form

Ip|° fa) [p|
2 22 2 2 20’
(p? +m; +w?)® (p? +mj + w?)

where f(z) is W3 or a product of W, with some of the functions appearing
in Wy, or only these functions. For instance, when we take the trace, the
worst term involving only V' is

d 2d
(/ V4></ 2 5 23+3/ 2 ’p‘Qp 2\4
R3 Rr3 (P —i—mj—i—w) Rr3 (P —i—mj—i—w)

+/ p|* dp
s (p? +mi+w?)p )

Here the integrals over p come respectively from 7y 1, 742 and 743 and they

behave exactly like (w? + m?)*w 2. So we run into problems when we want
to multiply by w? and then integrate with respect to w. But this term
cannot be a problem here because fRS V4 is not a gauge invariant quantity.
This is where the Pauli-Villars scheme helps us. Not only these integrals
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will become well-defined, but also their sum will simply vanish because the
regularization was precisely designed to preserve gauge invariance.

But before we explain all this in details, let us indicate how to handle the
multiple commutators that we get when commuting the operators involving
p. We start with 7} 1, for instance. Following the general strategy explained
above, we write

2
1 2 1 2 1
Ty (A) “or /]R ch w* dw <p2 +m2 4+ w? OV2) (p? + m? + w?)?
=0 j j

1 1 1
W | Wa| —— ).
+p2+m?+w2 ? (p2+m?+w2) 2p2—i—m?—i—w2>
where, as usual, [S,T] := ST — T'S. We notice that

1 1 1
W’ :|Z Q,W 5 . 9 . 9>
[ 2p2+m?+w2 p? +m? +w? P 2]p2+m?+w2

while
(0%, Wa] = p[p, Wa] + [p, Wa]p = —i{p, VN2 } .

Hence, we have

2
1 1 1
Tii(A) = — w0 dw | s (W)
1,1(A) ZW/Rjzoc]w w<p2+m§+w2 (Ws) (p2+m?+w2)2

1 1 1
v W ,
p2+m§+w2 2p2+m?+w2{p (p2+m?+w2)2

), (4.24)

VWy =2A-VA+2VVV -2V (a- VA) —2VV (a- A).
We then argue as in the proof of Proposition 3.1. We use that W, € L3(R?),
with
Wallzs < KIAIRs < KA1 o)
and that VW, € L2 (R3), with

IVWall, 3 < KllAllLoll Al sy < KA gy

by the Sobolev inequality. By the Kato-Seiler-Simon inequality (2.5), we
obtain for the term involving p - VWs,
1 1 1
W YW |
Hp2+m?+w2 2p2—|—m?—i—w2p 2(p2—|—m?—|—w2)2
| 1
VWs|1
&3 p2+m§+w2‘ 2| S
s
(p? +m3 + w?)?

(S5

<K

1
—W‘ X
= Hp2+m§+w2 ?

6

3 Nk

(GD)

K 4
< WHAHHéiV(R?’)’
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for some universal constant K. The argument is exactly the same for the
term involving VWs - p instead of p - VWs. Therefore, we obtain the bound

2
1 1
j , VW — W
Ag;)k]'”(zﬂm?w?)?) Ve o W,

2
1
<K (3 D) Al o

J=0

w? dw

In particular, we have shown that the operator Ty 1(A) can be written in
the form

Ty1(A) = Ty1(A) + Ss1(A), (4.25)

with
2
HZM(A)H& = (Z m—]> HAHH1 J(R3) (4.26)
7=0
and
2 1 2
S11(A): 277/20]29 +m +w2(W2) (p2+m?+w2)2w dw.
(4.27)

By the Kato-Seiler-Simon inequality, this term is trace-class when A €
LA(R3,R*) and conditions (2.7) are fulfilled. On the other hand, there is
no evidence that the trace-class norm of Sy 1(A) can be bounded using only
the norm ||[VA||;2. Fortunately, this term will cancel with the other ones of
the same type, as we will explain later.

Our strategy to handle the operators Ty 2(A) and Ty 3(A) follows exactly
the same lines. We first simplify the expressions of Ty 2(A) and Ty 3(A) by
discarding the terms containing the operator B 3. Concerning Ty 3(A), we
can compute

1 1 3 1
W )B-E—‘
Hp2+m§+w2< PP md o+ w? pr+m? +u?lls,

K m?

<oy 1Bl (I Al + oy g TVl 1B13).
j m w2

3
2

so that

cjw? dw 1 4
T Te E J Wi —-B-X%) ———
13(A4) = Ti5(A / « p?+mj +w2<( ! )p2+m§+w2> ’

with
2

[ 7es(A) o, < (z e L (1.28)
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We next commute, as above, the operator W, — B - 3 with the operator
1/(p? + m2 + w?) in order to establish that

1 1 1 *
d (W -B.%) 50—
277/” WJZO TP+ m? +w2<( L )p +m? +w2>

1
= 7:1133(14) + %/RWQdWZC]’X
7=0

1
X
(p2 _|_mj2 _|_w2)4

1
p? +m3 +w?’

<{p,A — Va}RS — 2mjV,8>4

where 7:1133(A) also satisfies (4.28). Finally, we use that
{p,A—a-V}R3 =2p- (A—a-V) —ia-VV,

as well as the anti-commutation formulas for the matrices o and 8, to
obtain the formula
2

1 [, 1
2 [ w24
o7 Jn wjzcj(p +m?+w?)t

1

= Ti3(A) + S43(A),

with T5(A) satisfying again (4.28), and

8 1
Si3(A) = 7T/]Rw decj ((p2+m?)2V4

= (p? +m3 + w2

3
—4(p* +m3)(miB+p-a)(p- AV’ +6(p? +m3 Z p-A)AV?

3 3
— 4m; Z Z pipm(m;B+p-a)(p- A) A ALV
=1 m=1
3
+ mPn(D - A A A Ay | —————
;;;pm pn(p- A)A ) g +w2

(4.29)

The computation leading to this formula is tedious but elementary. In con-
clusion, setting Ty 3(A) = T{5(A) + 7:1133(A) + T£3(A), we have established
that

Ty3(A) = Ta3(A) + Ss3(A), (4.30)
where 74 3(A) satisfies (4.28). Similarly, one can check that
Ty2(A) = Ta2(A) + S42(A), (4.31)
with
o
T, < K (L2 Al o 0

7=0
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and

2 1
Si2(A) = W/Rw decj(p Tl T ) <(p +ms )(3]A‘2+3V2
7=0

—2(a-A))V? —2(p-a+m;B)(p- A)(3A? +5V)V

1
p? + m? +w?’
(4.33)

3
+ 3Zpl(p CA)A (AP 45V = 2(a- A)V))
=1

Notice here again that the Kato-Seiler-Simon inequality implies that Sy 2(A)
and Sy3(A) are trace-class when A € L*(R3 R*) and conditions (2.7) are
satisfied. Therefore, we always assume that A € L*(R3 R*) to make our
calculations meaningful.

The last step in the proof is to compute the traces of the singular operators
S11(A), Sy2(A) and Sy3(A) for A € L4(R3,R*). As announced before we

claim that
tr 8471(A) —tr 8472(A) + tr 8473(44) =0, (434)

an identity which is enough to complete the proof of Lemma 4.4. To prove
this we could make up an abstract argument based on gauge invariance.
However we have to be careful with the fact that even if we can freely
exchange the trace with the integration over w, these only make sense after
we have taken the sum over the coefficients c¢;. The order matters and
this complicates the mathematical analysis. Instead, we calculate the sum
explicitly and verify that it is equal to 0.
A simple computation in Fourier space shows that

trS d d
rSa1(A) 2/Rs p/w w(ch (p* + m? +w2) )

7=0

x/ (JAI* + 6|APVZ+ V1.
]RS

(4.35)

Similarly, one can check that
trS / / 2d ! X
r w” dw
42 % RS (p2 +m2 _|_w2)4
Jj= 0 J
Y <3(p2+m§) [ apve v
R3
+ 32 Z plpm/ (AjAn AP + 54 Ay, v2)>.

=1 m=1

An integration by parts shows that

2
DI P dp _ Om dp
Z € Nt ch 2 2 23’
p+m + w?)4 6 Jrs“ (p* +mj +w?)

Jj=0
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and we obtain

tI‘S42(A
2 2 2
p +m 910 4
d d AV \%
3/}1@3 p/w w<Zc]p+m —|—w2)>/Ra(’ | + )

]:

1
2d ; / Al* AlPV?).
Rw w< Cj 75 5 )3> R3(| |* +5]A]*V?)

2
= (P> +mj+w
(4.36)

[\

R3

Similar computations lead to the expression

(p? +m 2 dpw? dw
trSy3(A) %
r Sy3( %(//}RSZ (p? +m + w?)? >/RS

dpw dw 3(]9 +m2~)
1 J > A2v2
3(//]1%32 < (p? +m§+w2)3< +p2+m§+w2 Rs’ |

=0
2 // dp w? dw )/ 4
c;j Al%
77)3( R RSJZ::O T (P2 mE +w?) RS‘ |

(4.37)
In view of (4.35) and (4.36), we obtain

2
trSy1(A) —trSue(A) +trSu3(A) = (/ V4> /w dw/ dpx
R3 R3

m(2m)2
ch( PP 0"+ m)) )
T\ +m? +w2) (p? +mj +w?) (p? +m3 +w?)5 )

A direct computation then shows that

/ 1 216 2 g — 0
R \(TFe?P - (e ety T

This is enough to deduce (4.34), and complete the proof of Lemma 4.4. 0O

4.4. Regularity of the sixth order term. In this section, we come back
to the sixth order term studied in the proof of Proposition 3.1. The sixth
order term is defined as

Ro(A) = - /R tr (Ry(w, A) + Ry(—w, A)) du, (4.38)

7

where
2

w 1 6
Ri(w, A) := c-%(a-A—V 7)
6l ) jZO ! D, A +iw ( )Dmﬁo—i-zw
We have shown that it is trace-class when A € H, L (R3). We can indeed
write estimate (3.14) as

2

[Rele, < 5 [ A, o< 538 ) Al o 149
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Here we want to prove that Rg is actually smooth, under suitable assump-
tions on A. We first establish the continuity of Rg through

Lemma 4.5 (Continuity of the sixth order term). The functional Rg is
locally 0-Hélder continuous on the space HY. (R3) for any 0 <6 < 1.

Proof. We consider the difference Rj(w, A) — Ri(w, A’) for four-potentials
A and A’ in a given ball of H} (R3), which we write as

R§(w, A) — Rj(w, A)

1 1 1 6
ZO ( (Dm]A—FZw ijvA,+z’w><(a'A_V)ij,0+m)

5 .
1 k
A=V 7>
+kZOD +M((°‘ )ij,oﬂ'w X

1 1 5—k
o) V) (@A Vp ) )
mj, mj,

The five terms in the sum over the index k can be estimated similarly as in
the proof of (3.14). Their &;—norms are bounded by a universal constant
K times

2

1
E:mﬂﬁwa%mAW&mWﬁ”MW%JWQ”A_AWQAWr
j=0 (m;

If we follow the same proof for the first term, we need an estimate on the
operator norm

1 1
w — — - )
(ij,A—i—zw Dy ar +iw H

On one hand, we remark that [|(Dp, a4 + iw) '] < 1/w, so that

1 1
w - <2 4.41
(ij7A+iw ij,A’ —i—iw)H B ( )

On the other hand, we can use the resolvent formula to write

1 1
Dipja +iw me;' +iw ) (4.42)
= (a- (A-A)+V - V).
ij7A+zw( ( ) )ij7A/ + iw

For small A, or small A’, we have no problem in estimating this term using
that the spectrum of Dj,; o stays away from 0 by Lemma 2.1, and that
(Dim,,A + iw)~(Dim;,0 + iw) is bounded uniformly. The argument is essen-
tially the same in the general case. We decompose the expression in the
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right-hand side of (4.42) as

1 1
i — (- (A— A V)
Zw<ij,A—|—Z'w (a ( )tV V) ij,A’+iW>

1 ‘ 1 .
= (B (Omea +0) > (g (o + )

1 W
X[(=———(a-(A-A +V/—V)><7,,
(ij,o%—w( ( ) ) Dy ar +iw
(4.43)
for some positive number p. We check that
A u
B Omar il < g2t sl < v
Hij,A—i—zw( mJ’A+w ~ I Dy A +iw + Dppja+iwll = +|w|
(4.44)
Setting p —4K2HAH (ray Ve also remark that
— (D 1 woaoa))
(Dot H=H<1+ 2V -a )|
"ijyA+ZM( my;,0 lu’) ij,o—{—l,u( )
o 1 n
<S5 v-a-a)|
_ZHijo-i-iM( a-A) (4.45)

oo n

<X o Al e <2

Recalling that (iw)||(Dp,; ar+iw) 1] < 1, we infer from (4.42), (4.43), (4.44)
and (4.45) that

(i) (5— 1
w Dy, 4 + it o ij,A’ + tw
K z '
K BN A
(2 p2) (1 757 14 = Ay o A0
1 1
gK(\/—m_j + WHA\IHC}W(Rs)) 14— A sy

In this bound, we can replace A by A’ by symmetry. Recall that we are in
a given ball in H} (R3), so that HAHH(}. (r#) 18 bounded by some constant.

Collecting estimates (4.41) and (4.46), we have shown that

/R IRy (w, A) — Ry(w, A s, dw

2
§K<Z|ncﬂ|>(”AH L@ T 1A, >)HA_A/HH51V(RS> (4.47)
j=0 '
ol
w10 (1415 )+ 14T A, 20
j=0 7
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where
js 4 =, (1+w2)%
) 1
xmln{Q, (\/—m_]-i- HAHHl R3)>HA A/HHI L(R3) }

Assuming that [|A — A’HHclliv(Rg) < mj/(y/m; + HAHHQHV(R?’)) for any j =
0,1,2, we can estimate the integral Z(m;, A, A’) as

1 < dw
|I(mjaA’A')\§\/m—j</0 m)HA Al g

1 /
+zd%;mmamwA—Am@WJ

t 0
j(t)::/diw:,)—i—t/ d7w§
0 (14?3 St w(l+w?)s

It remains to observe that
J(t) < Kt(1+ |logtl),

and to combine with (4.38) and (4.47), to conclude that the functional Rg
is locally 6—Holder for any 0 < 6 < 1. O

with

We next turn to the differentiability of Rg.

Lemma 4.6 (Regularity of the sixth order term). The functional Rg is of
class C*° on the open subset H of Hdliv(]R?’) containing all the four-potentials
A such that 0 ¢ o(Dp; a) for each j = 0,1,2. Moreover, there exists a
universal constant K such that

2
[d*Re(A)| SKZ%(1+—A11A11H1 o) Al gy (448)
§j=0"""J

where
La :=max {|(Dm,.a+iw) " (Dm, 0+ iw)|, w€R, j=0,1,2} < oo.

Proof. The proof relies on elements in the proof of Lemma 4.5. When 0 is not
an eigenvalue of Dy,; a for each j = 0,1,2, we can deduce from Lemma 2.1
the existence of a positive constant K 4 such that

H < min {KA, ! } (4.49)

Hij,A/—i—iw \w[

for any A’ € H} (R%), with ||A’ — AHH(lliv(RS) small enough. As a conse-

quence, we can replace estimate (4.44) by the inequality

|5 (st i) < 1+ Kan
mj,
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Since

1 .
|5 (Prn )]

. . 1
(Dim,.0 + ip) H + |w — p| min {KA, m},

< ’7
Dm]A+ZW

1 .
|5 (Pro )]

. . 1
< (14 Kap ij,O+W)H+|W—M|m1n{KA,m}-

(4.50)

1
)H ij,A + Z:U'(

Following the lines of the proof of (4.45), we deduce that the quantity in
the right-hand side of (4.50) is bounded independently on w by a positive
constant L4, depending only on the four-potential A and the mass m;.
Actually, we can claim, up to a possible larger choice of L 4, that

1
— (D, +i H<L,
Hij7A,+iw( mJ,0+zw) > La

for any w € R, j = 0,1,2, and A’ € H} (R?), with || A’ — AHH}M(R?’) small
enough.
As a result, we can upgrade (4.46) into

ieo : ! )H<%HA—A/

Iy

Dy a+iw  Dujartiw/ ||~ (m2 4w aie ()’
Similarly, we can compute
iiw,(a-(A—A’H—V/—V);,
DmﬁA—l—zw DmﬁA—i—zw
KL / (4.51)
< — A=Al @y
(m] _|_ W2)4 div

At this stage, we can iterate the resolvent expansion in (4.42) to obtain

1 1
ij,A + 1w B ij,A/ + 1w
1 1
=— (a¢- (A-AY+V - V)—F———
ij,AH‘w(a ( )+ )ij7A+z'w
1 2 1
—1—(7, a- (A-A +V’—V> —_
ij,A+zw( ( ) ) ij7A/+zw

Inserting this identity into (4.40), we can write

Ri(w, A) — Ri(w, A") = daRg(w, A)(A — A) +r5(w, A, A").  (4.52)
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Here, d o Rj(w, A) refers to the continuous linear mapping from HL (R?) to
&1 (R3, R*) given by

daRg(w, A)(v, a)
i 1 1 6
Cj(ij7A T iw (e-a—v) Dipa + i ((a A=) Doyo+ iw)

W
ij,A + 1w

Il
.
ot || Mw
=}

(A ) (g )

x ((a-A—V)m)k)

+
ol

(4.53)

In view of (4.51), and again the computations in the proof of estimate (3.14),
the operator norm of d 4 Rj(w, A) is indeed bounded by

faario. )

|C| La
<KZ z %||A|| L (1

WHAHHI (R3 )

(4.54)

Similarly, the remainder 7y (w, A, A’) in (4.52) may be estimated as

rg(w, A, A)

(GF1
2

s
<KIA= A% ST (1A oy + 1A g) %

3
7=0 (mJQ t+w )2
112
< (1+ : (A e + 14715 o))
(4.55)
Collecting (4.38), (4.52), (4.54) and (4.55) is enough to establish the con-

tinuous differentiability of the function Rg on a neighborhood of A, with a
differential given by

1
mj—i-w 2)z

dRe(A)(v,a) = i /Rtr <dARg(w,A)(U, a) + dAR%(—w,A)(U,a)) dw.

(4.56)

Finally, we can extend the previous arguments for the continuous differ-

entiability of Rg to the proof that it is actually of class C*°. In particular,
we can check that the norm of the quadratic form dile is bounded by

i)

2

|CJ| L
< KE A + —2  _||A .
%H HHl (R3)<1 (m? w )% | H Hiiy ))

Estimate (4.48) follows integrating with respect to w. O
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When ||A]| L (R3) is small enough, we can prove that the constant L 4
does not depend on A.

Corollary 4.1 (Estimate in a neighborhood of zero). Assume that ¢; and
m;j satisfy (2.10). There exists a universal constant 1 such that, given any
A € HL (R3) with HAHHéiV(RS) < my/myg, the functional Rg is of class C*
on the ball

BA(anO) = {A € Héiv(RB) : ||A||H51V(R3) <ny mo},

and satisfies the estimate

e
o)) < K (3% ) A4l o (@57

2
m*
j=0 "7

Proof. When A is small enough, the spectrum of D;;,; 4 does not contain 0
by Lemma 2.1. Moreover, when

1Al 71, gy < mmin{ Vo, Vimi, Vima} = ny/imo,
for n small enough, we can infer from (4.45) that
La<2.

Inserting in (4.48), and using the inequality [|Allz gs)y < 1y/My, gives
div
estimate (4.57). O

5. PROOF OF THEOREM 2.1

With the results of the previous section at hand, the proof of Theorem 2.1
is only a few lines. As a matter of fact, given any A € L}(R3, RY)NHY (R3),
we have shown that the functional Fpy(A) is well-defined by the expression

Fpv(A) = F2(F)+R(A), (5.1)
where
Fo(F) :=tr (trca To(A)),
and
R(A) := tr (trea Tu(A)) + tr (trea T4(A)),

are defined in (4.1). By Lemma 4.2, the function F; is given by (2.15) and
it is quadratic with respect to F'. Since M is bounded, we deduce that F>
is smooth on L?(R3,R%). On the other hand, the function A — Fy(A) :=
tr(trca T4(A)) is quartic and satisfies (4.19). Hence, it is a smooth func-
tion on H, 1 (R?). We have proved separately in Lemma 4.5 above that
Re(A) = tr(trea T4(A)) is an Hélder continuous function on H}, (R?), which
satisfies (3.14). We deduce from all this that Fpy has a unique continuous
extension to H}. (R?), which is given by (5.1), and that R satisfies esti-
mate (2.14). The properties of M can be found in Lemma 4.3.
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6. PROOF OF THEOREM 2.2

In view of the results in Sections 3 and 4, the functional Fpy is smooth
on the open subset H of H 1. (R?) containing all the four-potentials A such
that 0 ¢ 0(Dp,;,a) for each j =0,1,2. Indeed, the function A +— F4(A) :=
tr(trca T4(A)) is quartic and satisfies (4.19). Hence, it is of class C*° on
H dliv(R?’). Similarly, in view of Lemmas 4.2 and 4.3, the quadratic map F»
is smooth on L?(R3,R%). On the other hand, we have shown in Section 4.4
that R¢ is smooth when 0 is not an eigenvalue of Dy,; o for j =0,1,2. We
deduce that Fpy is smooth on the set H.

In order to complete the proof of Theorem 2.2, it remains to identify
dFpv(A). As mentioned in Formulas (2.19) and (2.20), this differential is
related to the operator

2
Qa = Z ¢j L(—c0,0) (ij,A)-
j=0
Concerning the properties of the operator ) 4, we can establish the following

Lemma 6.1 (Properties of pg and ja). Assume that ¢; and m; satisfy
conditions (2.10).

(i) Let A € H} (R3) be a four-potential such that 0 is not an eigenvalue of
Dy . for j =0,1,2. Then the operators trca Qa and trea aQa are locally

trace-class on L?(R3,R*). More precisely, given any function x € L°(R3)
(that is, bounded with compact support), the maps

AeH— X(tr(C4 QA)X €6
and
AcHw— X(tr(c4 aQA)X €6
are continuous from H to &1. In particular, the density pa and the current
Ja, given by
pa(z) = [trea Qal(z,2) and ja(z):= [tres aQal(z,2),

are well-defined and locally integrable on R3. Moreover, the maps A — pa x>
and A — ja x? are continuous from H to L'(R3). Finally, for A =0, we
have

po=0 and jo=0.

(ii) If moreover A € LY(R3 R*), then, the operators trca (Qa — Qo) and
trea a(Qa — Qo) are trace-class on L2(R3,R*), and the density pa and the
current ja are in LY(R3).

Proof. We split the proof into three steps. First, we consider the special
case A = 0.

The operators trca Qo and trca a@) are locally trace-class. Using that
Z?:o ¢; = 0, we can write

2 1 1 2. Dpyo
Qo=2_¢ (]l(foom (Dimj0) = 5) =5t )¢ D
§=0

=0
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As a consequence, we obtain
trea Qo = 0.
In particular, the density pg is well-defined and it identically vanishes on R3.
Similarly, we have
S
= P +mi)
Due to conditions (2.7), the latter function behaves like

tres aQp = —2

2

2
S~

=0 p +m

as |p| — oo, hence it is in L'(R3). By the Kato-Seiler-Simon inequality (2.5),
we deduce that the operator trca axQoy is trace-class for any x € L?(RR3).
Hence, trce aQ)q is locally trace-class. In particular, the current jo is well-
defined and locally integrable on R3. Moreover, we can compute

/ Jox? =tr (tr@; axQox)
RS

2
1 p ~
:—m/m /Razcj ————|x(¢ —p)P* dpdg,

1
im0 (P +mj)?
which shows that

Jo=— / dp=0
4r3 RSZg (p +m)%

by rotational symmetry.
We next consider the general case.

The operators trcs Q4 and tres aQ 4 are (locally) trace-class. From
the previous discussion, we conclude that it is sufficient to prove that the
operators trea(Qa — Qo) and trea a(Q a4 — Qo) are locally trace-class. The
corresponding charge and current densities will be the same as that of () 4.

Concerning the (local) trace-class nature of the operator Q4 — Qq, we
follow the proof of Proposition 3.1. Our starting point is the integral formula

2 T w? 1 w w
gne == [ T sdw=— [ (g - =)o (61
SR W/R(mQ—i—wz)z “ 27T/R (x +iw)?  (x—iw)? . (6:1)
When T is a self-adjoint operator on L?(R3 R?*) with domain D(T), we
deduce that the sign of T is given by

1 w w
T = ( I , ) duw, 6.2
sign 27T/R (T +iw)?> (T —iw)? “ (62)
the integral in the right-hand side of (6.2) being convergent as an operator
from D(T) to L?(R3,C*).
In particular, the operator

2
1 . .
Qa—Qo=—5_c;(signDm, 4 —sign D, o),
j=0
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is given by the expression

w
Qa— Qo= —_/ Z mJAJrM) o (ij’oJriw)z
W n W > d
- ; ; W,
(DA — iw)? (Dm0 — iw)?

(6.3)

on H(R3,C*). In order to establish statements (i) and (iii) of Lemma 6.1,
we will prove that

J

2

Zc' trea my ( i — i
i (Dinya+iw)? (D0 + iw)?

W + W )
Dy a —19)2 " (Dm0 — )2/

dw < 00,

(G31
(6.4)

for any of the matrices m = Iy, a1, a2, a3, and either when A € LY(R3, R*)N
H'(R3R*) and x = 1, or when A € H}. (R?) and y € L(R3 R). In the
different cases, the C*-traces of the operators m(Qa — Qq), respectively
mx(Qa — Qo)x, will define trace-class operators on L?(R3,C*). Then the
operators trca mQ) 4 will be locally trace-class and the density pa and the
current j4 will be well-defined and locally integrable on R3. Moreover, they
will be integrable on R? for any A € L}(R3, R*) N H'(R3, RY).

In order to prove (6.4), we use the expansion

w w w + w
(Dinja+iw)? (Do +iw)?  (Dmja —iw)?  (Dpyo — iw)?
5

= Z (Qn(w7 A) + Qn(—w, A)) + Qh(w, A) + Q4(~w, A)
n=1
— Q7w A) - Q7(-w, A),

(6.5)

with

W

((a.A—V)m)n,

2
Qn(w,A) :=(n+ 1)ch D
=0

W 1 6
e Ay =730 e (le A=V )

and

2 .
, _ R R N A S
Grl A= 6]‘200] (ij,A + iw)? ((a 4 V) Do + iw> .

We next estimate the terms related to the operators Q,(w, A), Qi(w, A)
and Q% (w, A), as we have previously done for the operators R, (w, A) and
R§(w, A) in Section 3.

Concerning Qj(w, A) and Q%(w, A), we recall that 0 is not an eigenvalue
of Dy,; a for each j = 0,1,2. Hence, there exists a positive constant K such
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that

1
— || <K, 6.6
Hij,A—i—m)H - (6:6)

for all w € R and j = 0, 1,2. Following the proof of (3.14), we deduce that

[ (105 Ao, 1@ Al )

2
.
<K IVl (1 +
]:

1
AHVAHLQ).
j Na

As a consequence, the integrals

0i(A) 1= 1= [ (@hfe ) + Q(—0, 4)) s
and
0H(A) 1= 1= [ (@4 A) + G (-, ) s

define trace-class operators on L2(R3 R*) when A € H}, (R?). The related
densities p;(A) and p%(A), and currents j§(A) and j%(A), are well-defined
and integrable on R3. Moreover, in view of (6.6), we can repeat the argu-
ments in the proof of Lemma 4.6 in order to establish the smoothness of the
maps A — Qi(A) and A — Q% (A) from H onto &;.

For 3 < n <5, the operators @, (w, A) satisfy the estimates

L@t A, do < KA}, (67

and

[ Qe Al e < K| Al (6:5)

for any function x € L°(R3). Here, K, refers to a positive constant de-
pending only on the coefficients ¢; and the masses m;. For n = 4 and n = 5,
we can indeed use the Kato-Seiler-Simon inequality (2.5) to write

2
@t o, < K3 sl Al [ =

=0 RS (p? +m3 4 w?) 2

|w| dp

Integrating with respect to w, we obtain inequality (6.7) with

2. gyl
._ Z J
j=0 """J

For n = 3, we rely on the identity cg + ¢; + co = 0 to write

2 3 .
w 1 k
Q3(w, A) = 4;:%%(; o (Dmmo —(a-A- V) x

; 1 3—k
><< iw _ Tw ' )((a-A—V) ' )
Dipjo+iw Do+ iw D0+ iw
W W

+ <(ij70 +iw)2  (Dpmpo + z’w)2) ((a A= V)mf'
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Using inequality (3.16), we deduce that
2

|l
o e, < K( S eltms =mo) )l

which provides estimate (6.7) with

2
Z m; — my
j=0 0

Inequalities (6.8) follow similarly. Applying the Sobolev inequality (3.12)
to (6.8), we deduce that the integrals

Q(A) = 1= [ (@ulw. A) + Qu(-w0, 4)) o,
T JR

define locally trace-class operators on L?(R3 R*) for 3 < n < 5, as soon as
A € HL (R%). The related densities p,(A) and currents j,(A) are well-
defined and locally integrable on R3. When A is moreover in L"(R?), in-
equality (6.7) guarantees that the operators Q,,(A) are trace-class, while the
functions p,(A) and j,(A) are integrable on R3. The continuity in these
spaces follows from multi-linearity.

For n = 1, we refine our estimates using the cancellations provided by
conditions (2.7). Following the lines of the analysis of the operator R;(w, A),
we start by writing

QI(W,A) +Q1(_W7A) = Ql,l(waA) - QI,Q(W,A)? (69)
where
2
D, 0 1
w,A) =8 ciw—"9" __{a-A—V,D,, )
Ql,l( ) jgo j (DTan’O_i_WQ)Q{ 170}R3D72nj0+w2
(6.10)
and
2 1 1
w,A):=4 ciw—s-——(a-A-V
Q1,2( ) jZO j Dgnj,o+w2( )Dgnj’0+w2

As for the operator Q1 2(w,A), we combine conditions (2.7) with identi-
ties (3.26) to estimate

1@, A)g, < K(jzg el (m? — m) )m IA],..  (611)

In order to estimate the operator Q1 1(w, A), we eliminate the odd powers
of the masses m; in the numerator of the right-hand side of (6.10) by taking
the C*trace. Recall that

{0 A=V Dy o}ps = {0, A= Valy +B-Z—2m;Vi.

Since

3
trea <ﬁd 11 aZ’“) =0, (6.12)
k=1
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when d is odd, we obtain

2
1
trea (m QLl(UJ,A)) = SjZOCj MQ(D%W)—_{_CL}Q)Q < — QmJQV trea (m)
tirce (m(ep) ({0 A~ Vg +B-2)) ) oy
C ’ R3 D2 +w25

for any of the matrices m = Iy, a1, a2, 3. On the other hand, we can
compute

1 1 mg - mj2
(p? +m3 + w?)? T PP+ mE+w?)? * (P +m7 + w?)(p? + m§ + w?)?
N mg —m3
(P? +mF + w2 (p? + m + w?)’
(6.13)
as well as
1 1 2(mg —m?)
(P2 —i—m? + w?)2 - (p% + m2 —|—w2)2+(p2 +m2 + w?)?
2(m — 2 (o m)?

+ + .
(p?+ m? + w?)(p? + m3 + w?)?  (p2+ m? + w?)2(p? + m3 + w?)?

Combining again with conditions (2.7) and identities (3.26), we obtain the
estimate

|

w2

2 2§X
(mg +w?)2

2
tres (m Qi (w, A)) Hcsl < KZ ;] (m
=0

< (mENV ] o+ (m3 = md) |4 ).

In view of (6.9) and (6.11), we have

/Htrc4 (Qi(w, A) + Qi (~w )))‘ dw

(S5

m?2 m?2 — m
< K3l - ) (T Vs + 50 )

=0

Similarly, we can check that

/

dw

(G31

2 2 m2 m2
<K el (=) (8 IV s+ " 4 )

j=0

trea (mx (@1, A) + Qu(—w, A))x)|

(6.15)

For n = 2, the analysis is identical. We compute

QQ(W, A) + Q2(—W, A) = QQJ(W, A) — Q2,2(W, A), (616)
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where

2
Q2,1(w, A) =12 Z cj wx

J=0

mJ
e A=V, Dy o}
><<(D2 +w?)? 7l 0} D D2+ w?

D?n], 1 1
+—{a A=V Dy} gz la A= V) ).

(D2, + w?)? Dy o w2 D?nj,o + w?
and
2 2D, o 1 2
Q22(w, A) c w2< Uk ((a A-V) >
]:ZO J D72nj0+w2 D72nj0+w2
+ (a-A V) L A-V
Dgnj o+ w? Dgnj,o +w? ( )Dgnj o +w?
> Dum.o
A-V ) ™3
(o a-) 5 )

In order to estimate the operators Q2 1(w, A) and Q2 2(w, A), we again take
the C*-trace. For m = I, or m = ay,, we derive from (6.12) that

2
tres (M Q21 (w, A)) =12 ch w?x
j=0
(a-p) 1 1
X t — A-V, A=V
rea ((DQ TP o a- p} 70+w2(a )Dgnj0+w2
1 1
2
m; (D%LJ n 2)2 {Oﬂ + V,«x p}DQ wQ(a + )Dgnj0+w2
1 1 a-p
—2mim (- A-YV)
7Dy, 0t W) Dy gt w? D, o+ w?
a-p 1 1
+2m?m oa-A+V
7Dy, 0t w?)? D%ajo+w2( )Dgnj,0+w2
2 2
p°+mj 1
+m a-A-V,a-p (- A-YV) >,
(D?nj _|_w2)2{ }D72n 2 D72nj0+w2
while
2 o.
tres (MQ22(w, A)) = Gch w? trea <2ml)27_];w2><
j=0 m;,0
1 2 1 a-p
x((a-A—V)7> +tm—m—— (- A= V)———5x
Dy, o+ w? Dy, o+ w? D7, o+ w?

1 1 2 a-p

mj,
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Invoking conditions (2.7), as well as identities (3.26) and (6.13), we deduce
that

|

W
(m§ + w?)?

trea (M Q2,1 (w, A)) HG <KZ =1 ( mj —mg) HAHL2

w2
+mmamummﬁwwmh@¢;@)

and

|

It follows that

/Htr@ m (Qo(, A) + Qal(~w, A)) )|

tres (mQaali A)) | < (zmwnﬂw)wm;;&;

dw

(S5

<K S tol( S A+ AL AL+ 171,

Similarly, we have

/]

dw

1

trea mx(QQ(% A) + Q2(~w, A))X> ‘ &

<KZ@( 8 et s Al Al + V) ) Il
(6.17)

In view of (6.14) and (6.15), we conclude that the integrals

tree (m Q) = 1 /R tree (m (Qu(w, A) + Qu(—w, A)) ) do,

also define local trace-class operators on L2(R3,R*) for n = 1,2, as soon
as A € H}L (R3). The operators are trace-class when A is in L"(R?).
Concerning the related densities p,(A) and currents j,(A), they are well-
defined and locally integrable on R3 for A € H, éiV(Rg), and integrable on R?
for A € L™(R?). Their continuity follows again by multi-linearity.

At this stage, it remains to recall Formulas (6.3) and (6.5) to complete
the proof of Lemma 6.1. O

We are now in position to complete the proof of Theorem 2.2.

End of the proof of Theorem 2.2. We have shown that the functional Fpy
is smooth on the open subset H of four-potentials A such that 0 is not
an eigenvalue of Dy, a for each j = 0,1,2. In particular, the differential
dFpy(A) is a bounded form on H} (R3). By duality, it can be identified
with a couple of functions (p, j«) in “the Coulomb space C defined in (2.21).
Our task reduces to verify that p, = pa and j,. = —ja.



DIRAC’S VACUUM IN ELECTROMAGNETIC FIELDS 53

We first restrict our attention to four-potentials A which are moreover
integrable on R3. In this case, the functional Fpy(A) is given by For-
mula (2.12), which may be written in view of (4.1) as

5
Frv(A) =) Fu(A) + Re(A),

n=1
where we recall that
1
Fn(A) = — / tr <tr(c4 (Rn(w, A) + Rn(—w,A))) dw,
47T R

and

Rs(A) :== ﬁ /Rtr <tr(c4 (R§(w, A) + Ri(—w, A)) dw.

We have computed the differential of dRg(A) in (4.56). On the other hand,
the functionals F,, are n-linear with respect to A, so that their differentials
are given by

dF,.(A)(v,a)

= L [t (tres (daRal, A)(0,0) + daRy(~0, A)(,0) ) des
47 R
with
2 w — 1 F

daRy(w, A)(0,a) = ZO Do+ ,;) ((aa- V>W> g
1 n—1—k
x(a-a—U)m<(a'A_v)W> ’
(6.18)

for any (v,a) € L'(R3,R*) N H} (R3). Tt follows that the differential
dFpv(A) is equal to

1
ATy (A) (o, a) — —/E(w,A)(n,a)dw,
47T R
with

5
E(w, A)(v,a) :=tr <Ztr (tr@; (daRn(w, A)(v,a) + daR,(—w, A)(v, a)))
n=1

+tr <trc4 (daRg(w, A)(v,a) + daRi(—w, A)(v, a)))>

At this stage, we make use of Formulas (4.53) and (6.18) to check that

E(w, A)(b,a) = tr <trc4 (icj (L(a ca— n))). (6.19)

= ij,A + iw)Q

Indeed, we have established in the course of Lemma 4.6 that each term in
the decomposition of d 4 Rf(w, A)(v, a) which is provided by Formula (4.53)
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is trace-class. As a consequence, we can write

tr ( trea daRg(w, A)(v, a)>

iw 1 1 6
= c'tri,a-a—t)i,<a-A—V7,>
jzo J ij7A—|—zw( )Dm].,A%—zw ( )Dm].,o—i—zw
2 5 .
w 1 5—k
e (@)
=0 ! kZO ij,A + 1w ( )ij,O + w

1 1 k

An advantage of this further decomposition is that we are allowed to com-
mute the products in the right-hand side, so as to obtain

tr ( trea daRg(w, A)(v, a)>

W 1 6 1
Yo gap(eA-Vg—r) s gplaay)
2 5 .
w 1 k 1
+3 Y 7ij,0+iw<(a-/l— V) ij,oﬂw) At

j=0 k=0
5—k
) (o-a—v).

This follows from the property that the operator (iw)(Dpm;,a + iw)™' is
bounded, while the operators (a - A — V)(Dp0 + iw) ™' and (o - a —
0)(Dm,0 + iw) "' belong to suitable Schatten spaces. Using the resolvent
expansion (3.6), we are led to

1

(@ A=V

2 .
w
tr <tI'((:4 dARg(w, A)(U, Cl)) = tr (tr(c4 ]ZO Cj <W(a - a— U)
4

k=0 =0

x ((a-A—V)m>l(a.a—n)>>.

Similarly, we can deduce from (6.18) that
tr<trc4dAR w, A)( )

2 = AV 1 n—1—k
: 7( Ay

41—k .
w

1 k
((a-A—V) - > — X
meo + iw Do +iw/ Do+ iw

(6.20)

w

1 k
X Dot <(a CA - V)iij,o +iw) (a-a— n)).

Formula (6.19) follows combining with (6.20).
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As a conclusion, we have derived the following expression of dFpy(A),
2

dFpv(A)(v,a) = % /RU“ (tr@ (ch <m

J=0

D)) )

In view of (6.1) and Lemma 6.1, we deduce that
dFpv(A)(v,a) = tr (tr@l (QA(U —a- a))> - / (pav—ja-a),
R3

so that p. = pa and j. = ja, when A € L'(R3 RY) N H} (R3).

In the general case where A is only in HéiV(Rg), we can construct a
sequence of maps (A, )nen in L' (R, RHNHL (R?), for which 0 ¢ (D, A,)
for any n € N and each j =0, 1,2, and such that

A, — A in Hj, (R,
as n — oo. The existence of such a sequence follows from the density of
LYR3,RY N HL (R3) in H} (R3), and statement (ii) in Lemma 2.1. For
each integer n, we know that

AFiy(An)0.0) = [ (pa0—ia, -a).

R
for any four-potential (v,a) € C>°(R3,R*). Combining the continuous dif-
ferentiability of the functional Fpy with statement (i) in Lemma 6.1, we

obtain, taking the limit n — oo,

AFev(A)(0.0) = [

<PAU —Jja- a) ;
R3
which completes the proof of (ii) in Theorem 2.2.

Concerning (iii), recall that the second order differential of Fpy is equal
to

A Fpy(A) = AP F(F) + d>Fy(A) + d>R(A).

Since F; is quadratic and Fy is quartic, estimate (2.22) appears as a conse-
quence of Formula (2.15), and inequalities (4.19) and (4.57). This completes
the proof of Theorem 2.2. O
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