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THE STRATONOVICH HEAT EQUATION: A CONTINUITY RESULT

AND WEAK APPROXIMATIONS

AURÉLIEN DEYA, MARIA JOLIS AND LLUÍS QUER-SARDANYONS

Abstract. We consider a Stratonovich heat equation in (0, 1) with a nonlinear multiplicative
noise driven by a trace-class Wiener process. First, the equation is shown to have a unique
mild solution. Secondly, convolutional rough paths techniques are used to provide an almost
sure continuity result for the solution with respect to the solution of the ’smooth’ equation
obtained by replacing the noise with an absolutely continuous process. This continuity result
is then exploited to prove weak convergence results based on Donsker and Kac-Stroock type
approximations of the noise.

1. Introduction and main results

The main motivation of the paper comes from [3], where the authors consider, for some fixed
T > 0, the stochastic heat equation

∂Y n

∂t
(t, x)− ∂2Y n

∂x2
(t, x) = θ̇n(t, x), (t, x) ∈ [0, T ]× [0, 1], (1)

with some initial data and Dirichlet boundary conditions, where the random fields (θ̇n)n≥1

verify that the family of processes θn(t, x) :=
∫ t
0

∫ x
0 θ̇

n(s, y) dyds converge in law, in the space
C([0, T ]× [0, 1]) of continuous functions, to the Brownian sheet. Then, sufficient conditions on
θn are provided such that Y n converges in law, as n→ ∞, to the mild solution Y of

∂Y

∂t
(t, x)− ∂2Y

∂x2
(t, x) = Ẇ (t, x), (t, x) ∈ [0, T ] × [0, 1],

where Ẇ (t, x) stands for the space-time white noise. Applications of this result include the
case of a Donsker type approximation, as well as a Kac-Stroock type approximation in the
plane.

Such diffusion approximation issues for stochastic PDEs have been extensively studied in the
literature. Let us quote here Walsh [32], Manthey [20, 21], Tindel [30], Carmona and Fouque
[8], Florit and Nualart [12], just to mention but a few.

Now, following the line of [3], a natural question to be dealt with is to try to get the same

type of weak convergence in a non-additive situation, that is when the term θ̇n(t, x) in (1) is

replaced with f(Y n(t, x))θ̇n(t, x), for some sufficiently smooth function f : R → R. In this
case, one expects that the limit equation is of Stratonovich type, as it was the case in [8] and
[12] (see also [2, 29] for examples of a similar behaviour). This phenomenon has been recently
illustrated by Bal in [1] as well, for the weak approximation of a linear parabolic equation in

R
d with random potential given by Y n(t, x)θ̇n(x).
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Going back to our setting, and focusing first on what we expect to be our limit equation,
we should consider the Stratonovich heat equation

∂Y

∂t
(t, x)− ∂2Y

∂x2
(t, x) = f(Y (t, x)) ◦ Ẇ (t, x), (t, x) ∈ [0, T ]× [0, 1]. (2)

Unfortunately, a well-known drawback in this situation is that the solution admits only very
low regularity (see [31]), a major obstacle for our treatment of the non-linearity of the problem.
For this reason, we have chosen to restrict our attention to the case of a trace-class noise. To
be more specific, we will assume that Ẇ is the formal derivative of a L2(0, 1)-valued Wiener
process {Wt, t ∈ [0, T ]} with covariance operator Q satisfying the following property:

Hypothesis 1. Let (ek)k≥1 be the basis of eigenfunctions for the Dirichlet Laplacian ∆ in

L2(0, 1) given by ek(x) :=
√
2 sin(kπx), x ∈ [0, 1]. We assume that there exists a sequence

of non-negative real numbers (λk)k≥1 and a parameter η > 0 such that Qek = λkek for every
k ≥ 1 and

∑
k≥1(λkk

4η) <∞. Without loss of generality, we assume that η ∈ (0, 18 ).

In particular, for any fixed t ≥ 0, the process Wt can be expanded in L2(Ω;L2(0, 1)) as

Wt =
∑

k≥1

√
λkβ

k
t ek, (3)

where (βk)k≥1 is a family of independent Brownian motions. Note that the condition
∑

k≥1(λk ·
k4η) <∞ is only slightly stronger than the usual trace-class hypothesis

∑
k≥1 λk <∞, insofar

as η can be chosen as small as one wishes. For instance, it covers the case where Q = (Id−∆)−r

with r > 1
2 .

Another change with respect to [3] lies in our formulation of the study: compared to the
random field approach in [3], here it has turned out to be more convenient to use the Hilbert-
space-valued setting of Da Prato and Zabczyk [9]. In particular, we are interested in the mild
form of equation (2), which is given by

Yt = Stψ +

∫ t

0
St−u(f(Yu) ◦ dWu), t ∈ [0, T ], (4)

where from now on, we will use the notation Yt(·) := Y (t, ·), ψ is some initial condition and
f : R → R is a smooth enough mapping. As usual, (St)t>0 denotes the strongly continuous
semigroup of operators generated by −∆.

A first part of the paper (Section 2) will be devoted to the interpretation of (4) as a
Stratonovich equation, and it will allow us to exhibit an existence and uniqueness result for
the solution. We should mention here that the stochastic heat equation in the Stratonovich
framework has already been studied in various settings, most of them in the case of a linear
multiplicative noise (see e.g. [6, 7, 17]). Once we have given a full sense to (4), our strategy
to study weak approximations of the solution could be stated in the following loose form:

(a) We will first establish an almost sure continuity result (in some suitable space-time topol-
ogy) for the solution of (4) with respect to the solution of the ’smooth’ heat equation obtained

by replacing W with an absolutely continuous process W̃ (see Theorem 1.1).
(b) Then, for two particular families of absolutely continuous processes approximating W , we
will rely on our continuity result to show convergence towards the solution in some possibly
different probability space, leading us to the expected weak convergence (see Theorem 1.2).

Our strategy to compare the solution Y of (4) with ’smooth’ solutions is based on a genuine
rough-paths type expansion of the equation, which follows the ideas of [16, 11, 10]. Rough-
paths techniques have indeed proved to be very efficient as far as approximation of non-linear
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systems in finite dimension is concerned (see [13, Chapter 17]), and it is therefore natural to
address the same question in this infinite-dimensional background. Note that the model given
by (4) differs from those studied in [11, 10], where only finite-dimensional noises are considered,
forcing us to revise most of the technical details behind this procedure (see Section 3).

In order to state the above-mentioned results with more details, we need to introduce the
spaces in which our random variables will take their values. First, as far as the spatial regularity
is concerned, the fractional Sobolev spaces must come into the picture. Thus, for every α ∈ R

and p ≥ 2, we will denote by Bα,p the fractional Sobolev space of order α based on Lp(0, 1),
that is

ϕ ∈ Bα,p ⇐⇒ (−∆)αϕ ∈ Lp(0, 1),

where ∆ stands for the Dirichlet Laplacian in L2(0, 1) (see e.g. [26] for a thorough study of
these spaces). For the sake of conciseness, we will write Bα for Bα,2 and B for B0 = L2(0, 1)
throughout the paper. We will also denote by B∞ the set of continuous functions on [0, 1],
endowed with the supremum norm.

Of course, we will also have to deal with the time regularity of our processes. So, for any
subinterval I ⊂ [0, T ] and any Banach space V , we define C0(I;V ) as the space of continuous
functions y : I → V and set

N [y; C0(I;V )] := sup
t∈I

‖yt‖V .

Moreover, for any λ > 0, we introduce the space Cλ(I;V ) of λ-Hölder continuous V -valued
functions endowed with the seminorm

N [y; Cλ(I;V )] := sup
s<t∈I

‖yt − ys‖V
|t− s|λ

. (5)

Note that in the case where I = [0, T ], we will often write Cλ(V ) for Cλ([0, T ];V ).

Now, consider any process W̃ defined on the same probability space as W and with ab-
solutely continuous paths in Bη,2p, for every integer p ≥ 1 (recall that η has been defined in

Hypothesis 1). Then, let {Ỹt, t ∈ [0, T ]} be the unique solution of the Riemann-Lebesgue
equation (considered in a pathwise sense):

Ỹt = Stψ̃ +

∫ t

0
St−u(f(Ỹu) · dW̃u), t ∈ [0, T ], (6)

where ψ̃ ∈ B. As evoked earlier, our first main result will consist in comparing such a solution

Ỹ with the solution Y of (4). This result can be stated as follows.

Theorem 1.1. Assume that Hypothesis 1 holds true for W and some parameter η > 0, and
let f : R → R be a function of class C3, bounded with bounded derivatives. In addition, pick

γ ∈ (12 ,
1
2 + η) and assume that the initial condition ψ (resp. ψ̃) in (4) (resp. in (6)) belongs

to Bγ. Then there exist ε > 0 and p ≥ 1 such that

N [Y − Ỹ ; C0(Bγ)] ≤ Fε,p

(
‖ψ‖Bγ , ‖ψ̃‖Bγ ,N [W ; C 1

2
−ε(Bη,2p)],N [W̃ ; C 1

2
−ε(Bη,2p)]

)

{
‖ψ − ψ̃‖Bγ +N [W − W̃ ; C 1

2
−ε(Bη,2p)]

}
, (7)

for some deterministic function Fε,p : (R
+)4 → R

+ bounded on bounded sets.

The topologies involved in this statement are directly inherited from our rough-paths analysis
of the equation, and their relevance should therefore become clear through the lines of Section
3 (see in particular the proof of the central Proposition 3.9). Note that this bound certainly
remains valid with respect to some Hölder norm (in time) for the left-hand side of (7), as our
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arguments will suggest it. However, due to the technicality of the rough-paths procedure, we
have preferred to focus on the behaviour of the supremum norm (see also Remark 3.12).

Our next step will consist in applying the above Theorem 1.1 - on some possibly larger prob-
ability space - to two particular families of absolutely continuous processes that approximate
W , so as to retrieve weak convergence results for the solution. To define these approximation
processes, we will make use of the following additional notation. Namely, on a probability
space (Ω,F , P ), given a sequence (Xk)k≥1 of centered i.i.d processes admitting moments of
any order, we set, for every t ≥ 0,

W(X ·)t :=
∑

k≥1

√
λkX

k
t ek.

Thanks to our forthcoming Proposition 4.3, we know that W(X ·) is indeed well-defined as
a process on (Ω,F , P ) with values in Bη,2p, for all p ≥ 1. Let us also specify that, given a

sequence (βn)n≥1 of real-valued processes, we will henceforth denote by (βn,·)n≥1 = (βn,k)n,k≥1

a generic sequence of independent copies of (βn)n≥1 (defined on a possibly larger probability
space).

The two families of approximations at the core of our study can now be introduced as follows
(we fix T = 1 for the sake of clarity):

(i) The Donsker approximation W n := W(Sn,·), where Sn is a sequence of appropriately
rescaled random walks. To be more specific, let (Zj)j≥1 be a family of i.i.d random variables
with mean zero, unit variance and admitting moments of any order. Then, for each n ∈ N, set

Snt := n−1/2
{ i−1∑

j=1

Zj +
t− (i− 1)/n

1/n
Zi

}
if t ∈

[i− 1

n
,
i

n

]
, with i ∈ {1, . . . , n}. (8)

Recall that, by Donsker Invariance Principle (see e.g. [19, Thm. 4.20]), Sn is known to converge
in law to the standard Brownian motion in C0([0, 1];R), as n→ ∞.

(ii) The Kac-Stroock approximation W n := W(θn,·), where θn stands for the classical Kac-
Stroock approximation of the (one-dimensional) Brownian motion. Precisely, introduce a stan-
dard Poisson process N and a Bernoulli variable ζ independent of N , with P (ζ = 1) = 1/2.
Then, set

θnt :=
√
n

∫ t

0
(−1)ζ+N(ns)ds. (9)

Here again, the sequence (θn)n≥1 thus defined converges in law in C0([0, 1];R), as n → ∞, to
a standard Brownian motion (see e.g [18, 24]).

Of course, the one-dimensional weak convergence of Sn (resp. θn) towards the Brown-
ian motion is a priori not sufficient for us to apply Theorem 1.1. Our aim is to turn this
one-dimensional weak convergence into an almost sure convergence result for W(Sn,·) (resp.
W(θn,·)) with respect to the topology involved in (7), and this will appeal in particular to
Skorokhod embedding arguments (see Section 4). Together with Theorem 1.1, the strategy
ends up with the following statement.

Theorem 1.2. Under the hypotheses of Theorem 1.1, fix an initial condition ψ = ψ̃ ∈ Bγ,
and denote by Y n the (Riemann-Lebesgue) solution of (6) associated with either the Donsker
approximation W n = W(Sn,·) or the Kac-Stroock approximation W n = W(θn,·). Then, as
n→ ∞, Y n converges in law to Y in the space C0(Bγ).

The paper is organized as follows. Section 2 is devoted to a few preliminaries on the theoreti-
cal study of the Stratonovich heat equation (2). The rough-paths type analysis of this equation
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is performed in Section 3, and it will lead us to the proof of our continuity result Theorem 1.1.
In Section 4, we will tackle the approximation issue for the above-defined Donsker and Kac-
Stroock processes by exhibiting a general convergence criterion (see Proposition 4.5), which
will entail Theorem 1.2. Eventually, we have added an appendix with material on fractional
Sobolev spaces and the proof of a technical result needed in Section 3.4.

Remark 1.3. At first sight, the reader familiar with rough-paths type continuity results may
be surprised at the absence of some ‘Lévy-area’ term in our bound (7). Otherwise stated, the
convergence of an approximation W n towards W (with respect to some appropriate topology)
is sufficient to guarantee the convergence of the associated solution. In fact, on this partic-
ular point, the situation is very similar to the case of a one-dimensional SDE with so-called
commuting vector fields, i.e.,

dYt = b(Yt) dt+
∑n

i=1
σi(Yt) ◦ dBi

t with σ′i(x)σj(x) = σ′j(x)σi(x) for all i, j = 1, . . . , n.

(10)
It is a well-known fact (see for instance [28]) that under this commuting assumption, the
solution Y of (10) appears as a continuous functional of the sole noise B (that is, no need for
any Lévy-area component). In a certain way, Equation (2) fits the above pattern. Indeed, for
fixed x ∈ (0, 1), the noisy perturbation can be written as

∑∞
i=0[

√
λi ei(x)f(Yt(x))] ◦ dβit , i.e.,

we (morally) deal with n = ∞ and σi(·) =
√
λiei(x)f(·) in (10). So, at least at this heuristic

level, our continuity result (7) becomes quite natural. In a more specific way, we will see that
due to the commuting property, the Lévy-area term arising from the rough-paths analysis of
(2) can be easily reduced to some continuous functional of W (Lemma 3.8).

Remark 1.4. As we shall see it in Section 3, our proof of Theorem 1.1 heavily relies on the
properties of the fractional Sobolev spaces Bα,p, which we have recalled in the appendix. Un-
fortunately, many of these properties become much more restrictive as soon as the underlying
space dimension is larger than 2, as illustrated by the classical Sobolev embeddings. This
accounts for our choice to stick to a one-dimension heat equation. Note however that our
considerations on the theoretical study of (4) (Section 2) could be easily extended to a multi-
dimensional setting.

Remark 1.5. The results in this paper remain actually valid for any operator A of the form A =
−∂x(a ·∂x)+ c, where c ≥ 0 and a : [0, 1] → R is a continuously differentiable function. Indeed,
as explained in [10, Section 2.1], such an operator A also generates an analytic semigroup of
contractions and one can identify the domains D(Aαp ) of its fractional powers with the spaces
Bα,p, which is sufficient to follow the lines of our reasoning.

Unless otherwise stated, any constant c or C appearing in our computations below is un-
derstood as a generic constant which might change from line to line without further mention.

2. The Stratonovich integral

Recall that we are interested in the following mild equation:

Yt = Stψ +

∫ t

0
St−u(f(Yu) ◦ dWu), t ∈ [0, T ], ψ ∈ B, (11)

where (St)t≥0 denotes the strongly continuous semigroup of operators generated by −∆ with
Dirichlet boundary conditions, and W is assumed to satisfy Hypothesis 1.

The integral appearing in (11) is thus understood in some Stratonovich sense, an interpre-
tation to be clarified in a convolutional setting, which is the main purpose of this first section.
Once endowed with this interpretation, it turns out that (11) reduces to a common mild Itô
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equation with an additional drift term, and accordingly the existence and uniqueness of Y can
be derived from well-known results (see Section 2.2).

Note that the following regularity assumption on f will prevail throughout the section.

Hypothesis 2. The function f : R → R is bounded, of class C2 and with bounded derivatives.

2.1. The Stratonovich integral. In order to interpret
∫ t
0 St−u(f(Yu) ◦ dWu), we restrict

our attention to a particular class of processes Y . Namely, we assume that, on some filtered
probability space (Ω,F , (Ft)t≥0, P ), {Yt, t ∈ [0, T ]} is the unique B-valued mild solution of the
following equation:

dYt −∆Ytdt = V 1
t dt+ V 2

t dWt, Y0 = ψ ∈ B, (12)

for some Ft-adapted random fields {V i
t , t ∈ [0, T ]}, i = 1, 2, with continuous paths in B (recall

that B := L2(0, 1)). Moreover, we assume that

sup
t≤T

E[‖V 2
t ‖2B] < +∞. (13)

In fact, such a process Y is explicitly given (see e.g. [9]) by

Yt = Stψ +

∫ t

0
St−sV

1
s ds+

∫ t

0
St−s

(
V 2
s · dWs

)
. (14)

Now, a natural idea to define the integral in (11) in some Stratonovich sense would be the
following: introduce the kernel Gt−s(x, y) of St−s and, with the representation (3) of W in
mind, set

[∫ t

0
St−s (f(Ys) ◦ dWs)

]
(x) ” = ”

∞∑

j=1

√
λj

(∫ t

0
〈Gt−s(x, ∗)f(Ys), ej〉B ◦ dβjs

)
,

where the symbol ∗ denotes the space variable and each integral
∫ t
0 〈Gt−s(x, ∗) ·f(Ys), ej〉B ◦dβjs

is interpreted in the (classical) Stratonovich sense. Nevertheless, it is a well-known fact that
the process Y defined by (14) is not always a B-valued semimartingale (in other words, Y is
not always a strong solution of (14), see e.g. [9, Sec. 5.6]), making the definition of these
integrals quite obscure at first sight.

To overcome this difficulty, we consider a standard semimartingale approximation of Y : for
every ε > 0, let Y ε be the unique (strong) solution of

dY ε
t −∆εY

ε
t dt = V 1

t dt+ V 2
t dWt, Y ε

0 = ψ,

where

−∆ε :=
1

ε
(Id− (Id− ε∆)−1)

stands for the Yosida approximation of −∆. In particular, −∆ε defines a monotone and
bounded operator which converges pointwise to −∆ (see e.g. [4]). Then, for every fixed ε > 0,
Y ε is a semimartingale, and we have (see e.g. [9, Proposition 7.5])

lim
ε→0

sup
t≤T

E
[
‖Y ε

t − Yt‖2B
]
= 0. (15)

This extrinsic procedure will lead us to the following interpretation:

Proposition 2.1. With the above notations, the family of Stratonovich integrals defined for
all t ∈ [0, T ], x ∈ (0, 1) by

[∫ t

0
St−s (f(Y

ε
s ) ◦ dWs)

]
(x) := lim

uրt

∞∑

j=1

√
λj

(∫ u

0
〈Gt−s(x, ∗) · f(Y ε

s ), ej〉B ◦ dβjs
)
, (16)
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where the latter limit is considered in L2(Ω), converges in L1(Ω; C0([0, T ];B)) as ε tends to 0.
Its limit, that we denote by

∫ ·
0 S·−s (f(Ys) ◦ dWs), satisfies the relation

∫ t

0
St−s (f(Ys) ◦ dWs) =

∫ t

0
St−s (f(Ys) · dWs) +

∫ t

0
St−s

(
V 2
s · f ′(Ys) · P

)
ds, (17)

where P (ξ) := 1
2

∑∞
k=1 λkek(ξ)

2 and the notation
∫ t
0 St−s (f(Ys) · dWs) refers to the (usual) Itô

integral.

Thus, the Stratonovich integral in (11) will henceforth be understood as in the latter propo-
sition, in the class of processes Y satisfying an equation of the form (12). Note that the
relation (17) provides us with a familiar decomposition for the Stratonovich integral as the
sum of an Itô integral and a trace term, and it must be compared with the decomposition for
the (standard) Stratonovich integral.

As a first step in the proof of Proposition 2.1, observe that the two terms in the right-hand
side of (17) are indeed well-defined processes in L2(Ω;B). This is a straightforward consequence
of the boundedness of f, f ′, the trace-class assumption on W , and the fact that P defines a
uniformly bounded function.

We point out that, in the definition (16), we first restrict the integral to (0, u) with u < t
in order to avoid the singularity in the derivative of the kernel G. This will be clarified in the
proof of the next lemma.

Lemma 2.2. With the above notations, we have that, for all u ∈ (0, t),

∞∑

j=1

√
λj

(∫ u

0
〈Gt−s(x, ∗) · f(Y ε

s ), ej〉B ◦ dβjs
)

(18)

=

[∫ u

0
St−s (f(Y

ε
s ) · dWs)

]
(x) +

∫ u

0
[St−s(f

′(Y ε
s ) · V 2

s · P )](x) ds.

Proof. For any fixed (u, x) ∈ (0, t)× (0, 1) and j ∈ N, the process s 7→ 〈Gt−s(x, ∗) · f(Y ε
s ), ej〉B,

s ∈ [0, u], defines a (real-valued) semimartingale. Hence, we can use Itô’s formula to assert
that

〈Gt−s(x, ∗) · f(Y ε
s ), ej〉B = 〈Gt(x, ∗) · f(ψ), ej〉B +

∫ s

0
〈∂tGt−r(x, ∗) · f(Y εr ), ej〉B dr

+

∫ s

0
〈Gt−r(x, ∗)

{
(∆εY

ε
r + V 1

r ) · f ′(Y ε
r ) +

1

2
V 2
r · f ′′(Y ε

r )
}
, ej〉B dr

+

∞∑

k=1

√
λk

∫ s

0
〈Gt−r(x, ∗) · f ′(Y ε

r ) · V 2
r · ek, ej〉B dβkr . (19)

The hypotheses on f and V i, and the fact that s ≤ u < t, guarantee that all terms on the
right-hand side above are well-defined. More precisely, using the spectral decomposition of G
given by

Gt−r(x, y) =
∞∑

k=1

e−k
2π2(t−r)ek(x)ek(y),

one proves that, P -a.s.,
∫ s

0
〈∂tGt−r(x, ∗) · f(Y ε

r ), ej〉B dr ≤ C
∞∑

k=1

(
e−k

2π2(t−s) − e−k
2π2t
)
,
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and the latter is finite since s ∈ (0, t). As far as the second pathwise integral on the right-hand
side of (19) is concerned, we have, for instance,

E

[∣∣∣∣
∫ s

0
〈Gt−r(x, ∗) ·∆εY

ε
r · f ′(Y ε

r ), ej〉B dr
∣∣∣∣
2
]
≤ C E

[∫ s

0

∫ 1

0
Gt−r(x, y)|[∆εY

ε
r ](y)|2 dydr

]

≤ C
(
sup
r≤T

E[‖Y ε
r ‖2B]

)∫ s

0

1√
t− r

dr < +∞.

Here, we have used the fact that 0 ≤ Gt−r(x, y) ≤ (2π(t − r))−1/2 e
−

(x−y)2

2(t−r) . Similarly, one
easily proves that the last term in (19) is a well-defined square-integrable random variable.

Plugging the expression (19) in (18) and using the definition of the (standard) Stratonovich
integral (see e.g. formula (3.9) in [19, p. 156]), we end up with

∞∑

j=1

√
λj

(∫ u

0
〈Gt−s(x, ∗) · f(Y εs ), ej〉B ◦ dβjs

)

=
∞∑

j=1

√
λj

(∫ u

0
〈Gt−s(x, ∗) · f(Y εs ), ej〉B dβjs

)

+
1

2

∞∑

j=1

λj

∫ u

0
〈Gt−s(x, ∗) · f ′(Y ε

s ) · V 2
s · ej , ej〉B ds

=

[∫ u

0
St−s (f(Y

ε
s ) · dWs)

]
(x) +

∫ u

0

[
St−s(f

′(Y ε
s ) · V 2

s · P )
]
(x) ds,

which concludes the proof. �

We can now go back to our main statement.

Proof of Proposition 2.1. First, owing to the previous lemma, we have that the limit on the
right-hand side of (16) equals to

[∫ t

0
St−s (f(Y

ε
s ) · dWs)

]
(x) +

∫ t

0
[St−s(f

′(Y ε
s ) · V 2

s · P )](x) ds.

This can be proved using the bounded convergence theorem. Hence, the proof reduces to the
two assertions:

lim
ε→0

sup
t≤T

E

[ ∥∥∥∥
∫ t

0
St−s (f(Y

ε
s ) · dWs)−

∫ t

0
St−s (f(Ys) · dWs)

∥∥∥∥
B

]
= 0. (20)

and

lim
ε→0

sup
t≤T

E

[ ∥∥∥∥
∫ t

0
St−s(f

′(Y ε
s ) · V 2

s · P )ds−
∫ t

0
St−s(f

′(Ys) · V 2
s · P )ds

∥∥∥∥
B

]
= 0. (21)
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Let us first deal with (20). By the isometry property of the stochastic integral, the boundedness
of St−s and the assumptions on f , we have:

E

[ ∥∥∥∥
∫ t

0
St−s (f(Y

ε
s ) · dWs)−

∫ t

0
St−s (f(Ys) · dWs)

∥∥∥∥
2

B

]

= E

[ ∫ t

0

∞∑

k=1

λk‖St−s([f(Y ε
s )− f(Ys)]ek)‖2B ds

]

≤
∞∑

k=1

λk E

[ ∫ T

0

∫ 1

0
|f(Y ε(s, y))− f(Y (s, y))|2|ek(y)|2 dyds

]

≤ C
∞∑

k=1

λk sup
t≤T

E
[
‖Y ε

t − Yt‖2B
]
≤ C sup

t≤T
E
[
‖Y ε

t − Yt‖2B
]
,

upon recalling that
∑∞

k=1 λk <∞.
In order to prove (21), we use the Sobolev embedding L1(0, 1) ⊂ B− 1

4
−ε and the assumptions

on f and V 2. In fact, we have

E

[∥∥∥
∫ t

0
St−s

(
[f ′(Y ε

s )− f ′(Ys)] · V 2
s · P

)
ds
∥∥∥
B

]
(22)

≤ C ‖P‖B∞

∫ t

0
|t− s|− 1

4
−εE

[
‖[f ′(Y ε

s )− f ′(Ys)] · V 2
s ‖L1

]
ds

≤ C ‖P‖B∞

∫ t

0
|t− s|− 1

4
−εE

[
‖[f ′(Y ε

s )− f ′(Ys)]‖B‖V 2
s ‖B

]
ds

≤ C
(
sup
t≤T

E[‖Y ε
t − Yt‖2B]1/2

)(
sup
t≤T

E[‖V 2
t ‖2B]1/2

)

(recall that ‖ · ‖B∞
refers to the supremum norm on [0, 1]). Therefore, by the assumptions

on V 2, the convergence (15) guarantees that (20) and (21) hold, and this lets us conclude the
proof. �

2.2. Existence and uniqueness of solution. With the notations of the previous section,
consider the following mild (Itô) equation:

Yt = Stψ +

∫ t

0
St−s (f(Ys) · dWs) +

∫ t

0
St−s(f

′(Ys) · f(Ys) · P ) ds, (23)

where we recall that P (ξ) =
∑∞

k=1 λkek(ξ)
2. Hypotheses 1 and 2 allow us to apply standard

methods and guarantee that this equation admits a unique L2(Ω;B)-valued solution Y (see [9]).
In particular, we observe that Y solves an equation of the form (12) with V 1

t = f ′(Yt) ·f(Yt) ·P
and V 2

t = f(Yt) and these random fields fulfill the assumptions specified in the previous section.

Thus, for all t ∈ [0, T ], we can define the Stratonovich integral
∫ t
0 St−s (f(Ys) ◦ dWs) through

Proposition 2.1 and we know that
∫ t

0
St−s (f(Ys) ◦ dWs) =

∫ t

0
St−s (f(Ys) · dWs) +

∫ t

0
St−s(f

′(Ys) · f(Ys) · P )ds,

which yields that Y is also a solution of (11).

Conversely, due to (17), it is readily checked that any solution of (11) in the class of processes
satisfying an equation of the form (12) is also a solution of (23) (use the uniqueness of V 1, V 2

in (14)). This provides us with the following existence and uniqueness result.
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Theorem 2.3. Assume that Hypotheses 1 and 2 are both satisfied and that ψ ∈ B. Then,
there exists a unique B-valued process {Yt, t ∈ [0, T ]} which solves

Yt = Stψ +

∫ t

0
St−u(f(Yu) ◦ dWu), t ∈ [0, T ].

Moreover, Y has a version with continuous paths and it holds that supt≤T E[‖Yt‖2B] <∞.

3. A rough-paths type analysis of the equation

Let us now turn to the proof of Theorem 1.1. As announced in the Introduction, our strategy
is based on a rough-paths type expansion of the equation. Accordingly, a few ingredients taken
from the so-called convolutional rough paths theory, that is rough paths theory adapted to mild
evolution equation, must be introduced in the first place.

3.1. Tools from (convolutional) rough paths theory. We gather here some preliminary
material borrowed from [16] (see also [11, 10]). As underlined in the latter references, a key
point towards a fruitful pathwise analysis of (4) lies in the following elementary observation:
due to the semigroup property St+t′ = St · St′ , it holds that, for any s < t,

Yt − Ys =

∫ t

s
St−u(f(Yu) ◦ dWu) +

∫ s

0

[
St−u − Ss−u

]
(f(Yu) ◦ dWu)

=

∫ t

s
St−u (f(Yu) ◦ dWu) + atsYs, where ats := St−s − Id .

Otherwise stated, by setting (δ̂Y )ts := (Yt − Ys)− atsYs, the equation (4) can be equivalently
written in the convenient form:

Y0 = ψ, (δ̂Y )ts =

∫ t

s
St−u (f(Yu) ◦ dWu) , 0 ≤ s ≤ t ≤ 1. (24)

This should be compared with the behaviour of solutions to standard (stochastic) differential

equations: if Xt = a +
∫ t
0 σ(Xu) dBu, then (δX)ts := Xt − Xs =

∫ t
s σ(Xu) dBu. Then, in

a rough-paths setting, we are naturally led to extend the definition of δ̂ to processes with 2
variables, as follows:

Notation 3.1. For all processes y : [0, T ] → B and z : S2 → B, where S2 := {(s, t) ∈ [0, T ]2 :
s ≤ t} denotes the two-dimensional simplex, we set, for s ≤ u ≤ t ∈ [0, T ]:

(δy)ts := yt − ys, (δ̂y)ts := (δy)ts − atsys = yt − St−sys, (25)

(δ̂z)tus := zts − ztu − St−uzus. (26)

To make the notations (25)-(26) even more legitimate in this convolutional context, let us
point out the following algebraic properties:

Proposition 3.2. For any y : [0, T ] → B, it holds:
(i) Telescopic sum: δ̂(δ̂y)tus = 0 and (δ̂y)ts =

∑n−1
i=0 St−ti+1(δ̂y)ti+1ti for any partition

{s = t0 < t1 < . . . < tn = t} of an interval [s, t] of [0, T ].

(ii) Chasles relation: if Jts :=
∫ t
s St−u (yu · dWu), then δ̂J = 0.

Both points (i) and (ii) are straighforward consequences of the semigroup property. Now, in

accordance with the new expression (24) for the equation, a δ̂-version of the classical Hölder
norm must come into the picture. To this end, fix a subinterval I ⊂ [0, T ] and a Banach space
V . Then, if y : I → V and λ > 0, set

N [y; Ĉλ(I;V )] := sup
s<t∈I

‖(δ̂y)ts‖V
|t− s|λ

, (27)
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and define Ĉλ(I;V ) as the set of processes y : I → V such that N [y; Ĉλ(I;V )] <∞.

As we will see it in the sequel, a proper control for the expansion of
∫ t
s St−u(f(Yu) ◦ dWu)

also requires the extension of both definitions (5) and (27) to processes with 2 or 3 variables.
Precisely, if z : S2 → V and h : S3 → V , where S3 := {(t, u, s) ∈ [0, T ]3 : s ≤ u ≤ t}, we set

N [z; Cλ2 (I;V )] := sup
s<t∈I

‖zts‖V
|t− s|λ

, N [h; Cλ3 (I;V )] := sup
s<u<t∈I

‖htus‖V
|t− s|λ

, (28)

and we define Cλ2 (I;V ) (resp. Cλ3 (I;V )) along the same lines as Ĉλ(I;V ). Observe for instance

that if y ∈ Cλ2 (I;L(V,W )) and z ∈ Cβ2 (I;V ), then the process h defined as htus = ytuzus
(s ≤ u ≤ t ∈ I) belongs to Cλ+β3 (I;W ).

Note that when I = [0, T ], we will more simply write Cλk (V ) := Cλk (I;V ) for k ∈ {1, 2, 3}.
Besides, from now on, we use the following convenient notation for products of processes.

Notation 3.3. If g : Sn → L(V,W ) and h : Sm → W (with n,m ∈ {1, 2, 3}), we define the
product gh : Sn+m−1 →W by the formula

(gh)t1 ...tm+n−1 := gt1...tnhtn...tn+m−1 . (29)

With this convention, it is readily checked that if g : S2 → L(Bκ,Bα) and h : [0, T ] → Bκ,
then δ̂(gh) : S3 → Bα obeys the rule:

δ̂(gh) = (δ̂g)h− g(δh). (30)

To end up with this toolbox, let us report what may be seen as the cornerstone result of the
convolutional rough paths theory, namely the existence of (some kind of) an inverse operator

for δ̂, denoted by Λ̂, and which will play a prominent role in our forthcoming decomposition
(32). In brief, this operator allows us to get both a nice expression and a sharp estimate for
the regular terms, i.e., the terms with Hölder regularity strictly larger than 1, that arise from

the expansion of
∫ t
s St−u(f(Yu) ◦ dWu) (see in particular the proof of Lemma 3.11).

Theorem 3.4. Fix an interval I ⊂ [0, T ], a parameter κ ≥ 0 and let µ > 1. For any

h ∈ Cµ3 (I;B) ∩ Im δ̂, there exists a unique element

Λ̂h ∈ ∩α∈[0,µ)Cµ−α2 (I;Bα)
such that δ̂(Λ̂h) = h. Moreover, Λ̂h satisfies the following contraction property: for all α ∈
[0, µ),

N [Λ̂h; Cµ−α2 (I;Bα)] ≤ cα,µN [h; Cµ3 (I;B)]. (31)

The proof of this result can be found in [16, Theorem 3.5].

3.2. A rough-paths type expansion of the solution. We are now ready to settle our
reasoning, which applies to a smooth enough vector field f :

Hypothesis 3. The function f : R → R in (24) is of class C3, bounded and with bounded
derivatives.

Our main task will actually consist in establishing the following pathwise decomposition for
the solution Y to (24):

Theorem 3.5. Assume that both Hypotheses 1 and 3 hold true. Fix γ ∈ (12 ,
1
2 +η) and assume

that ψ ∈ Bγ . Then the δ̂-variations of the solution Y to (24) can be expanded as

(δ̂Y )ts =

∫ t

s
St−u(f(Yu) ◦ dWu) = LWts (f(Ys)) + LWW

ts (f(Ys) · f ′(Ys)) + Λ̂ts
(
RY
)
, (32)
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where we have set, for all s < u < t,

LWts (ϕ) :=

∫ t

s
St−u(ϕ · dWu), (33)

LWW
ts (ϕ) :=

∫ t

s
St−u (ϕ · (δW )us · dWu) +

∫ t

s
St−u (ϕ · P ) du, (34)

and
RYtus := −δ̂

(
LW f(Y ) + LWW

(
f(Y ) · f ′(Y )

))
tus
. (35)

The theorem must be read as follows: in the expansion of
∫ t
s St−u(f(Yu) ◦ dWu), we can

exhibit a main term, namely

LWts (f(Ys)) + LWW
ts (f(Ys) · f ′(Ys)),

and a residual term Λ̂ts
(
RY
)
with Hölder regularity strictly larger than 1, in the sense of

Theorem 3.4 (take α = 0 in (31)). Besides, from the decomposition (32), we can somehow
conclude that the whole dynamics induced by W is ”encoded” through the two (stochastic)
operator-valued processes LW and LWW . So, before we turn to the proof of (32), let us
elaborate on the properties of these two processes.

3.3. The couple (LW , LWW ). At this point, we consider LWts and LWW
ts as stochastic linear

operators acting on the space of smooth functions ϕ. The following (straightforward) relation
accounts for the algebraic behaviour of the couple (LW , LWW ): it is the convolutional analog
of the classical Chen’s relation between a process and its Lévy area (see [15]).

Proposition 3.6. The processes LW and LWW obey the following algebraic rules: For all
s < u < t and all smooth function ϕ,

(δ̂LW )tus(ϕ) = 0 , (δ̂LWW )tus(ϕ) = LWtu (ϕ · (δW )us). (36)

Now, it matters to identify the regularity properties of LW and LWW as 2-variables processes.
A first clue in this direction is given by the following (a.s.) regularity result for the noise W
itself.

Lemma 3.7. Under Hypothesis 1, one has (a.s.) W ∈ C 1
2
−ε(Bη,2p) for every integer p ≥ 1

and every small ε > 0.

Proof. By using our forthcoming Proposition 4.3, we deduce that

E
[
‖(δW )ts‖2pqBη,2p

]
≤ Cp,qE

[
|(δβ)ts|2pq

]
≤ Cp,q |t− s|pq ,

for all q ≥ 1, and the result is now a straightforward consequence of the Garsia-Rodemich-
Rumsey Lemma 6.1 (take δ∗ = δ and R = δW in the latter statement). �

Our second ingredient towards the regularity properties of (LW , LWW ) relies on two suc-
cessive observations. First, due to their relative simplicity, the two expressions (33)-(34) can
be integrated by parts. Then, owing to the some obvious commuting properties, we can turn
LWW into an easy-to-handle functional of δW . This is what we propose to detail in the proof
of the following Lemma.

Lemma 3.8. For every smooth function ϕ and all s < t ∈ [0, T ], the following formulas hold
true (a.s.):

LWts (ϕ) = St−s(ϕ · (δW )ts)−
∫ t

s
∆St−u(ϕ · (δW )tu) du, (37)

LWW
ts (ϕ) =

1

2

{
St−s(ϕ · (δW )2ts)−

∫ t

s
∆St−u

(
ϕ ·
[
(δW )2tu + 2(δW )tu · (δW )us

])
du

}
. (38)
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Proof. With the expansion (3) in mind, it is easily checked, by setting WN
t :=

∑N
i=1

√
λiβ

i
tei,

that LWts (ϕ) = limN→∞
∑N

i=1

∫ t
s St−u(ϕ · dWN

u ) and
∫ t

s
St−u(ϕ · (δW )us · dWu) = lim

N→∞

∫ t

s
St−u(ϕ · (δWN )us · dWN

u ),

where the limits are taken in L2(Ω,B). The proof then reduces to applications of Itô’s formula
and we only elaborate on (38). For fixed i, j ∈ {1, . . . , N}, apply Itô’s formula to the (random)

function F i,js,t : [s, t]× R× R → B defined by

F i,js,t (u, x, y) := St−u(ϕ · ei · ej)
[
(x− βis)(y − βjs)− (δβi)ts(δβ

j)ts
]

so as to deduce

0 = F i,js,t (t, β
i
t , β

j
t ) = F i,js,t (s, β

i
s, β

j
s)−

∫ t

s
∆St−u(ϕ · ei · ej)

[
(δβi)us(δβ

j)us − (δβi)ts(δβ
j)ts
]
du

+

∫ t

s
St−u(ϕ ·ei ·ej)(δβi)us dβju+

∫ t

s
St−u(ϕ ·ei ·ej)(δβj)us dβiu+1{i=j}

∫ t

s
St−u(ϕ ·ei ·ej) du.

By taking the sum over i, j, we deduce the formula

St−s(ϕ · (δWN )2ts)−
∫ t

s
∆St−u

(
ϕ · [(δWN )2ts − (δWN )2us]

)
du

= 2

∫ t

s
St−u(ϕ · (δWN )us · dWN

u ) +

∫ t

s
St−u

(
ϕ ·
( N∑

i=1

λie
2
i

))

and by passing to the limit (in L2(Ω,B)), we get

LWW
ts (ϕ) =

1

2

{
St−s(ϕ · (δW )2ts) +

∫ t

s
∆St−u

(
ϕ · [(δW )2ts − (δW )2us]

)
du

}
.

Formula (38) immediately follows.
�

We are now in a position to extend both LWts and LWW
ts to larger classes of functions ϕ and

retrieve the following (a.s.) bounds, which will be at the core of our identification procedure:

Proposition 3.9. Under the hypotheses of Theorem 3.5, for any small ε > 0, there exists
ε̃ > 0 and p ≥ 1 such that (almost surely)

N [LW ; C
1
2
−ε

2 (L(B,B))] +N [LW ; C( 1
2
−γ+η)−ε

2 (L(B1/2,Bγ))] +N [LW ; C
1
4
−ε

2 (L(B∞,B∞))]

≤ cε,ε̃,pN [W ; C 1
2
−ε̃(Bη,2p)], (39)

N [LWW ; C1−ε
2 (L(B,B))] +N [LWW ; C(1−γ+η)−ε

2 (L(B1/2,Bγ))] +N [LWW ; C
3
4
−ε

2 (L(B∞,B∞))]

≤ cε,ε̃,pN [W ; C 1
2
−ε̃(Bη,2p)]2, (40)

for some constant cε,ε̃,p.

Note here how important the assumption γ < 1
2 + η in Theorem 3.5 to ensure that (12 − γ+

η)− ε > 0 for any small enough ε > 0.

Proof. In fact, thanks to the representation formulas (37)-(38) and the pathwise regularity
of W (Lemma 3.7), all of these bounds can be derived from the classical properties of the
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fractional Sobolev spaces (see Appendix A). For instance, owing to (72), one has, for any p ≥ 1
and α ≥ 1

4p ,

‖ϕ · (δW )ts‖B−α ≤ cα,p‖(δW )ts‖L2p(0,1)‖ϕ‖B, (41)

so that for any ε̃ small enough,

‖St−s(ϕ · (δW )ts)‖B ≤ cα,p |t− s|−α ‖(δW )ts‖L2p(0,1)‖ϕ‖B (use (70))

≤ cα,p,ε̃ |t− s| 12−ε̃−αN [W ; C 1
2
−ε̃(Bη,2p)] ‖ϕ‖B .

In the same way,

‖∆St−u(ϕ · (δW )tu‖B ≤ cα,p |t− s|−1−α ‖(δW )ts‖L2p(0,1)‖ϕ‖B (use (70))

≤ cα,p,ε |t− s|( 12−ε̃−α)−1 N [W ; C 1
2
−ε̃(Bη,2p)] ‖ϕ‖B .

By taking α small enough, i.e., p large enough, we get the expected bound, namely

N [LW ; C
1
2
−ε

2 (L(B,B))] ≤ cε,ε̃,pN [W ; C 1
2
−ε̃(Bη,2p)].

The other estimates for LW can be proved along the same lines. As far as LWW is concerned,
observe for instance that if ε > 0 is small enough, then one has

‖∆St−u(ϕ · (δW )tu · (δW )us)‖Bγ

≤ c |t− u|(η−γ)−1 ‖ϕ · (δW )tu · (δW )us‖Bη

≤ c |t− u|(η−γ)−1 ‖(δW )tu · (δW )us‖Bη‖ϕ‖B1/2
(use (73))

≤ c |t− u|(η−γ)−1 ‖(δW )tu‖Bη,4‖(δW )us‖Bη,4‖ϕ‖B1/2
(use (74))

≤ cε |t− u|( 12+η−γ−ε̃)−1 |u− s| 12−ε̃N [W ; C 1
2
−ε̃(Bη,4)]2‖ϕ‖B1/2

,

which entails that

N [LWW ; C(1−γ+η)−ε
2 (L(B1/2,Bγ))] ≤ cε,ε̃,pN [W ; C 1

2
−ε̃(Bη,4)]2.

The (analogous) proofs for the other bounds are left to the reader. �

3.4. Proof of Theorem 3.5. First, we need to justify that the right-hand side of the decom-
position (32) is well-defined. This will rely (among others) on the following a priori controls
for the solution Y . For the sake of clarity, we have postponed the proof of this statement to
Appendix B.

Lemma 3.10. Under the hypotheses of Theorem 3.5, one has (almost surely)

Y ∈ Ĉ2η(B∞) ∩ C0(Bγ), (42)

KY := δ̂Y − LW f(Y ) ∈ C
1
2
+η

2 (B). (43)

Recall that according to our convention (29), the definition ofKY in (43) must be understood

as KY
ts := (δ̂Y )ts − LWts (f(Ys)) for every s < t ∈ [0, T ].

Lemma 3.11. Under the hypotheses of Theorem 3.5, let Z be the process given by Z0 = ψ and

(δ̂Z)ts = LWts (f(Ys)) + LWW
ts (f(Ys) · f ′(Ys)) + Λ̂ts

(
RY
)
. (44)

Then, almost surely, Z is well-defined as an element of Ĉ2η(B∞) ∩ C0(Bγ), and there exists a
constant λ > 0 such that for any subinterval I = [ℓ1, ℓ2] ⊂ [0, T ], one has

N [Z; Ĉ2η(I;B∞)] +N [Z; C0(I;Bγ)] ≤ ‖Zℓ1‖Bγ + cW,f |I|λN [Y ;Q(I)], (45)

where we have set

N [Y ;Q(I)] := N [Y ; Ĉ2η(I;B∞)] +N [Y ; C0(I;Bγ)] +N [KY ; C
1
2
+η

2 (I;B)]
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Proof. First, according to Theorem 3.4, we need to justify that RY ∈ Cµ3 (B) for some µ > 1.
To this end, expand R using the algebraic rules (30) and (42), which gives

RYtus = LWtuNus + LWW
tu δ(f(Y ) · f ′(Y ))us, (46)

with Nus := δ(f(Y ))us − (δW )us · f(Ys) · f ′(Ys). Thanks to (40) and (42), it is readily checked

that LWW δ(f(Y ) · f ′(Y )) ∈ C1+2η−ε
3 (B) for any small ε > 0, since

‖δ(f(Y ) · f ′(Y ))us‖B ≤ c ‖(δY )us‖B ≤ c {‖(δ̂Y )us‖B + ‖ausYs‖B}
≤ c {|u − s|2ηN [Y ; C2η(B∞)] + |u− s|γN [Y ; C0(Bγ)]},

where we have used (71) to get the last inequality (recall that ats := St−s − Id).

Then, as far as LWN is concerned, let us expand N using standard differential calculus, which
provides us with the expression

Nus =

∫ 1

0
dr f ′(Ys + r(δY )us) ·

{
KY
us + ausYs + LaWus (f(Ys))

}

+

∫ 1

0
dr
[
f ′(Ys + r(δY )us)− f ′(Ys)

]
· (δW )us · f(Ys), (47)

where the additional operator-valued process LaW is defined by

LaWts (ϕ) :=

∫ t

s
atu(ϕ · dWu) = ats(ϕ · (δW )ts)−

∫ t

s
∆St−u(ϕ · (δW )tu)du.

Now, since LW ∈ C
1
2
−ε

2 (L(B,B)), it is sufficient to prove that N ∈ C
1
2
+ε

2 (B) for some small
ε > 0. But, with the expansion (47) in hand, this becomes an easy consequence of the a priori
controls given by Lemma 3.10, together with the regularity property:

N [LaW ; C( 1
2
+η)−ε

2 (L(B1/2,B))] ≤ cε,ε̃,pN [W ; C 1
2
−ε̃(Bη,2p)],

derived from (73). Note in particular how important the assumption γ > 1/2, insofar as, by
(71),

‖f ′(Ys + r(δY )us) · (ausYs)‖B ≤ Cf‖ausYs‖B ≤ C|u− s|γ N [Y ; C0(Bγ)].
We are thus in a position to apply Λ̂ to RY , and so Z is properly defined through (44). The

regularity of Z and the bound (45) are immediate consequences of (39)-(40) and the contraction

property (31) of Λ̂. The details are left to the reader.
�

Remark 3.12. Although not optimal, the two regularity results (42) and (43) are thus sufficient
for us to prove that the right-hand side of the decomposition (32) is indeed well-defined. We
also retrieve an important stability phenomenon here: Y and Z both belong to the same space
Ĉ2η(B∞)∩C0(Bγ). A posteriori, this accounts for our choice in favor of this particular topology.

We can eventually proceed to prove Theorem 3.5.

Proof of Theorem 3.5. We need to identify the increments of Y with those of the process Z
defined in Lemma 3.11. To do so, we naturally rely on some expansion of the right-hand side
of (23). Precisely, we have that

∫ t

s
St−u(f(Yu) · dWu) +

∫ t

s
St−u(P · f(Yu) · f ′(Yu)) du

= LWts (f(Ys)) + LWW
ts (f(Ys) · f ′(Ys)) + JYts ,
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with

JYts :=

∫ t

s
St−u(P · δ(f(Y ) · f ′(Y ))us) du+

∫ t

s
St−u(N

Y
us · dWu), (48)

where the process NY
ts = δ(f(Y ))ts − (δW )ts · f(Ys) · f ′(Ys) has already been considered in the

proof of Lemma 3.11. Therefore, with this notation, it holds that

δ̂(Z − Y ) = Λ̂ts(R
Y )− JYts .

Now, by the contraction property (31), we know that Λ̂(RY ) ∈ Cµ12 (B) for some µ1 > 1. Besides,
with the same ingredients as in the proof of Lemma 3.10 (Burkholder-Davis-Gundy inequality
plus Lemma 6.1, see Appendix B), we can easily lean on the expansion (47) of N to prove

that JY ∈ Cµ22 (B) for some µ2 > 1 (note that δ̂JY = RY ). Consequently, δ̂(Z − Y ) ∈ Cµ2 (B)
with µ = inf(µ1, µ2) > 1, and this entails that δ̂(Z − Y ) = 0. Indeed, for any partition
P[s,t] = {s = t1 < . . . < tn = t} of [s, t], one has, due to the telescopic sum property reported
in Proposition 3.2,

‖δ̂(Z − Y )ts‖B ≤
∑

i

‖δ̂(Z − Y )ti+1ti‖B ≤ c
∑

i

|ti+1 − ti|µ ≤ |P[s,t]|µ−1 |t− s| ,

and we conclude by letting the mesh |P[s,t]| := maxi |ti+1 − ti| tend to 0. �

As a straightforward consequence of the decomposition (32), we can exhibit an almost sure
bound for Y in terms of W . Indeed, by plugging the estimate (45) back into the equation, we
deduce that for any subinterval I = [ℓ1, ℓ2] ⊂ [0, T ],

N [Y ; Ĉ2η(I;B∞)] +N [Y ; C0(I;Bγ)] ≤ ‖Yℓ1‖Bγ + CW |I|λN [Y ;Q(I)]

for some constant λ > 0, and similar estimates for KY = LWW (f(Y ) · f ′(Y )) + Λ̂(RY ) finally
show that

N [Y ;Q(I)] ≤ ‖Yℓ1‖Bγ + CW |I|λN [Y ;Q(I)].

At this point, a basic patching argument easily leads us to the following statement:

Corollary 3.13. Under the hypotheses of Theorem 3.5, there exist ε > 0 and p ≥ 1 such that

N [Y ;Q([0, T ])] ≤ Gε,p
(
‖ψ‖Bγ ,N [W ; C 1

2
−ε(Bη,2p)]

)
(49)

for some deterministic function Gε,p : (R
+)2 → R

+ bounded on bounded sets.

3.5. Comparison with smooth solutions. The previous considerations will allow us to
prove our continuity result (Theorem 1.1) and for this purpose, we first go back to the case

where the driving noise is an absolutely continuous process W̃ (with values in Bη,2p), assumingly
defined on the same probability space as W . In this situation, our mild equation is naturally
understood in a pathwise sense as a classical (Riemann-Lebesgue) mild equation, i.e.,

Ỹt = Stψ̃ +

∫ t

0
St−u(f(Ỹu) · dW̃u) = Stψ̃ +

∫ t

0
St−u(f(Yu) · W̃ ′

u) du, (50)

and the (pathwise) existence and uniqueness of the solution Ỹ follows from standard PDE

results. The key step towards a comparison between Y and Ỹ lies in the following result,
which points out the similarity between the couple (LW , LWW ) at the core of the previous

considerations and the couple (LW̃ , LW̃ W̃ ) constructed from W̃ :



STRATONOVICH HEAT EQUATION 17

Lemma 3.14. Define the operator-valued processes LW̃ and LW̃W̃ in the classical Riemann-
Lebesgue sense as

LW̃ts (ϕ) :=

∫ t

s
St−u(ϕ · dW̃u) , LW̃W̃

ts (ϕ) :=

∫ t

s
St−u

(
ϕ · (δW̃ )us · dW̃u

)
, (51)

for every smooth function ϕ. Then both formulas (37) and (38) remain valid when substituting

W̃ for W , and accordingly the bounds (39) and (40) hold true for W̃ as well.

Proof. It suffices to replace the use of Itô’s formula in the proof of Lemma 3.8 with standard in-

tegration by parts. Indeed, as an absolutely continuous process, W̃ obeys the rules of standard
differential calculus and one has for instance

W̃2

ts :=

∫ t

s
(δW̃ )us · dW̃u =

1

2
(δW̃ )2ts.

Consequently, it holds that

LW̃ W̃
ts ϕ =

∫ t

s
St−u(ϕ · du(W̃2

us))

=

∫ t

s
St−u(ϕ · du(W̃2

us − W̃2

ts))

=
1

2
St−u(ϕ · (δW̃ )2ts)−

1

2

∫ t

s
∆St−u(ϕ · [(δW̃ )2ts − (δW̃ )2us])du

=
1

2
St−u(ϕ · (δW̃ )2ts)−

1

2

∫ t

s
∆St−u(ϕ ·

[
(δW̃ )2us + 2(δW̃ )tu · (δW̃ )us

]
) du,

which precisely fits the pattern of (38). �

Another consequence of the similarity between (LW , LWW ) and (LW̃ , LW̃W̃ ) through the two
formulas (37) and (38) is a set of (readily-checked) Lipschitz-type bounds: with the notations
of Proposition 3.9, one has, for some polynomial expression c

W,W̃
,

N [LW − LW̃ ; C
1
2
−ε

2 (L(B,B))] ≤ c
W,W̃

N [W − W̃ ; C 1
2
−ε̃(Bη,2p)], (52)

N [LWW − LW̃ W̃ ; C1−ε
2 (L(B,B))] ≤ c

W,W̃
N [W − W̃ ; C 1

2
−ε̃(Bη,2p)], (53)

and this bound remains valid for all of the other topologies involved in Proposition 3.9.

Then, as far as the solution Ỹ is concerned, note that

(δ̂Ỹ )ts = LW̃ts f(Ỹs) + LW̃ W̃
ts (f(Ỹs) · f ′(Ys)) + J Ỹts

with J Ỹts :=
∫ t
s St−u

([
δf(Ỹ )us−(δW̃ )us·f(Ys)·f ′(Ys)

]
·dW̃u

)
, and it is obvious in this (absolutely

continuous) situation that J Ỹ ∈ Cµ2 (B) for some µ > 1. Therefore, we can easily follow the
lines of our previous identification procedure (see the proofs of Lemma 3.11 and Theorem 3.5)

in order to exhibit a similar formula for the δ̂-variations of Ỹ :

Lemma 3.15. Under the hypotheses of Theorem 1.1, assume that ψ̃ ∈ Bγ. Then the δ̂-

variations of the solution Ỹ to (50) can be expanded as

(δ̂Ỹ )ts = LW̃ts (f(Ỹs)) + LW̃ W̃
ts (f(Ỹs) · f ′(Ỹs)) + Λ̂ts

(
RỸ
)
, (54)

where RỸtus := −δ̂
(
LW̃ f(Ỹ ) + LW̃W̃

(
f(Ỹ ) · f ′(Ỹ )

))
tus

. In particular, the bound (49) remains

valid for Ỹ when replacing ψ (resp. W ) with ψ̃ (resp. W̃ ).
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With these identifications in hand, the proof of Theorem 1.1 becomes a matter of a standard
rough-paths argument, and we only sketch out the main steps of the procedure (see e.g. the
proof of [10, Lemma 5.2] for further details on the computations).

Proof of Theorem 1.1. In order to compare Y with Ỹ , we can now rely on their respective
decompositions (32) and (54). By setting g := ff ′, we get that

δ̂(Y − Ỹ )ts =
{[
LWts − LW̃ts

]
f(Ys) +

[
LWW
ts − LW̃ W̃

ts

]
(g(Ys)

}

+
{
LW̃ts
[
f(Ys)− f(Ỹs)

]
+ LW̃W̃

ts

[
g(Ys)− g(Ỹs)

]}
+ Λ̂ts

(
RY −RỸ

)
, (55)

with a similar splitting for RY −RỸ (based on the expansion (47)). Now, as in Lemma 3.11,
we consider the following appropriate topology:

N [Y − Ỹ ;Q(I)] := N [Y − Ỹ ; Ĉ2η(I;B∞)] +N [Y − Ỹ ; C0(I;Bγ)] +N [KY −K Ỹ ; C
1
2
+η

2 (I;B)].
By using the decomposition (55) and the bounds (52)-(53), standard differential calculus shows
that for any subinterval I = [ℓ1, ℓ2] of [0, T ],

N [Y − Ỹ ;Q(I)]

≤ CW,W̃ ,ψ,ψ̃

{
‖Yℓ1 − Ỹℓ1‖Bγ +N [W − W̃ ; C 1

2
−ε(Bη,2p)] + |I|λN [Y − Ỹ ;Q(I)]

}
,

for some constant λ > 0. As in Corollary 3.13, we can then rely on an elementary patching
argument to reach the global bound (7).

�

Remark 3.16. The above strategy sheds new light on the classical Itô-Stratonovich correc-
tion phenomenon arising in the approximation of stochastic heat equations. Indeed, on the

one hand, it emphasizes that the convergence of Ỹ towards Y reduces to the convergence of

(LW̃ , LW̃W̃ ) towards (LW , LWW ), and on the other, continuous bounds such as (53) clearly
highlight the relevance of the Stratonovich interpretation of LWW in this context. In a way,
the correction phenomenon is therefore more directly observed through the decomposition (34)
of LWW as the sum of an Itô integral and a trace term.

4. Approximations in law

We now aim to prove our approximation result, that is Theorem 1.2. Thus, from now on,
we assume that the hypotheses in Theorem 1.2 are all satisfied. Recall that the approximation
processes involved in this statement, namely the Donsker and the Kac-Stroock approximations,
have been specified in the Introduction (see (8) and (9)), as well as the notations W and βn,·.
Besides, in this part of the paper we take T = 1 for the sake of simplicity.

4.1. Preliminary results. As a first step towards Theorem 1.2, we need to check that the
processes we have constructed via W are indeed well-defined. To do so, we will make use of
the following bound.

Lemma 4.1. Fix n ≥ 1. Let X
(n)
1 , . . . ,X

(n)
n be independent centered random variables with

moments of any order and fn : {1, . . . , n} → R. Then for every r ≥ 1, there exists a constant
Cr which only depends on r such that

E

[∣∣
n∑

i=1

fn(i)X
(n)
i

∣∣2r
]
≤ Cr

( n∑

i=1

fn(i)
2

)r
·
(

sup
1≤i≤n

E
[
|X(n)

i |2r
])
.



STRATONOVICH HEAT EQUATION 19

This inequality can be easily deduced from the following result, which is clear for r = 1 and
was proved by Rosenthal for r > 1 (see [25, Thm. 3]).

Theorem 4.2. Let Y1, . . . , Yn be independent centered random variables satisfying E
[
|Yi|2r

]
<

∞, where r ≥ 1. Then, there exists a constant Cr such that

E

[∣∣
n∑

i=1

Yi
∣∣2r
]
≤ Cr max

{ n∑

i=1

E|Yi|2r,
( n∑

i=1

E|Yi|2
)r}

.

The transition from real-valued to Bη,2p-valued processes will be ensured by the following
result.

Proposition 4.3. Let (Xk)k≥1 be a sequence of centered i.i.d. random variables on some
probability space (Ω,F , P ). Assume that each Xi has moments of any order, and consider a
sequence (λk)k≥1 of positive numbers such that

∑
k≥1 λk k

4η <∞ for some (fixed) η > 0. Then,

for every p, q ≥ 1, the random series of functions
∑

k

√
λkXkek converges in L2pq(Ω,Bη,2p) to

an element X which satisfies

E
[
‖X‖2pqBη,2p

]
≤ Cp,q,λ,ηE

[
|X1|2pq

]
, (56)

for some constant Cp,q,λ,η which only depends on p, q and
∑

k≥1 λk k
4η.

Proof. Set Xn :=
∑n

k=1

√
λkXkek and observe that ‖Xm−Xn‖Bη,2p = ‖X(m,n),η‖L2p(0,1), where

we have set X(m,n),η(ξ) :=
∑m

k=n+1 k
2η
√
λkXkek(ξ). Then, by Jensen’s inequality,

E
[
‖X(m,n),η‖2pq

L2p(0,1)

]
= E

[(∫ 1

0
dξ |X(m,n),η(ξ)|2p

)q]
≤
∫ 1

0
dξ E

[
|X(m,n),η(ξ)|2pq

]
,

and thanks to Lemma 4.1, we get

E
[
‖X(m,n),η‖2pq

L2p(0,1)

]
≤ Cp,qE

[
|X1|2pq

] ∫ 1

0
dξ

( m∑

k=n+1

λk k
4η ek(ξ)

2

)pq

≤ Cp,qE
[
|X1|2pq

]( m∑

k=n+1

λk k
4η

)pq
(57)

due to the uniform bound ‖ek‖B∞
≤

√
2. In particular, E

[
‖Xm −Xn‖2pqBη,2p

]
tends to zero as

both m and n tend to infinity, so that Xn converges in L2pq(Ω,Bη,2p). The bound (56) can of
course be derived from (57). �

In particular, due to Hypothesis 1, we can conclude that W n = W(Sn,·) and W n = W(θn,·)
are indeed well-defined processes with values in Bη,2p. Let us now get a little bit closer to
the assumptions of Theorem 1.1 by checking that in both cases, W n admits an absolutely
continuous version.

Lemma 4.4. For any fixed n ≥ 1, both the Donsker approximation W n = W(Sn,·) and the
Kac-Stroock approximation W n = W(θn,·) have an absolutely continuous version with values
in Bη,2p, for all p ≥ 1.

Proof. Since the (deterministic) approximation grid for Sn,k does not depend on k, it is easily
seen that

W(Sn,·)t = W(Sn,·) i
n
+ n ·

(
t− i

n

)
·
{
W(Sn,·) i+1

n
−W(Sn,·) i

n

}
if t ∈

[ i
n
,
i+ 1

n

]
.

In particular, W(Sn,·) is a piecewise linear process (with values in Bη,2p) and accordingly it is
absolutely continuous.
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As far as the Kac-Stroock approximation is concerned, first we can see that it has a contin-
uous version with values in Bη,2p. Indeed, applying Proposition 4.3,

E
[∥∥δ(W(θn,·))ts

∥∥2pq
Bη,2p

]
≤ C E

[∣∣δ(θn)ts
∣∣2pq
]

= C E
[∣∣∣
∫ t

s

√
n (−1)ζ+N(nu)du

∣∣∣
2pq]

≤ Cnpq|t− s|2pq.

For the sake of clarity, we will also denote by W(θn,·) this continuous version. To prove the
existence of an absolutely continuous version, we will see that with probability 1,

W(θn,·)t =

∫ t

0
W(θ̇n,·)s ds, for any t ∈ [0, 1], (58)

where θ̇nt :=
√
n · (−1)ζ+N(nt). Indeed, thanks to Proposition 4.3, W(θ̇n,·)t is well-defined for

every t ∈ [0, 1] as an element of L2p(Ω,Bη,2p) and

E

[ ∫ 1

0
‖W(θ̇n,·)s‖Bη,2pds

]
≤
∫ 1

0

(
E
[
‖W(θ̇n,·)s‖2pBη,2p

]) 1
2p
ds ≤ Cp

∫ 1

0

(
E
[
|θ̇ns |2p

]) 1
2p
ds < ∞.

As a consequence W(θ̇n,·) is (a.s.) Bochner-integrable. Moreover, for each t ∈ [0, 1],

W(θn,·)t = lim
N→∞

N∑

k=1

√
λk θ

n,k
t ek = lim

N→∞

∫ t

0

( N∑

k=1

√
λk θ̇

n,k
s ek

)
ds in L2p(Ω,Bη,2p)

and

E

[∥∥∥
∫ t

0

( N∑

k=1

√
λk θ̇

n,k
s ek

)
ds −

∫ t

0
W(θ̇n,·)s ds

∥∥∥
2p

Bη,2p

]
≤
∫ 1

0
E
[∥∥

∞∑

k=N+1

√
λk θ̇

n,k
s ek

∥∥2p
Bη,2p

]
ds

≤ Cpq

(
sup
s∈[0,1]

E
[
|θ̇ns |2pq

])( ∞∑

k=N+1

λk k
4η
)
,

by similar arguments as in the proof of Proposition 4.3. Since the last expression tends to 0
as N → ∞, we obtain that for each t ∈ [0, 1]

W(θn,·)t =

∫ t

0
W(θ̇n,·)s ds a.s.

Thus, since {W(θn,·)t, t ∈ [0, 1]} and {
∫ t
0 W(θ̇n,·)s ds, t ∈ [0, 1]} are both continuous processes,

we can conclude that

P
{
W(θn,·)t =

∫ t

0
W(θ̇n,·)s ds, ∀t ∈ [0, 1]

}
= 1.

�

4.2. A general convergence criterion. One of our key ingredients to prove Theorem 1.2
via Theorem 1.1 lies in the following statement, which puts forward sufficient conditions for an
approximation of the noise (defined on the same probability space) to converge with respect
to the topology involved in (7).

Proposition 4.5. Let (βn)n≥1 be a sequence of centered processes and β a Brownian motion,
all defined on a same probability space (Ω,F , P ), and such that the following two conditions
are satisfied:

(i) For every integer p ≥ 1, there exists a constant Cp such that for all s, t ∈ [0, 1] and all
n ≥ 1,

E
[
|βnt − βns |2p

]
≤ Cp |t− s|p .
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(ii) For every integer p ≥ 1, there exists a constant Cp such that for all n ≥ 1,

sup
t∈[0,1]

E
[
|βnt − βt|2p

]
≤ Cpn

−νp,

for some fixed parameter ν > 0.

Then if we consider independent copies (βn,k)k≥1 (resp. (βk)k≥1) of βn (resp. β) on a same
probability space, we have that, for any integer p ≥ 1 and any ε > 0,

N [W(βn,·)−W(β·); C 1
2
−ε(Bη,2p)] −→

n→∞
0 a.s.

Let us first see how to combine the above conditions (i) and (ii) so as to exhibit convergent
bounds in Hölder topology.

Lemma 4.6. Under the hypotheses of Proposition 4.5, for all integers n, p ≥ 1, all ε ∈ (0, 1)
and s < t ∈ [0, 1], one has

E
[
|δ(βn − β)ts|2p

]
≤ Cp

|t− s|(1−ε)p
npεν

,

for some constant Cp which only depends on p.

Proof. If |t− s| ≤ n−ν , then due to the condition (i), it holds that

E
[
|δ(βn − β)ts|2p

]
≤ Cp

{
E
[
|βnt − βns |2p

]
+ E

[
βt − βs|2p

]}
≤ Cp |t− s|p ≤ Cp

|t− s|(1−ε)p
nνεp

.

On the other hand, if |t− s| > n−ν, one has, thanks to the condition (ii),

E
[
|δ(βn − β)ts|2p

]
≤ Cp sup

t∈[0,1]
E
[
|βnt − βt|2p

]
≤ Cp n

−νp ≤ Cp
|t− s|(1−ε)p

nνε
.

�

Proof of Proposition 4.5. By using successively Proposition 4.3 and Lemma 4.6, we get, for
any q ≥ 1,

E
[
‖δ
(
W(βn,·)−W(β.)

)
ts
‖2pqBη,2p

]
≤ Cp,q,ηE

[
|δ(βn − β)ts|2pq

]
≤ Cp,q,η

|t− s|(1−ε)pq
npqνε

.

We are thus in a position to apply the Garsia-Rodemich-Rumsey Lemma 6.1 (with δ∗ = δ)
and assert that, for q large enough,

E
[
N [W(βn,·)−W(β·); C 1

2
−ε(Bη,2p)]2pq

]

≤ Cp,q,η

∫∫

[0,T ]2

E
[
‖δ
(
W(βn,·)−W(β·)

)
ts
‖2pqBη,2p

]

|t− s|2pq( 12−ε)+2
dsdt

≤ Cp,q,η n
−εpqν

∫∫

[0,T ]2
|t− s|pqε−2 dsdt ≤ Cp,q,η n

−εpqν.

As a result, it holds that

P
(
N [W(βn,·)−W(β·); C 1

2
−ε(Bη,2p)] > n−εν/4

)
≤ Cp,q,η n

−εpqν/2,

which, thanks to the Borell-Cantelli Lemma, leads us to the conclusion, that is

N [W(βn,·)−W(β·); C 1
2
−ε(Bη,2p)] → 0 a.s.

as n tends to infinity. �
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Example: As an immediate illustration of Proposition 4.5, let us consider here the Wong-
Zakai approximation of a given noise W satisfying Hypothesis 1. Precisely, set

W n
t := W i

n
+ n ·

(
t− i

n

)
·
{
W i+1

n
−W i

n

}
for t ∈

[ i
n
,
i+ 1

n

]
,

and denote by Y n the solution of the equation

Y n
t = Stψ +

∫ t

0
St−u(f(Y

n
u ) · dW n

u ),

understood in the classical Riemann-Lebesgue sense. Note that W n can be equivalently de-
scribed as follows: with the expansion (3) of W in mind, i.e. W = W(β·), we have that
W n = W(βn,·), where, for each k ≥ 1, βn,k stands for the linear interpolation of βk with
mesh 1

n . Therefore, it suffices to check that the conditions (i) and (ii) in Proposition 4.5 are

satisfied by βn := βn,1, which is a matter of elementary computations (it can be also seen as
a particular case of the forthcoming Proposition 4.8).

Together with Theorem 1.1, we retrieve the following almost sure approximation result:

Proposition 4.7. Under the hypotheses of Theorem 1.1, let Y n be the Wong-Zakai approxima-
tion of (4) with mesh 1

n and initial condition ψ. Then, as n→ ∞, one has N [Y −Y n; C0(Bγ)] →
0 a.s.

This almost sure result in a non-linear situation is closely related to those of [5] or [2], where
Wong-Zakäı approximations for some parabolic type equations have been considered. We also
note that convergence in law for this type of approximations in the framework of stochastic
evolution equations has been studied in [29].

Now, let us turn to the proof of the weak approximation results of Theorem 1.2, and which
successively involve the Donsker approximation βn = Sn and the Kac-Stroock approximation
βn = θn. In both cases, we wish to exploit the criterion of Proposition 4.5, which naturally
leads us to the following 2-step procedure:

Step 1: Show that Condition (i) is satisfied, i.e., supnE
[
|βnt − βns |2p

]
≤ Cp |t− s|p.

Step 2: Find a probability space (Ω̄, F̄ , P̄ ), a sequence β̄n and a Brownian motion β̄, both
defined on (Ω̄, F̄ , P̄ ), such that β̄n ∼ βn and supt∈[0,1] Ē

[
|β̄nt − β̄t|2p

]
≤ Cpn

−νp for some fixed
parameter ν > 0.

Once these two conditions have been checked, the proof of the weak convergence Y n → Y
in C0(Bγ) becomes a straightforward consequence of Theorem 1.1 and Proposition 4.5, since
W(β̄n,·) ∼ W(βn,·) and accordingly, if Ȳ n denotes the solution of (6) associated with W̄ n :=
W(β̄n,·), it holds that Ȳ n ∼ Y n.

Note that for both approximations Sn and θn, the result in Step 2 will be derived from
a Skorokhod embedding argument (see [27]). In the Donsker situation (Proposition 4.9), this
relies on a classical strategy towards the celebrated invariance principles (see [22, Section 5.3]).
In the Kac-Stroock situation (Proposition 4.11), we will take advantage of an identification
result due to Griego, Heath and Ruiz-Moncayo (see [14]).

4.3. Donsker approximation. Here, we proceed to tackle the above 2-step procedure for
the Donsker approximation Sn.

Step 1 (Donsker case):
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Proposition 4.8. For every p ≥ 1, there exists a positive constant Cp such that, for all
0 ≤ s < t ≤ 1,

sup
n∈N

E
[
|Snt − Sns |2p

]
≤ Cp|t− s|p. (59)

Proof. First, note that Sn can also be expressed as

Snt = n1/2
n∑

i=1

(∫ t

0
1[ i−1

n
, i
n
](u) du

)
Zi.

Then, by Lemma 4.1, we have

E
[
|Snt − Sns |2p

]
= npE

[∣∣∣∣
n∑

i=1

( ∫ t

s
1[ i−1

n
, i
n
](u) du

)
Zi

∣∣∣∣
2p]

≤ Cp n
pE
[
|Z1|2p

]( n∑

i=1

(∫ t

s
1[ i−1

n
, i
n
](u) du

)2)p

≤ Cp n
p
(

max
i=1,...,n

{∫ t

s
1[ i−1

n
, i
n
](u) du

})p( n∑

i=1

∫ t

s
1[ i−1

n
, i
n
](u) du

)p
≤ Cp|t− s|p.

�

Step 2 (Donsker case):

Proposition 4.9. Let (Zi)i∈N be a sequence of i.i.d. centered random variables with unit
variance. Then, there exists a probability space (Ω̄, F̄ , P̄ ), a Brownian motion β̄ defined on it

and, for each n ≥ 1, a family of independent random variables (Z̄
(n)
i )i=1,...,n with the same law

as Zi, such that the following is satisfied. Set

S̄nt := n−1/2
{ i−1∑

j=1

Z̄
(n)
j +

t− (i− 1)/n

1/n
Z̄

(n)
i

}
if t ∈

[ i− 1

n
,
i

n

]
, with i ∈ {1, . . . , n}.

Then, for every integer p ≥ 1,

sup
t∈[0,1]

E
[
|β̄(t)− S̄nt |2p

]
≤ Cpn

−p/4.

Proof. As mentioned earlier, it is based on a general Skorokhod embedding theorem (see [27,
p. 163]), which, in our particular situation, can be stated as follows : there exists a probability

space (Ω̄, F̄ , P̄ ), a Brownian motion β̄ defined on it and, for each n ∈ N, a sequence {τ (n)i }i=1,...,n

of independent and positive random variables such that the random vector
(
β̄
(
τ
(n)
1

)
, β̄
(
τ
(n)
1 + τ

(n)
2

)
, . . . , β̄

(
τ
(n)
1 + · · ·+ τ (n)n

))

has the same law as
( 1√

n
Z1,

1√
n

(
Z1 + Z2

)
, . . . ,

1√
n

(
Z1 + · · ·+ Zn

))
.

Moreover, it holds that E
[
τ
(n)
i

]
= E

[
(Z1/

√
n)2
]
= 1

n and

E
[
|τ (n)i |m

]
≤ CmE

[( 1√
n
Zi

)2m]
≤ Cm
nm

, for any m ∈ N.

Set T n0 := 0 and T
(n)
i :=

∑i
j=1 τ

(n)
j for i ≥ 1. With this notation, we can infer that

β̄
(
T
(n)
i

)
− β̄

(
T
(n)
i−1

)
∼ 1√

n
Zi.
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We define now
Z̄

(n)
i =

√
n
{
β̄
(
T
(n)
i

)
− β̄

(
T
(n)
i−1

)}
∼ Zi

and

S̄nt = n−1/2
{ i−1∑

j=1

Z̄
(n)
j +

t− (i− 1)/n

1/n
Z̄

(n)
i

}
if t ∈

[ i− 1

n
,
i

n

]
.

Observe that, if t ∈
[
i−1
n , in

]
,

S̄nt = β̄
(
T
(n)
i−1

)
+
t− (i− 1)/n

1/n

{
β̄
(
T
(n)
i

)
− β̄

(
T
(n)
i−1

)}
,

and hence, for t ∈
[
i−1
n , in

]
, we have that

E
[∣∣β̄(t)− S̄nt

∣∣2p
]

≤ CpE
[∣∣β̄(t)− β̄

(
T
(n)
i−1

)∣∣2p
]
+ CpE

[∣∣ 1√
n
Zi
∣∣2p
]

≤ CpE
[∣∣β̄(t)− β̄

(
T
(n)
i−1

)∣∣2p
]
+ Cpn

−p.

Thus, we only need to bound the first term in the latter expression, and to this end, we will
use the following decomposition:

E
[∣∣β̄(t)− β̄

(
T
(n)
i−1

)∣∣2p
]
= An1 +An2 ,

with

An1 = E
[∣∣β̄(t)− β̄

(
T
(n)
i−1

)∣∣2p1
{|t−T

(n)
i−1|≤n

−1/4}

]

and
An2 = E

[∣∣β̄(t)− β̄
(
T
(n)
i−1

)∣∣2p1
{|t−T

(n)
i−1|>n

−1/4}

]
.

On the one hand, the maximal inequality for Brownian motion yields

An1 ≤ E
[

max
s∈[(t−n−1/4)∨0, t]

|β̄(s)− β̄(t)|2p
]
+ E

[
max

s∈[t, (t+n−1/4)∧1]
|β̄(s)− β̄(t)|2p

]

≤ 2E
[

max
h∈[0,n−1/4]

|β̄(h)|2p
]
≤ CpE

[
|β̄(n−1/4)|2p

]
≤ Cpn

−p/4. (60)

On the other hand, by Cauchy-Schwarz inequality, we have

An2 ≤ Cp

{
E
[
β̄
(
T
(n)
i−1

)4p]
+ E

[
β̄
(
t
)4p]}1/2{

P
(∣∣t− T

(n)
i−1

∣∣ > n−1/4
)}1/2

(61)

Note that, by Lemma 4.1,

E
[
β̄
(
T
(n)
i−1

)4p]
= E

[( 1√
n

(
Z1 + . . . + Zi

))4p]
≤ Cpn

−2pi2p ≤ Cp.

Thus, in order to estimate the term An2 , we only need to study the probability appearing in

(61). To do so, observe first that since t ∈ [ i−1
n , in ], we have, for n such that 1

2 n
−1/4 > 1

n (that
is, for n ≥ 3),

P
(∣∣t− T

(n)
i−1

∣∣ > n−1/4
)
≤ P

(∣∣T (n)
i−1 −

i− 1

n

∣∣ > 1

2
n−1/4

)
. (62)

Then, using again Lemma 4.1, we get

P
(∣∣T (n)

i−1 −
i− 1

n

∣∣ > 1

2
n−1/4

)
≤ Cp n

p/2E

[( i−1∑

j=1

{
τ
(n)
j − 1

n

})2p]

≤ Cp n
p/2ipn−2p ≤ Cpn

−p/2. (63)

Therefore, An2 ≤ Cp n
−p/4, which concludes the proof. �



STRATONOVICH HEAT EQUATION 25

4.4. Kac-Stroock approximation. Along the same lines as in the Donsker case, we proceed
now to analyze the Kac-Stroock approximations based on θn.

Step 1 (Kac-Stroock case):

Proposition 4.10. For every integer p ≥ 1, there exists a positive constant Cp such that, for
all 0 ≤ s < t ≤ 1,

sup
n∈N

E
[
|θnt − θns |2p

]
≤ Cp|t− s|p. (64)

Proof. We have that

E
[
|θnt − θns |2p

]
= E

[(√
n

∫ t

s
(−1)ζ+N(nu)du

)2p]
= npE

[( ∫ t

s
(−1)N(nu)du

)2p]

= Cpn
pE
[ ∫ t

s
· · ·
∫ t

s
(−1)N(nu1 )+N(nu2 )+···+N(nu2p )du1 · · · du2p

]

= Cpn
pE
[ ∫ t

s
· · ·
∫ t

s
1{u1<u2<···<u2p}(−1)N(nu1 )+N(nu2 )+···+N(nu2p )du1 · · · du2p

]
,

where in the latter equality we have used the symmetry of the integrand. Taking into account

that the two possible values of random variable (−1)N(nu1 )+···+N(nu2p ) only depend on the fact
that the exponent is even or odd, we can write the latter expression above as

Cpn
p
[ ∫ t

s
· · ·
∫ t

s
1{u1<u2<···<u2p}E

(
(−1)

∑p
i=1N(nu2i )−N(nu2i−1 )

)
du1 · · · du2p

]
. (65)

Using that for u1 < u2 < · · · < u2p, the random variables N(nu2i)−N(nu2i−1) are independent
with Poisson distribution of parameter n(u2i − u2i−1), we have that (65) is equal to

Cpn
p
[ ∫ t

s
· · ·
∫ t

s
1{u1<u2<···<u2p}e

−2n
[∑p

i=1(u2i−u2i−1 )
]
du1 · · · du2p

]
.

This term can be bounded by

Cpn
p
[ ∫ t

s
· · ·
∫ t

s
1{u1<u2} · · · 1{u2q−1<u2p}e

−2n
[∑p

i=1(u2i−u2i−1 )
]
du1 · · · du2p

]
.

= Cpn
p
(∫ t

s

∫ u2

s
e−2n(u2−u1)du1 du2

)p
= Cpn

p
(∫ t

s

1

2n
(1− e−2n(u2−s))du2

)p

≤ Cp(t− s)p.

This concludes the proof. �

Step 2 (Kac-Stroock case):

Proposition 4.11. There exists a probability space (Ω̄, F̄ , P̄ ), a Brownian motion β̄ defined
on it and, for each n ∈ N, a process θ̄n with the same law as θn in (9) such that, for any
ν ∈ (0, 14) and any p ∈ N,

sup
t∈[0,1]

E
[
|β̄(t)− θ̄n(t)|2p

]
≤ Cp,ν n

−pν, (66)

for some constant Cp,ν.

Proof. First of all, it is clear that we can suppose p(1/4 − ν) ≥ 1 (otherwise, we can use
Jensen’s inequality). Then, following the lines of [14, Section 2], we consider a probability
space (Ω̄, F̄ , P̄ ) with the following mutually independent objects defined on it:

(i) a Brownian motion β̄,
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(ii) for each n ∈ N, a sequence of independent random variables {ξ(n)i , i ∈ N} such that

ξ
(n)
i has an exponential distribution with parameter 2

√
n,

(iii) a sequence {ki, i ∈ N} of independent random variables such that P{ki = 1} = P{ki =
−1} = 1/2.

The i.i.d. random variables k1ξ
(n)
1 , k2ξ

(n)
2 , . . . , verify E

[
kiξ

(n)
i

]
= 0 and E

[(
kiξ

(n)
i

)2]
= 1

2n .
Therefore, with the same result of Skorokhod as the one quoted in the proof of Lemma 4.9 (see

[27, p. 163]), there exists a sequence of independent positive random variables τ
(n)
1 , τ

(n)
2 . . . ,

such that β̄(τ
(n)
1 ), β̄(τ

(n)
1 +τ

(n)
2 ) . . . have the same law as k1ξ

(n)
1 , k1ξ

(n)
1 +k2ξ

(n)
2 . . . , respectively.

Moreover, it holds that

E
[
τ
(n)
i

]
= E

[(
kiξ

(n)
i

)2]
=

1

2n
,

and, for each m ∈ N,

E
[
|τ (n)i |m

]
≤ CmE

[
|kiξ(n)i |2m

]
≤ Cm
nm

.

Set T
(n)
i :=

∑i
j=1 τ

(n)
j and define

τ̃
(n)
i := n−1/2

∣∣β̄
(
T
(n)
i

)
− β̄

(
T
(n)
i−1

)∣∣ , T̃
(n)
i :=

i∑

j=1

τ̃
(n)
j .

Then, let θ̄n = {θ̄n(t), t ≥ 0} be a piecewise linear process given on the grid T̃
(n)
1 , T̃

(n)
2 , . . . by

θ̄n(T̃
(n)
i ) := β̄(T

(n)
i ) ∼

i∑

j=1

kjξ
(n)
j ,

and θ̄n(0) = 0. The τ̃
(n)
i ’s are independent random variables exponentially distributed with

parameter 2n, and it is proved in [14] that the process θ̄n thus defined has the same law as θn.

Now, to show (66), we decompose the term E
[
|β̄(t)− θ̄n(t)|2p

]
as the sum of the following two

terms:

En1 := E
[
|β̄(t)− θ̄n(t)|2p 1

{t∈[0,T̃
(n)
8n ]}

]

and

En2 := E
[
|β̄(t)− θ̄n(t)|2p 1

{t>T̃
(n)
8n }

]
.

Let us first study En1 . If t belongs to A
n
ℓ :=

[
T̃
(n)
ℓ−1, T̃

(n)
ℓ

)
for some ℓ = 1, . . . , 8n, we have that

θ̄n(t)− β̄(t) = β̄
(
T
(n)
ℓ−1

)
− β̄(t) +

t− T̃
(n)
ℓ−1

τ̃
(n)
ℓ

{
β̄
(
T
(n)
ℓ

)
− β̄

(
T
(n)
ℓ−1

)}
.

So

En1 =

8n∑

ℓ=1

E
[
|β̄(t)− θ̄n(t)|2p1{t∈An

ℓ }

]

≤ Cp

8n∑

ℓ=1

E
[
|β̄(T (n)

ℓ−1)− β̄(t)|2p1{t∈An
ℓ }

]
+ Cp

8n∑

ℓ=1

E
[
|β̄(T (n)

ℓ )− β̄(T
(n)
ℓ−1)|2p1{t∈An

ℓ }

]

≤ Cp

8n∑

ℓ=1

E
[
|β̄(T (n)

ℓ−1)− β̄(t)|2p1{t∈An
ℓ }

]
+ Cp n

1−p, (67)
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where, for the last inequality, we have used the fact that β̄(T
(n)
ℓ ) − β̄(T

(n)
ℓ−1) ∼ k1ξ1. Now, for

any fixed ℓ ∈ {1, . . . , 8n}, write

E
[
|β̄(T (n)

ℓ−1)− β̄(t)|2p1{t∈An
ℓ }

]
= E

[
|β̄(T (n)

ℓ−1)− β̄(t)|2p1{t∈An
ℓ }
1
{|t−T

(n)
ℓ−1|≤n

−1/4}

]

+ E
[
|β̄(T (n)

ℓ−1)− β̄(t)|2p1{t∈An
ℓ }
1
{|t−T

(n)
ℓ−1|>n

−1/4}

]
. (68)

The first term in (68) can be bounded with the same argument as in the proof of Proposition
4.9 (see (60)), which gives

E
[
|β̄(T (n)

ℓ−1)− β̄(t)|2p1{t∈An
ℓ }
1
{|t−T

(n)
ℓ−1|≤n

−1/4}

]
≤ Cp n

−p/4.

As far as the second term in (68) is concerned, we have

E
[
|β̄(T (n)

ℓ−1)− β̄(t)|2p1{t∈An
ℓ }
1
{|t−T

(n)
ℓ−1|>n

−1/4}

]

≤
{
E
[
|β̄(t)− β̄(T

(n)
ℓ−1)|4p

]}1/2{
P̄
(
t ∈ Anℓ , |t− T

(n)
ℓ−1| > n−1/4

)}1/2
, (69)

and since

E
[∣∣β̄
(
T
(n)
ℓ−1

)∣∣4p
]
= E

[∣∣
ℓ−1∑

j=1

kjξ
(n)
j

∣∣4p
]
≤ Cpn

2pE
[∣∣k1ξ(n)1

∣∣4p
]
≤ Cp,

we only have to focus on the probability appearing in (69). To do so, let us notice that

P̄
(
t ∈ Anℓ , |t− T

(n)
ℓ−1| > n−1/4

)

≤ P̄
(
|t− T̃

(n)
ℓ−1| ≤ τ̃nℓ , |t− T

(n)
ℓ−1| > n−1/4

)

≤ P̄
(
|t− T̃

(n)
ℓ−1| ≤ τ̃nℓ , τ̃

(n)
ℓ ≤ 1

2
n−1/4, |t− T

(n)
ℓ−1| > n−1/4

)
+ P̄

(
τ̃
(n)
ℓ >

1

2
n−1/4

)

≤ P̄
(
|t− T̃

(n)
ℓ−1| ≤

1

2
n−1/4, |t− T

(n)
ℓ−1| > n−1/4

)
+ Cp n

−3p/2

≤ P̄
(
|T (n)
ℓ−1 − T̃

(n)
ℓ−1| >

1

2
n−1/4

)
+ Cp n

−3p/2.

Then

P̄
(
|T (n)
ℓ−1− T̃

(n)
ℓ−1| >

1

2
n−1/4

)
≤ Cp n

p/2
{
E
[∣∣T (n)

ℓ−1−
l − 1

2n

∣∣2p
]
+E

[∣∣T̃ (n)
ℓ−1−

l − 1

2n

∣∣2p
]}

≤ Cp n
−p/2,

where we have used the same argument as in (63) to get the last bound. Going back to (67),

we deduce that En1 ≤ Cp nn
−p/4 ≤ Cp n

−νp, since p is assumed to satisfy p(14 − ν) ≥ 1.

Eventually, we must deal with En2 . In fact, we have that

En2 ≤
{
E
[∣∣θ̄n(t)− β̄(t)

∣∣4p
]}1/2{

P
(
t > T̃

(n)
8n

)}1/2
≤ Cp

{
P
(
t >

8n∑

j=1

τ̃
(n)
j

)}1/2
,

where we have used Lemma 4.10. If we denote by Nn a Poisson process with intensity 2n, we
can write

P
(
t >

8n∑

j=1

τ̃
(n)
j

)
≤ P

(
1 >

8n∑

j=1

τ̃
(n)
j

)
≤ P

(
Nn(1) ≥ 8n

)
,
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because the τ̃
(n)
j ’s are independent random variables exponentially distributed with parameter

2n. The latter probability can be bounded by using Stirling’s inequality, as follows:

P
(
Nn(1) ≥ 8n

)
=

∞∑

k=8n

e−2n (2n)
k

k!
≤ C e−2n

∞∑

k=8n

(2n)k

√
2πk

(
k
e

)k

= C e−2n
∞∑

k=8n

(2en
k

)k 1√
2πk

≤ C e−2n
∞∑

k=8n

(e
4

)k
≤ Ce−2n.

This lets us conclude the proof. �

5. Appendix A: fractional Sobolev spaces

We gather here some classical properties of the fractional Sobolev spaces (Bα,p)α∈R,p∈N,
which are extensively used throughout the paper. We recall the notations Bα for Bα,2 and B
for B0. Let us first label the following well-known regularizing properties of the semigroup (see
[23]).

Proposition 5.1. Fix two parameters λ < α ∈ R. Then, for every ϕ ∈ Bλ and t > 0,

‖Stϕ‖Bα ≤ c t−(α−λ)‖ϕ‖Bλ
, ‖∆Stϕ‖Bα ≤ c t−1−(α−λ)‖ϕ‖Bλ

. (70)

and for every ψ ∈ Bα,
‖Stψ − ψ‖Bλ

≤ c tα−λ‖ψ‖Bα , ‖∆Stψ‖Bλ
≤ c t−1+(α−λ)‖ψ‖Bα . (71)

The next results are taken from the exhaustive book [26] on fractional Sobolev spaces. With
the notations of the latter reference, our space Bα,p (α ∈ R, p ∈ N) corresponds to F 2α

p,2. Let
us first report some properties regarding pointwise multiplication of functions. Due to the
multiplicative perturbation in (4), it is indeed natural that these results should intervene at
some point. In the statement, the notation E · F ⊂ G must be understood as ‖ϕ · ψ‖G ≤
c ‖ϕ‖E‖ψ‖F for every ϕ ∈ E,ψ ∈ F .

Proposition 5.2. The following properties hold true:

(1) ([26, Section 2.4.4]) One has

Lr(0, 1) ⊂ B−α if α ≥ 1

2r
− 1

4
, (72)

and in particular:

Lp(0, 1) · B ⊂ B−α if α ≥ 1

2p
.

(2) ([26, Section 4.6.1]) Let α1 < α2 be such that α1 + α2 > 0 and α2 >
1
4 . Then

Bα1 · Bα2 ⊂ Bα1 . (73)

In particular, Bα is an algebra as soon as α > 1
4 .

(3) ([26, Section 4.8.2]) Let α ≥ 0 and p1, p2, p ≥ 2 be such that 2α < 1
pi

(i ∈ {1, 2}) and
1
p1

+ 1
p2

= 1
p . Then

Bα,p1 · Bα,p2 ⊂ Bα,p. (74)

Let us also label here the classical Sobolev embedding

Bα,p ⊂ B∞ if 2α >
1

p
, (75)
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which yields in particular:

Bα ⊂ B∞ as soon as α >
1

4
. (76)

Finally, in order to handle the non-linearity in (4), we resort at some point to the follow-
ing stability result for composition of functions (see [26, Section 5.3.6]): if f : R → R is
differentiable with bounded derivative, then for every α ∈ [0, 12 ] and ϕ ∈ Bα,

‖f(ϕ)‖Bα ≤ cf {1 + ‖ϕ‖Bα} . (77)

Here, f is also understood as its associated Nemytskii operator, i.e., f(ϕ)(ξ) := f(ϕ(ξ)).

6. Appendix B: A priori estimates on the solution

It only remains to prove the two a priori controls (42) and (43) for the solution Y of (4) (or
equivalently (24)). To do so, we will rely on the following result, taken from [11, Lemma 6.5],
and which extends the classical Garsia-Rodemich-Rumsey in two directions: 1) it covers the

case of δ̂-variations and 2) it applies to more general processes defined on the 2-dimensional
simplex S2 = {(t, s) ∈ [0, T ]2 : t ≥ s}.

Lemma 6.1. Let δ∗ = δ or δ̂. For every α, β ≥ 0 and p, q ≥ 1, there exists a constant c such
that, for any R : S2 → Bα,p,

N [R; Cβ2 ([0, T ];Bα,p)] ≤ c
{
Uβ+ 2

q
,q,α,p(R) +N [δ∗R; Cβ3 ([0, T ];Bα,p]

}
,

where

Uβ,q,α,p(R) =

[∫

0≤u<v≤T

(
‖Rvu‖Bα,p

|v − u|β

)q
dudv

]1/q
.

Proof of Lemma 3.10. In both cases, we will resort to the previous Lemma, which essentially
reduces the problem to moment estimates. Thus, the following Burkholder-Davis-Gundy type
inequality (borrowed from [9, Lemma 7.7]) naturally comes into play: for every α ≥ 0, one

has, by setting U0 := Q1/2(B),

E
[∥∥∥
∫ t

s
St−u(f(Yu) · dWu)

∥∥∥
2q

Bα

]
≤ cq

(∫ t

s
E
[
‖St−u(f(Yu) · ∗)‖2qHS(U0,Bα)

] 1
q
du
)q
, (78)

where the notation HS(U0,Bα) refers to the space of Hilbert-Schmidt operators defined on U0

and taking values in Bα. Note also that the family (λkek) defines an orthonormal basis of U0

and accordingly

‖St−u(f(Yu) · ∗)‖HS(U0,Bα) =
(∑

k

λk‖St−u(f(Yu) · ek)‖2Bα

)1/2
. (79)

Now, to show that Y ∈ Ĉ2η(B∞), observe first that for every q ≥ 1 and any small ε > 0,

E
[
‖(δ̂Y )ts‖2qB∞

]
≤ cq E

[
‖(δ̂Y )ts‖2qB 1

4+ε

]

≤ cq

{
E
[∥∥
∫ t

s
St−u(f(Yu) · dWu)

∥∥2q
B 1

4+ε

]
+E

[(∫ t

s
‖St−u(P · f(Yu) · f ′(Yu))‖B 1

4+ε
du
)2q]}

.

(80)

The second summand in (80) is trivially bounded by cp |t− s|2q( 34−ε) since

‖St−u(P · f(Yu) · f ′(Yu))‖B 1
4+ε

≤ c |t− u|− 1
4
−ε ‖P · f(Yu) · f ′(Yu)‖B ≤ c |t− u|− 1

4
−ε .
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As far as the first summand in (80) is concerned, observe that
∑

k

λk‖St−u(f(Yu) · ek)‖2B 1
4+ε

≤ c
∑

k

λk |t− u|− 1
2
−2ε ‖f(Yu) · ek‖B ≤ c |t− u|− 1

2
−2ε ,

which, owing to (78) and (79), entails that

E
[∥∥
∫ t

s
St−u(f(Yu) · dWu)

∥∥2q
B 1

4+ε

]
≤ cq |t− s|( 12−2ε)q .

Going back to (80), we are in a position to apply Lemma 6.1 and assert that Y ∈ Ĉ 1
4
−(B∞) ⊂

Ĉ2η(B∞) (we recall that η is assumed to belong to (0, 18)). Note that since ψ ∈ Bγ , these
computations also prove that supt∈[0,T ]E

[
‖Yt‖2qB 1

4+ε

]
< ∞ for ε > 0 small enough, which will

be used in the sequel.

In order to show that Y ∈ C0(Bγ), let us write, like in (80),

E
[
‖(δ̂Y )ts‖2qBγ

]

≤ cq

{
E
[∥∥
∫ t

s
St−u(f(Yu) · dWu)

∥∥2q
Bγ

]
+ E

[(∫ t

s
‖St−u(P · f(Yu) · f ′(Yu))‖Bγdu

)2q]}

≤ cq

{
E
[∥∥
∫ t

s
St−u(f(Yu) · dWu)

∥∥2q
Bγ

]
+
( ∫ t

s
|t− u|−γ du

)2q}
. (81)

Then one has successively

E
[
‖St−u(f(Yu) · ∗)‖2qHS(U0,Bγ)

]
= E

[(∑

k

λk‖St−u(f(Yu) · ek)‖2Bγ

)q]

≤ cq |t− u|−2q(γ−η) E
[(∑

k

λk‖f(Yu) · ek‖2Bη

)q]

≤ cq |t− u|−2q(γ−η) E
[(∑

k

λk‖f(Yu)‖2B 1
4+ε

‖ek‖2Bη

)q]
(use (73))

≤ cq |t− u|−2q(γ−η) (∑

k

(λk · k4η)
)q{

1 + sup
t∈[0,T ]

E
[
‖Yt‖2qB 1

4+ε

]}
(use (77)),

with 2(γ − η) < 1 and
∑

k(λk · k4η) < ∞. Thanks to (78) and (79), we can go back to (81)

and deduce that E
[
‖(δ̂Y )ts‖2qBγ

]
≤ cq |t− s|2qε for some small ε > 0. Since ψ ∈ Bγ , this proves

in particular that Y ∈ C0(Bγ).
Let us now turn to KY and notice first that δ̂KY = LW δf(Y ), so

‖(δ̂KY )tus‖B ≤ ‖LWtu ‖L(B,B)‖δ(f(Y ))us‖B
≤ cW,f |t− u| 12−η ‖(δY )us‖B (use (39))

≤ cW,f |t− u| 12−η
{
‖(δ̂Y )us‖B + ‖ausYs‖B

}

≤ cW,f

{
|t− s| 12+ηN [Y ; Ĉ2η(B∞)] + |t− s| 12−η+γ N [Y ; C0(Bγ)]

}
.

Besides, since

KY
ts =

∫ t

s
St−u(δ(f(Y ))us · dWu) +

∫ t

s
St−u(P · f(Yu) · f ′(Yu)) du,

it is easy to check that E
[
‖KY

ts‖2qB
]
≤ cq |t− s|(1+4η)q (use (78) and (79) as above). We are

thus in a position to apply Lemma 6.1 and conclude that KY ∈ C
1
2
+η

2 (B).
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