
HAL Id: hal-00687224
https://hal.science/hal-00687224

Submitted on 12 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First Year Cloud-like Management of Grid Sites
Research Report

Henar Muñoz Frutos, Javier Martinez, Eduardo Huedo, Rubén Montero,
Rafael Moreno, Ignacio Llorente, Evangelos Floros

To cite this version:
Henar Muñoz Frutos, Javier Martinez, Eduardo Huedo, Rubén Montero, Rafael Moreno, et al.. First
Year Cloud-like Management of Grid Sites Research Report. 2011. �hal-00687224�

https://hal.science/hal-00687224
https://hal.archives-ouvertes.fr

Enhancing Grid Infrastructures with

Virtualization and Cloud Technologies

First Year Cloud-like Management

of Grid Sites Research Report

Deliverable D6.3 (V1.0)

15 June 2011

Abstract

This report presents the results of the research and technological development ac-

tivities undertaken during the first phase of the project by the three first tasks in

which WP6 is divided.

StratusLab is co-funded by the

European Community’s Seventh

Framework Programme (Capacities)

Grant Agreement INFSO-RI-261552.

The information contained in this document represents the views of the

copyright holders as of the date such views are published.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED

BY THE COPYRIGHT HOLDERS “AS IS” AND ANY EXPRESS OR IM-

PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-

PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE MEMBERS OF THE STRATUSLAB COLLABORATION, INCLUD-

ING THE COPYRIGHT HOLDERS, OR THE EUROPEAN COMMISSION

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-

EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright c© 2011, Members of the StratusLab collaboration: Centre Na-

tional de la Recherche Scientifique, Universidad Complutense de Madrid,

Greek Research and Technology Network S.A., SixSq Sàrl, Telefónica In-

vestigación y Desarrollo SA, and The Provost Fellows and Scholars of the

College of the Holy and Undivided Trinity of Queen Elizabeth Near Dublin.

This work is licensed under a Creative Commons

Attribution 3.0 Unported License

http://creativecommons.org/licenses/by/3.0/

2 of 47

http://creativecommons.org/licenses/by/3.0/

Contributors

Name Partner Sections

Muñoz Frutos,

Henar

TID 1, 2, 4, 5, 6, 7

Martinez Elicegui,

Javier

TID 1, 2, 4, 6, 7

Huedo, Eduardo UCM 4, 5, 6

Montero, Rubén S. UCM 4, 5, 6

Moreno, Rafael UCM 5, 6

Llorente, Ignacio

M.

UCM 5, 6

Floros, Vangelis GRNET 3

Document History

Version Date Comment

0.1 09 May. 2011 Initial version for comment.

0.2 09 May. 2011 Initial version for comment.

0.3 20 Mayo. 2011 Main chapters contribution.

0.4 30 Mayo. 2011 Executive Summary, Introduction and

Conclusions.

0.5 8 June. 2011 Peer review of the document.

0.6 10 June. 2011 Work on revision comments.

3 of 47

Contents

List of Figures 7

List of Tables 8

1 Executive Summary 9

2 Introduction 11

2.1 Organization of Following Chapters 14

3 Grid services requirements 15

3.1 Grid Site Deployment . 15

3.2 Grid Site Operation . 16

3.2.1 Monitoring . 16

3.2.2 Accounting . 17

3.2.3 Grid Site Elasticity 18

4 Dynamic Provision of Grid Services 20

4.1 Grid Site Specification . 20

4.1.1 OVF for specifying Grid sites. 22

4.1.2 OVF extensions required for the grid site specification. . . 24

4.2 Grid Site Deployment . 24

4.2.1 Grid site Contextualization. 25

4.2.2 Claudia implementation changes. 26

4.2.3 Grid site deployment introducing Claudia 26

4.3 Grid Site Scalability . 27

4.3.1 Scalability Information in the OVF 28

4.3.2 Probe development 30

4 of 47

4.3.3 Load Balancer Support 30

4.3.4 Grid site scalability introducing Claudia. 31

4.4 Advanced Monitoring Techniques 31

4.4.1 Development of Ganglia Probes for Monitoring the Virtual

Infrastructure . 31

4.4.2 Integration of Ganglia Monitoring Information in Open-

Nebula . 32

5 Scalable and Elastic Management of Grid Site Infrastructure 34

5.1 Virtual Resource Placement Heuristics 34

5.1.1 Evaluation of Placement Policies in OpenNebula 34

5.2 Cloud-Aware Image Management Techniques 35

5.2.1 Development of a Image Repository in OpenNebula for

Image Management . 35

5.2.2 Support for Multiple Storage Backends to Access Persis-

tent Images in the Image Repository 35

5.2.3 External Image Catalogs 36

5.2.4 VM Contextualization Using Image Information 36

5.3 Cloud-Aware Network Management Techniques 36

5.3.1 Dynamic Modification of “Fixed” Virtual Networks 36

5.3.2 Evaluation of Additional VLAN Models for Virtual Network

Management. 36

5.3.3 Automatic Setup of Simple TCP/UDP Firewall Rules for

VMs . 37

5.3.4 VM Contextualization Using Virtual Network Information . 37

5.4 Others . 37

5.4.1 Improved Fault Tolerance 37

5.4.2 Grouping of Physical Hosts in Clusters 38

6 Cloud like-Interfaces Specific for the Scientific Community 39

6.1 Cloud IaaS API . 39

6.1.1 TCloud as the Claudia API 40

6.1.2 Enhancements in OGF OCCI Implementation in Open-

Nebula . 40

5 of 47

6.2 Integration of Grid services 41

6.2.1 Authentication in OpenNebula Based on LDAP and Grid/VOMS

Certificates . 41

6.2.2 Authorization Based on Groups and Roles in OpenNeb-

ula . 41

7 Conclusions and Future Work 42

References 46

6 of 47

List of Figures

4.1 OVF package and descriptor structure 22

4.2 Grid site Structure . 23

4.3 Deployment Scenario . 28

4.4 Scalability Scenario . 32

6.1 OCCI implementation in OpenNebula. 40

7 of 47

List of Tables

4.1 Ganglia and OpenNebula metrics 33

8 of 47

1 Executive Summary

Grid infrastructures are typically static, with limited flexibility for changing appli-

cation parameters: OS, middleware and resources in general. By introducing cloud

management capabilities, grids can become dynamic. Adding standard tools, such

as virtual machines (VMs), resources can be repurposed on demand to meet the

requirements of high priority applications. The cloud platform controls which ap-

plication images should be running and when. This means dynamic application

stacks on top of the available infrastructure, such that any physical resource can be

timely repurposed on demand for additional capacity [5].

The Joint Research Activity (JRA), carried out in WP6, develops advanced

technology/features for deployment on existing Cloud infrastructures through au-

tomatic deployment and dynamic provision of grid services as well as scalable

cloud-like management of grid site resources. More specifically, the objectives

to be accomplished can be expressed as: i) the extension of currently available

open-source service-level frameworks which provide elasticity on top of cloud in-

frastructures, ii) the invention of new techniques for the efficient management of

virtualized resources for grid services and iii) the inclusion of novel resource pro-

visioning models based on cloud-like interfaces.

Thus, this document presents the work done in WP6 during the first year of

the StratusLab project focused on the dynamic provisioning of grid services and

Scalable and Elastic Management of Grid Site Infrastructure. In addition, some

work has been done in the definition and implementation of Cloud-like Interfaces

Specific for the Scientific Community.

Regarding the work done in the dynamic provisioning of grid service, during

this year, we have deployed a grid site and provided scalability automatically for

the jobs. The deployment of the grid site has involved several steps to virtual-

ized gLite services, to configure in an automatically way each service, to specify

grid site properties in a standard way, and so on. Regarding the elasticity, the

number of Worker Nodes has varied according to the number of jobs. For getting

this automatic mechanism, a service manager (Claudia) has been introduced in the

StratusLab distribution, to manage the grid site as a whole.

For what concerns Scalable and Elastic Management of Grid Site Infrastruc-

ture, OpenNebula is extended to support the typical operations of a grid site. In

particular, some virtual resource placement heuristics have been added to optimize

different infrastructure metrics. Some work is being done towards cloud-aware

9 of 47

image management techniques by the development of a image repository in Open-

Nebula and support of multiple storage backends. Finally, cloud-aware network

management techniques will be included.

Although according to the project’s Description of Work the task of Cloud-like

Interfaces Specific for the Scientific Community starts in year 2, some work has

been done in order to identify and implement interfaces for Cloud resources and

services. Due to it, TCloud API and OCCI are considered as the service man-

ager and virtual machine manager API respectively and some development work is

doing towards it.

Previous documents in WP6, D6.1 Cloud-like Management of Grid Sites 1.0

Design Report [12] and D6.2 Cloud-like Management of Grid Sites 1.0 Software

[13], identified a set of solutions to solve the gaps identified in the deliverable D4.1

Reference Architecture for StratusLab Toolkit 1.0 [11] and implementation work

respectively. However, this document is more focused on providing information

about the work done towards the dynamic deployment of grid services (sites) and

mechanism for scalable and elastic management of the grid site infrastructure.

10 of 47

2 Introduction

The Joint Research Activity (JRA), carried out in WP6, develops advanced technol-

ogy/features for deployment on existing Cloud infrastructures through automatic

deployment and dynamic provision of grid services as well as scalable cloud-like

management of grid site resources. More specifically, the objectives to be accom-

plished can be expressed as: i) the extension of currently available service-level

open-source elasticity frameworks on top of cloud infrastructures, ii) the inven-

tion of new techniques for the efficient management of virtualized resources for

grid services and iii) the inclusion of novel resource provisioning models based on

cloud-like interfaces.

The present document comments about the work done in order towards the

Cloud-like Management of Grid Sites. The developed software was already docu-

mented in the D6.2 Cloud-like Management of Grid Sites 1.0 Software [13], which

implemented the gaps identified in Cloud-like Management of Grid Sites 1.0 De-

sign Report [12].

The WP6 objectives, explained in D6.1 and developed in D6.2, include the

identification, design and implementation of the technology and features for grid

deployment on existing cloud infrastructures. These features move towards an

automatic deployment and dynamic provision of grid services as well as scalable

cloud-like management of grid site resources. To achieve these, the main work

done in this work package involves:

• On top of the current virtual machine manager, the introduction of a service

manager, which is able to control and configure grid services as a whole,

considering the service concept as a set of virtual machines and the inter-

connecting network. The first example for that involves the deployment and

configuration of a gLite-based grid site.

• The introduction of scalability mechanism at the service-level (as part of the

service manager) to scale up and down grid services components according

to some Key Performance Indicators (KPIs) and hardware usage.

• The inclusion of cloud-like interfaces based on standards to increase the in-

teroperability in cloud service management.

• Monitoring systems at the physical, virtual hardware and grid service lay-

ers for regular administration tasks, accounting purposes and for triggering

11 of 47

scalability mechanisms.

• Accounting information to keep track of resource usage in order to apply site

usage policies for fair share and potential resource charging.

These objectives are being implemented in the different tasks in the WP6. The

task T6.1 Dynamic Provision of Grid Services has been working towards the pro-

vision of grid services on a cloud environment. It allows for reducing the time to

execute computationally intensive services without incurring excessive costs, by

the deployment of a high number of services simultaneously. This deployment re-

quires the definition of a service hierarchy (i.e. interdependencies among service

components that may need to be satisfied at deployment time only). Also, the dy-

namism of a grid application (e.g. a node fails, workload increases) can trigger

service scaling, reconfiguration, or migration of that specific grid service or the

whole services in the virtual cluster so that the user Quality of Experience (QoE) is

not spoiled. This dynamism requires advanced monitoring techniques that deliver

the required data to an intelligent element making the appropriate provisioning/re-

provisioning decisions. In order to satisfy these objectives some work has been

done as it is explained in Chapter 4.

• Introduction of a service manager to control the grid site as a whole

• Introduction of an elasticity framework for scaling and reconfiguration grid

service components

• Grid services and grid sites considered as a service concept formalized in

OVF and contextualization information

• Development of Ganglia probes for monitoring the virtual infrastructure

• Integration of Ganglia monitoring information in OpenNebula

• Collection of requirements for the integration of cloud and grid services

The T6.2 Scalable and Elastic Management of Grid Site Infrastructure will

adapt an open-source Virtual Machine Manager (OpenNebula) to the typical oper-

ations of a grid site, in particular to support to define complete grid services at the

infrastructure level, as a set of related virtual machines with possible deployment

dependencies. In addition, virtual resource placement heuristics will be added to

optimize different infrastructure metrics (e.g. utilization or energy consumption)

and to fulfill grid service constraints (e.g. affinity of related virtual resources or

Service Level Agreement (SLA)). The development of cloud-aware image man-

agement techniques and cloud-aware network management techniques will be in-

cluded.

In order to satisfy these objectives some work has been done as it is explained

in Chapter 5.

12 of 47

• Integration of the service manager with OpenNebula so that the VIM can

support a complete grid service (set of related virtual machines with possible

deployment dependencies)

• Evaluation of placement policies in OpenNebula (ongoing work).

• Development of a Image Repository in OpenNebula for image management.

• Support for multiple storage backends to access persistent images in the Im-

age Repository (ongoing work).

• External image catalogs (ongoing work).

• VM contextualization using image information.

• Dynamic modification of “fixed” virtual networks.

• Evaluation of additional VLAN models for virtual network management (on-

going work).

• Automatic setup of simple TCP/UDP firewall rules for VMs (ongoing work).

• VM contextualization using virtual network information.

• Improved fault tolerance in OpenNebula.

• Grouping of physical hosts in clusters.

The Task 6.3 Cloud-like Interfaces Specific for the Scientific Community will

define the cloud interfaces for the system to provide a Grid as a Service. To provide

such a grid or Cluster as a Service interface the following extensions to current

cloud approaches has to be considered: i) the ability to specify a grid service as

a whole, ii) the ability to specify the characteristics of each component of a grid

service including virtual networks and storage, iii) the ability to specify context

information (e.g. CA certificates or component role) to each service component so

it can be integrated within other grids and the integration of Grid services within

the IaaS interface.

In order to satisfy these objectives some work has been done as it is explained

in Chapter 6.

• Grid service as a whole specification by OVF

• Specification of characteristics of each component of a grid service including

virtual networks and storage by OVF

• TCloud as the Claudia API

• Enhancements in OGF OCCI implementation in OpenNebula.

• Authentication in OpenNebula based on LDAP and grid/VOMS certificates.

• Authorization in OpenNebula based on groups and roles (ongoing work).

13 of 47

2.1 Organization of Following Chapters
The document is organized as follows: Chapter 3 exposes some requirement from

the experimentation of the usage of grid services. Chapter 4 explains the work

done in the task Dynamic Provision of Grid Services, the Chapter 5 the summary

of the work in the Scalable and Elastic Management of Grid Site Infrastructure

task and the Chapter 6 works on Cloud like-Interfaces Specific for the Scientific

Community. Finally, the Chapter 7 provides some conclusions.

14 of 47

3 Grid services requirements

In this section we briefly summarize on the findings from our activities in the con-

text of WP5 concerning the deployment and operation of a production grid site on

the StratusLab reference cloud service. This activity has provided a valuable input

for WP6 regarding important extensions and interface integration that can facilitate

the optimal exploitation of cloud computing capabilities from grid services.

Grid site administrators are considered as a regular IaaS clients from the cloud

layer point of view. As such, they are fully responsible for the proper deployment

of a grid site, for the configuration of the various the services, the allocation CPU

and storage capacity for the VOs that the site supports, to monitor the operation

of the site and keep accounting information for its usage. In the typical case that

the site is operated as a part of a distributed grid infrastructure, as it is the case for

instance for the EGI sites, the grid administrator is responsible to keep the site up

to date with the evolution of the operational policies defined by the infrastructure,

and also ensure the proper integration of the local site with the central services that

for example aggregate accounting and monitoring information for all the sites.

On first approach, the provision of grid services on top of cloud technologies

could be considered just another application for cloud services. Indeed, one can

operate a grid site using virtualization technologies without any particular integra-

tion between the two layers. Nevertheless, we believe that in order for grid services

to fully exploit the potential of cloud computing there should be a bridging of these

two worlds on a technical and operational level. In the following paragraphs we

take a closer look on the requirements and integration potentials that apply both

the cloud and grid services.

3.1 Grid Site Deployment
The installation and configuration of grid site still remains a nontrivial and time

consuming activity. IaaS clouds can alleviate this by providing pre-configured

VMs with the grid software already pre-installed. The requirements here mostly

target the Grid computing community (EGI and EMI) that should be responsible

for the proper creation of grid node VM appliances, their provision from open

distribution channels (like the StratusLab Marketplace) and their maintenance by

releasing for example regular updates that incorporate new grid software releases,

appliance bug fixes and security improvements.

15 of 47

The provision of grid services on top of cloud computing environments im-

pacts many of the configuration parameters typically declared during the phase of

site deployment. Many of these parameters become irrelevant or cannot expose

proper information about the site structure and capabilities. These parameters are

for example the hardware profile of the site, which typically focuses on the low

level cpu and memory details of the Worker Nodes and the information regarding

site locality (e.g. Latitude & Longitude of the site installation). Overall, the grid

middleware today follows a static approach for defining grid site attributes. Opti-

mally the configuration tools from the side of the grid will evolve and adapt to the

dynamic and virtualized nature of cloud infrastructures.

The cloud service can contribute significantly in the deployment process by

providing customized tools that automate the process of grid-site definition and

instantiation. In the context of StratusLab the latter is achieved through the usage

of Service Layer and the employment of OVF files for the definition of grid-site

structure, initialization parameters and expected elasticity behavior.

Part of the deployment process is the issuing of grid certificates for those ser-

vices that require SSL-based authentication and encryption. Such services are run-

ning for instance in the CE, SE and APEL nodes. These certificates have to be

bound to specific respective DNS names included in the certificate CN (Common

Name) field. In a dynamic cloud environment typically the DNS of a VM is not

known until it is instantiated by the cloud service. Since re-generation of grid cer-

tificates to bind to a new DNS name is a time consuming process, the cloud service

should provide an advanced IP reservation facility that will allow grid administra-

tors to get hold of a specific IP address that no-one else can use in the cloud. This

IP has to be passed as a parameter upon VM instantiation instructing the cloud

service to assign this specific IP to the new VM instance. This requirement has

already been identified in the context of StratusLab and has been enabled in the

VIM (i.e. OpenNebula) and Service Management layers.

3.2 Grid Site Operation
We consider three aspects of a grid site’s operation that can be influences by cloud

services: monitoring, accounting and site elasticity.

3.2.1 Monitoring

Monitoring has been identified as one of the subjects that are difficult to concretely

define. This is because the process of monitoring can cover multiple requirements,

interact with a different number of sub-systems in a given architecture and target

various actors. Thus the notion of completeness of a monitoring component for a

specific architecture is subjective and depends on the scope of this architecture. In

general a monitoring system is used in order:

• To ensure the system’s health (i.e. all sub-systems are functioning properly)

• To facilitate the tracking of security problems and system breaches

16 of 47

Within StratusLab we have already identified three layers where monitoring

could be applied:

• The physical layer. For monitoring of the physical nodes hosting the cloud

services including storage and networking.

• The cloud layer. For monitoring the status and health of the VIM and of the

VM instances

• The application layer. Which provides application specific monitoring capa-

bilities. For example here would reside the monitoring functionality installed

by a grid site.

As a concrete example, in the context of StratusLab we have used and extended

the Ganglia monitoring system in order to monitor the physical layer and part of the

cloud layer (i.e. the probes developed that communicate with libvirt in the hosting

nodes). WP4 has developed a simple web monitoring tool that covers the moni-

toring requirements for the cloud layer. This monitoring tools have been deployed

and extensively used by WP5 for the provision of the reference cloud service. Fi-

nally in the grid layer, our production grid site is connected with the centralized

monitoring service of EGI called gstat 1 and the Greek-NGI one 2 which is based

on Nagios and provides a generic overview of the site’s status. Our experience

and the interaction we had with other projects, indicates that the existing tools and

approaches for monitoring are sufficient and viable for future demands.

The two first layers could be further integrated giving a unified on-stop-shop

monitoring facility for the infrastructure covering both the physical and cloud layer.

The application/grid layer on the other hand should remain independent for at

least two reasons:

• Cloud service providers shouldn’t be responsible for monitoring individual

applications

• Cloud service providers could be potentially restricted by law to monitor and

tamper applications, data and network traffic.

3.2.2 Accounting

Like monitoring, accounting is also a loosely defined service that may be used to

cover different requirements from the infrastructure point of view:

• Collect information that will drive the billing policy of the service

• Collect usage information in order to ensure fair share of the resources

1http://gstat-prod.cern.ch
2http://nagios.hellasgrid.gr

17 of 47

http://gstat-prod.cern.ch
http://nagios.hellasgrid.gr

• Collect information that will direct scheduling and placement policies for

workload management and VM instantiation

Once again the two worlds of cloud and grid services utilize separate account-

ing components that collect overlapping information.

So far the grid accounting system has been mainly designed to support the

collection of basic statistics. If we consider though a typical scenario where com-

mercial cloud providers will offer resources to scientists or hybrid clouds where

government funded clouds will burst to commercial clouds in order to handle peek

workloads, it is crucial that the accounting system collects detailed usage informa-

tion on the VO and individual user levels.

In our production site we have used glite-APEL for site accounting. APEL

collects only a limited amount of information such us the number of jobs submitted

or total CPU time consumed per site/user/VO. Integration with cloud services will

require a much more detailed report, including network bandwidth, storage space,

IP addresses, and potentially use of software licenses (wherever applicable).

On the other hand the cloud layer should be able to re-use this information

in order to charge costs or/and to enforce quotas. Of course this requires that the

cloud accounting sub-system is keeping a complete set of information regarding

the above metrics. Also the data provided from the grid layer should be matched

with those on the cloud layer in order to produce a unified accounting record either

per grid VO, grid user or both.

3.2.3 Grid Site Elasticity

Resource elasticity is one of the most well known advantages introduced by cloud

computing. Grid sites should be able to capitalize on this by being able to dynami-

cally adjust their dimensions based on fluctuating demands. Typical dimensions of

a grid site are:

• Processing capacity: being able to modify the size of the cluster by adding

or removing WNs on demand.

• Processing capability: being able to modify the profile of the WNs by adding

new ones with more CPU cores, local storage and memory.

• Storage capacity: being able to modify the available storage provided by the

SE node.

In order to implement such elasticity functionality the grid and cloud layer

should work closely together. The control and definition of elasticity rules and

triggers have to be defined in the cloud layer, since this is the place where virtual

resources are controlled. The grid layer should provide all the necessary informa-

tion about the current state of grid resource utilization (e.g. number of jobs in the

CE) since this is the place where all information about grid resources are kept.

This dynamic behavior of grid sites on the other hand may cause inconsis-

tency on the global level if the information about the sites new capabilities are not

18 of 47

announced promptly to the top level information systems (e.g. top-level BDII),

causing job management services like the WMS (Workload Management System)

to make inappropriate job scheduling decisions. Thus also the grid services should

be able to cope with dynamic grid sites whose dimensions and capabilities are

continuously changing.

19 of 47

4 Dynamic Provision of Grid Services

The task 6.1 Dynamic Provision of Grid Services has been working towards the

provision of grid services on a cloud environment. It allows for reducing the time

to execute computationally intensive services without incurring excessive costs, by

the deployment of a high number of services simultaneously. This deployment,

commented in section 4.2, requires the definition of a service hierarchy (i.e. inter-

dependencies among service components that may need to be satisfied at deploy-

ment time only) which is specified in the grid site specification (see section 4.1).

Also, the dynamism of a grid application (e.g. a node fails, load grows) can trigger

service scaling, commented in 4.3, reconfiguration, or migration of that specific

grid service or the whole services in the virtual cluster so that the user Quality

of Experience (QoE) is not spoiled. This dynamism requires advanced monitor-

ing techniques that deliver the required data to an intelligent element making the

appropriate provisioning/reprovisioning decisions.

4.1 Grid Site Specification
As commented in D6.1 [12], there is a need for a standard language to define the

services to be deployed in the Cloud. In that document the Open Virtualization For-

mat (OVF) was selected for that aim. OVF’s objective [4] is to specify a portable

packaging mechanism to foster the adoption of Virtual Appliances (VApp) (i.e.

pre-configured software stacks comprising one or more virtual machines to pro-

vide self-contained services) as a new software release and management model

(e.g. through the development of virtual appliance lifecycle management tools) in

a vendor and platform neutral way (i.e., not oriented to any virtual machine tech-

nology in particular). OVF is optimized for distribution and automation, enabling

streamlined installations of VApps.

Figure 4.1 shows the structure of an OVF package. This file includes an OVF

descriptor (an XML file describing the VApp), resources used by the VApp (vir-

tual disk, ISO images, internationalization resources, etc.). The OVF descriptor is

composed by a set of sections:

• Virtual System Section: It involves information about each virtual machine

with virtual hardware information, the software installed and so on.

<VirtualSystem ovf:id="workernode">

• Virtual Hardware Section: It contains virtual hardware resources required in

20 of 47

each virtual machine. This hardware information is specified by using the

Item element. The ResourceType specifies the type of resource, 4 for RAM,

3 for CPU and 10 for disk

<VirtualHardwareSection>

<Info>Virtual Hardware Requirements: 512Mb, 2 CPU </Info>

<Item>

<rasd:Description>Number of virtual CPUs</rasd:Description>

<rasd:ResourceType>3</rasd:ResourceType>

<rasd:VirtualQuantity>2</rasd:VirtualQuantity>

</Item>

<Item>

<rasd:AllocationUnits>MegaBytes</rasd:AllocationUnits>

<rasd:Description>Memory Size</rasd:Description>

<rasd:ResourceType>4</rasd:ResourceType>

<rasd:VirtualQuantity>512</rasd:VirtualQuantity>

</Item>

• Product Section: This section involves information about the software in-

stalled in the VM. It can include configuration parameters needed by the

software.

<ProductSection ovf:class=s̈tratus.glite.grid.wn>̈

<Info>The gLite 3.2 packages for the Worker Node have

been installed in this image along with

the glite MPI utils metapackage providing support for

OPENMPI and MPICH2</Info>

<Product>gLite 3.2</Product>

<Version>1.0</Version>

<Property ovf:key="VO" ovf:value="vo.stratuslab.eu">

<Property ovf:value="vm047.ypepth.grnet.gr" ovf:key="HOSTNAME"/>

• Network Section: Information about the network (public and private) in the

service.

<NetworkSection>

<Info>Network information</Info>

<Network ovf:name="glite public" rsrvr:public="true">

<Description>Public Network</Description>

</Network>

</NetworkSection>

• Disk Section: Information about the disk which are incorporated in the dif-

ferent VMs.

<References>

<File ovf:id="computingelement" ovf:href="http://appliances.

stratuslab.eu/images/grid/ce/sl-5.5-x86 64-grid.ce/1.0/sl-5.5-x86 64-grid.

21 of 47

http://appliances.stratuslab.eu/images/grid/ce/sl-5.5-x86_64-grid.ce/1.0/sl-5.5-x86_64-grid.ce-1.0.img.gz
http://appliances.stratuslab.eu/images/grid/ce/sl-5.5-x86_64-grid.ce/1.0/sl-5.5-x86_64-grid.ce-1.0.img.gz
http://appliances.stratuslab.eu/images/grid/ce/sl-5.5-x86_64-grid.ce/1.0/sl-5.5-x86_64-grid.ce-1.0.img.gz

Figure 4.1: OVF package and descriptor structure

ce-1.0.img.gz"/>

</References>

<DiskSection>

<Disk ovf:diskId="storageelement" ovf:capacity="1536MB"

ovf:fileRef="storageelement"/>

</DiskSection>

4.1.1 OVF for specifying Grid sites

Thus, OVF specifies how to package and distribute software to be run in virtual

machines. Our contribution is focused on utilizing OVF as basis for a service def-

inition language for deploying complex Internet applications in a StratusLab grid-

cloud infrastructure. These applications consist of a collection of virtual machines

(VM) with several configuration parameters (e.g., hostnames, IP addresses and

other application specific parameters) for software components (e.g., web server,

application server, database, operating system) included in the VMs. Most of these

parameters are unknown before the deployment time because the service provider

does not know particularities of the IaaS cloud or datacenter in which the deploy-

ment takes place.

Thus, taking into account the VM generated in the grid site, we have three

types:

• Compute Element (CE) [8]: The gLite 3.2 packages for CREAM Comput-

ing Element (CREAM CE) have been installed in this image along with the

glite MPI utils metapackage providing support for OPENMPI and MPICH2.

• Storage Element (SE) [9]: The gLite 3.2 packages for Storage Element are

installed in this image.

22 of 47

http://appliances.stratuslab.eu/images/grid/ce/sl-5.5-x86_64-grid.ce/1.0/sl-5.5-x86_64-grid.ce-1.0.img.gz
http://appliances.stratuslab.eu/images/grid/ce/sl-5.5-x86_64-grid.ce/1.0/sl-5.5-x86_64-grid.ce-1.0.img.gz

Figure 4.2: Grid site Structure

• Worked Node (WN) [10]: The gLite 3.2 packages for the Worker Node have

been installed in this image along with the glite MPI utils metapackage pro-

viding support for OPENMPI and MPICH2

• Accounting Processor for Event Logs (APEL) [7]: This image contains the

gLite 3.2 packages for instantiating an APEL node, which is used to collect

and broadcast accounting information for a given grid site.

It is possible to see in Figure 4.2, that the VM instances are connected to a

public network. This means that:

• The grid site OVF is composed by 4 VirtualSystem, one each VM type we

have (CE, SE, WN, APEL)

• The grid site OVF has a public network where all the VM are connected to

• Each VM has a disk to mount the image to be deployed

• The hardware requirements are specified in the figure.

• The configuration parameters are specified in the Product Section of each

VM.

• The Startup section specifies the order to boot the VMs (firstly the WN, then

SE and finally CE).

23 of 47

4.1.2 OVF extensions required for the grid site specification

The OVF provides more of the requirements we need by still there are some pend-

ing issues which are not covered. OVF can be extended easily when new extensions

are required. This extension can be provided by:

Scalability Scalability rules to be part of the OVF, to specify when the service can

scale up and down and under which conditions

KPI Information about the KPI which drives the scalability (it can be a service

KPI or a hardware KPI (e.g. CPU).

Number of replicas to be deployed The number maximum and minimum of the

replicas to be scale up and down.

4.2 Grid Site Deployment
StratusLab provides mechanisms for the automatic deployment of grid sites by the

introduction of the service manager (Claudia) in the StratusLab distribution.

The Claudia platform [15] is an advanced service management toolkit that al-

lows service providers to dynamically control the service provisioning and scal-

ability in an IaaS Cloud. Claudia manages services as a whole, controlling the

configuration of multiple VM components, virtual networks and storage support

by optimizing the use of them.

The grid site, specified in the format commented in Section 4.1, can be de-

ployed in the Cloud with the help of the service manager. By using the deploy-

ment functionality, which Claudia provides (following the TCloud specification)

[14], the grid site can be deployed with the images specified in the OVF. Claudia

processes the OVF and does the needed requests to deploy networks and virtual

machines to the Virtual Machine Manager (OpenNebula). The configuration in-

formation arrives at the VM by using the contextualization. By using scripts and

contextualization information, all VMs execute the YAIM tool [16] against a set of

inferred configuration files. As a result, all the VMs from the grid site have been

deployed in the Cloud are interconnected by a public network, configured correctly

and the grid site is up and running.

However, some work has been done before the deployment. It has involved:

• Generation of the Grid site appliances VMs (CE, SE, WN, APEL) located in

the StratusLab appliance repository [8], [9], [10] and [7].

• Definition of the OVF, as explained in Section 4.1, with all the virtual hard-

ware requirements and static configuration information

• Development of scripts to configure the grid site from the information of-

fered in contextualization

• Some changes in the Claudia code to satisfy grid site requirements (static IP

support, definition of contextualization files in the OVF, and so on).

24 of 47

4.2.1 Grid site Contextualization

Contextualization is defined as the process by which a virtual machine instance is

configured [12]. In general, contextualization consists of passing arbitrary data to

the virtual machine at boot time. The information can involve network contextual-

ization and software contextualization.

4.2.1.1 OpenNebula Contextualization

The method we provide to give configuration parameters to a newly started virtual

machine is using an ISO image (OVF recommendation). This method is network

agnostic so it can be used also to configure network interfaces. In the VM descrip-

tion file you can specify the contents of the ISO file (files and directories), tell the

device the ISO image will be accessible and specify the configuration parameters

that will be written to a file for later use inside the virtual machine [?].

In VM description file you can tell OpenNebula to create a contextualization

image and to fill it with values using CONTEXT parameter. For example:

CONTEXT = [

hostname = "vm037.one.ypepth.grnet.gr",

ip private = "10.95.34.78",

files = "/service/init.sh /service/certificates

/service/service.conf",

target = "sdc"]

4.2.1.2 Software Contextualization

The OVF language can also provide a mechanism to provide the contextualization

information for the software installed in the VMs. The software configuration in-

formation can be provided as a Property in the ProductSection in the OVF

file.

This information is processed by Claudia, which in deployment time generate

the OVF environment file per virtual machine. The OVF environment [4] is a for-

mat which is used by the deployment platform to provide configuration parameters

to guests at deployment time. Claudia is able to fill automatically these parameters

during the boot process. The URL where the OVF environment file (ovf-env.xml)

is located is provided to the ONE template by a URL.

<ns1:Environment ns1:id="workernode">

<ns1:Property ns1:key="VO" ns1:value="vo.stratuslab.eu"/>

<ns1:Property ns1:key="HOSTNAME" ns1:value="vm037.one.ypepth.grnet.gr"/>

Besides the ovf-env.xml file with all the configuration information, it is re-

quired a script which is able to parse the file and configure the different glite VMs

in the right way. It can be passed also as a contextualization information.

CONTEXT = [

CustomizationUrl="http://84.21.173.28:18888/grnet.

customers.glite.services.gridsite.vees.CE.replicas

.1",

25 of 47

files="/home/tcloud/tcloud-server/repository/grnet.

customers.glite.services.gridsite.vees.CE.replicas

.1/ovf-env.xml",

target="hdc"]

In addition, Claudia should pass to OpenNebula all the scripts required to con-

figure the grid site by the information in the ovf-env.xml. This is the ovf-env parser

(see Section 4.2.1.3).

CONTEXT=[files="/home/claudia/extraFiles/OVFParser.py"..]

Finally, all the certificates needed for configuring the grid site should be trans-

ferred also from Claudia to the VM in contextualization.

CONTEXT=[files="path/certificate1"..]

4.2.1.3 ovf-env parser

The grid site configuration information arrives at the VM as part of the ovf-env.xml

file which is included in the mounted disk by contextualization. The ovf-env.xml

file should be parsed to generate the required yaim configuration files during the

VM contextualization. The ovf-env parser code is in charge of it.

4.2.2 Claudia implementation changes

A requirement taken from the grid site is the needs for static IPs. Some VMs in

the grid site require a digital certificate which corresponds to a concrete IP. This

certificate has a duration of a year for the duration of which we have to keep the

associated IPs. Due to this, Claudia should manage the static IP for customers and

specify a way so that the user can utilize to configure the grid site in the OVF.

As said before some scripts and certificates should be passed to the VM during

contextualization. Thus, there is a need for specifying all the files to be passed

in contextualization in the OVF and use the OpenNebula contextualization mecha-

nism to provide it. The solution is to provide these scripts, certificates, and so on,

as a property in the OVF. Claudia processes this information and includes it in the

template ONE.

<Property ovf:key="SCRIPT LIST" ovf:type="string"

ovf:value="script1.shscript2.sh">

4.2.3 Grid site deployment introducing Claudia

Figure 4.3 shows a high level flow describing the deployment of the grid site into

the StratusLab platform. The main steps are:

1. As a previous step before the beginning of the deployment process, the Ser-

vice Provider must define the grid site structure, conditions and characteris-

tics in the OVF file. It includes the description of all the grid site’s VMs (OS,

hardware characteristics, networks, etc.). In this case, the service comprises

three VMs (see Figure 4.2): the CE implements the Compute Element, the

SE the Storage Element, the APEL the Accounting Processor for Event Logs

26 of 47

/home/claudia/extraFiles/OVFParser.py
path/certificate1

and the WN the Worker node. All components are interconnected through a

public network called glite public.

2. In addition, the grid site user has to generate all the VMs involved in the

services and store them into the Appliance Repository.

3. At this point, the grid site user is ready to request the service deployment.

The interface through the Service Manager (SM) implements the TCloud

API for supporting the needed operations at this level. The deployment re-

quest will include the OVF descriptor.

4. The SM revises the OVF file searching useful information for the service

lifecycle management. like the startup order of all the VMs of the Service,

scalability rules, resource requirements... The SM also translates the OVF

file into the needed OpenNebula templates (for both networks and VMs).

5. The next step is to provide the needed networks and to start the deployment

of VMs in the right order, by interacting with OpenNebula.

6. At this point, the OpenNebula engine has all the information to deploy the

service into the StratusLab Platform. It localizes the images in the Appliance

Repository and installs them in the corresponding resources.

4.3 Grid Site Scalability
Grid applications deployed over cloud technologies should benefit from scalability

at service level, which conceals low level details from the user. In the service multi-

layer, as we have, where the service is composed by a set of VMs (CE, SE, APEL

and WN), StratusLab can provide scalability in each layer in the service, in case it

is required.

Claudia, the service manager, manages the service monitoring events and scal-

ability rules. In addition, it is responsible for dynamically asking for virtualized

resources to a virtual machine manager like OpenNebula, trying to avoid over/un-

der provisioning and over-costs based on SLAs and business rules protection tech-

niques.

Thus, Claudia provides a means for users to specify their application behav-

ior in terms of adding or removing more of the same software or hardware re-

sources [1] by means of elasticity rules [2]. The elasticity rules follow the Event-

Condition-Action approach, where automated actions to resize a specific service

component (e.g. increase/decrease allocated memory) or the deployment/unde-

ployment of specific service instances are triggered when certain conditions relat-

ing to these monitoring events (KPIs) hold.

27 of 47

Figure 4.3: Deployment Scenario

4.3.1 Scalability Information in the OVF

4.3.1.1 KPI

To enable the definition of custom Key Performance Indicators (KPIs) we added

a section KPIsSection. The section enables the Customer to define its own set

of KPIs. The KPIs will be supplied by the grid user and the values specified in the

KPIsSection will be passed to Claudia for the monitoring probe.

The KPIsSection contains a list of KPI tags, each with a KPIname attribute

(describing the name of the KPI). The KPIname has to be unique, in order to iden-

tify the service and avoid conflict with other KPIs. Also it contains a KPItype when

the scalability is due to virtual hardware information. An example of the KPIsSec-

tion is shown below.

<rsrvr:KPISection>

<ovf:Info>KPIs Section</ovf:Info>

<rsrvr:KPI KPIname="jobqueueutilization"/>

</rsrvr:KPISection>

For the grid site the KPI used is the jobqueueutilization which means the uti-

lization percentage of the job queue. This is defined by the following equation:

28 of 47

jobqueueutilization =
number of jobs running

total cpu slots

As it is a percentage the KPI value should be:

0 ≤ KPI ≤ 1

4.3.1.2 Elasticity rules

Standard OVF is limited to the fixed-size deployments and does not take dynamic

scaling into account. This is a consequence of the VirtualSystem tag seman-

tics in standard OVF, where each one of those tags represent exactly one virtual

machine.

In order to govern the elasticity, a simple section has been defined, ElasticityArraySection,

consisting of a sequence of Rule tags. Within each Rule the following informa-

tion is specified:

• KPI name. The KPI identifier whose value governs the scalability of the

array. This KPI has to be defined within the KPIsSection described in

Section 4.3.1.1.

• Windows. The time interval for sampling the KPI. The semantics of this

window are that of a sliding window, e.g. 5 minutes.

• Frequency. The amount of samples to take in the window. For example, 60

samples per window, that is 6 samples per minute (1 sample each 10 seconds)

for a 10 minutes window.

• Quota. The normalized ”quantity of KPI” that a single VM instance can

sustain in a steady state. The average KPI in the window will be compared

with the defined quota multiplied by the number of currently active VMs in

order to decide if the array has to be expanded or shrunk.

<rsrvr:ElasticArraySection>

<Info>

There are two elasticity rules, to scale up and down the

WN components

</Info>

<rsrvr:Rule>

<rsrvr:KPIName>jobqueue</rsrvr:KPIName>

<rsrvr:Window unit="minute">5</rsrvr:Window>

<rsrvr:Frequency>20</rsrvr:Frequency>

<rsrvr:Quota>1</rsrvr:Quota>

<rsrvr:KPIType>agent</rsrvr:KPIType>

</rsrvr:Rule>

</rsrvr:ElasticArraySection>

29 of 47

This means that the threshold to scale up Tu and to scale down Td can be

obtained as:

Tu = quota ∗
1 + tolerance

100

and

Td = quota ∗
1 − tolerance

100

4.3.2 Probe development

As said before, the grid site scalability is driven by the number of jobs which the

CE is processing at a given moment. This requires, the continuous monitoring of

the queues in the CE. For this purpose a python script is being developed that will

be used for monitoring the number of available and total slots in a grid site. The

script polls this information from qstat and pbsnodes command line tools of the

TORQUE resource manager [3] and communicates them to the service manager

using the latter’s RESTful API.

4.3.3 Load Balancer Support

Essentially the probe described in the previous paragraph is responsible for the

calculation of the scalability KPI and for passing it to the service manager. Based

on this KPI the service manager makes the decision of scaling the site up or down

depending on the grid administrator defined rules and thresholds. This is achieved

by the close cooperation between the service manager and the load balancer (LB)

component that is running as a service on the CE. LB is running constantly waiting

for notifications from the Service Manager. As a service it provides two functions:

addWorkerNodes This function is invoked by the Service Manager in order to

notify the LB that a new set of WNs have been instantiated. The LB takes

care to update the list of target nodes for LRMS in order new jobs to be

scheduled there.

removeWorkerNodes During the scale down phase, unused WNs should be re-

moved from the queuing system. This entails shutting down the WN VMs

from the Service Manager and removing the nodes from LRMS. The number

of decommissioned WNs is defined by the Service Manager but the decision

regarding the actual nodes to be removed is taken by the LB itself. This is

because the WNs to be removed shouldn’t have any jobs running on them

and this is an information one can get from within the CE by appropriately

probing the queues using qstat and pbsnodes commands. Thus the Service

Manager only needs to pass the number of WNs for removal and the LB ser-

vices returns the hostnames of the nodes removing them in parallel from the

LRMS.

30 of 47

4.3.4 Grid site scalability introducing Claudia

As commented previously, the grid site needs to scale the worker nodes according

to the number of jobs. Thus, Service Providers define elasticity rules in the service

manifest to assure the right operation of their services and/or the final user experi-

ence. In this case, the virtual machine to be scaled is the WN, where new instances

are deployed to avoid system overload:

<V i r t u a l S y s t e m o v f : i d =”WN” r s r v r : m i n =” 1 ” r s r v r : m a x =” 8 ”

r s r v r : i n i t i a l =” 1 ”> <V i r t u a l S y s t e m o v f : i d =”CE” r s r v r : m i n =” 1 ”

r s r v r : m a x =” 1 ” r s r v r : i n i t i a l =” 1 ”>

Moreover, the Service Provider has defined an elasticity rule which adds a new

instance of the WN to avoid the system overload. The KPI used to evaluate this

rule is the jobqueue utilization, i.e., the number of running jobs. Thus, if the KPI

exceeds a given threshold, a new WN is deployed.

Figure 4.4 shows how the StratusLab platform manages the scalability of the

grid site.

The main steps are:

1. The probe in the CE provides KPIs values for the service to the SM.

2. The Service Manager evaluates, in real time, the elasticity rules of the grid

site. When the corresponding KPI exceeds the given threshold, the SM starts

the deployment process of a new WN instance.

3. Using the TCloud API, the SM requests for a new replica to be deployed.

The steps here are the same as in the Deployment Section 4.2.3.

4.4 Advanced Monitoring Techniques
Ganglia is a scalable distributed system monitor tool for high-performance com-

puting systems. It allows the user to remotely view live or historical statistics for

all machines that are being monitored. The presentation is done through a web

front-end that provides a view of the gathered information via real-time dynamic

web pages. Ganglia makes the monitoring more efficient and scalable in big in-

stallations. Also, this monitoring system can be easily extended to monitor other

aspects of the host fabric such as the number of VMs running in a specific host or

information about them. Therefore, we decided to use Ganglia as the monitoring

tool both for the physical and virtual infrastructure, as well as to feed OpenNebula

with monitoring information.

4.4.1 Development of Ganglia Probes for Monitoring the Virtual

Infrastructure

A couple of Ganglia probes have been developed to obtain metrics directly from

the hypervisors in order to monitor the deployed virtual infrastructure. Since

31 of 47

Figure 4.4: Scalability Scenario

VM information is not gathered by Ganglia, a script is provided to get that in-

formation. The same probe that gets information for Xen and KVM is used to

get this data and push it to Ganglia. This probe has to be copied to each of

the nodes, or put in a path visible by all the nodes. The information obtained

by these probes needs to be periodically pushed to Ganglia in a metric called

OPENNEBULA VMS INFORMATION. The gmetric command and the cron sub-

system are used for this.

To make it refresh automatically, this command should be added to the cron

subsystem. Executing it every minute is usually fine. Any other information can

be pushed using any metric starting with OPENNEBULA . New metrics defined

this way would allow the definition of new virtual resource allocation heuristics, as

described in section 5.1.

4.4.2 Integration of Ganglia Monitoring Information in OpenNeb-

ula

A new information driver has been developed to obtain monitoring information

from Ganglia, instead of executing probes in the hosts using ssh. This information

manager connects to Ganglia and gets the monitoring values listed in Table 4.1.

Moreover, it will also get any metric from Ganglia that starts with OPENNEBULA ,

and will add it to the monitoring data pushed to OpenNebula as the name of

the metric without that prefix. For example, if we add to Ganglia the metric

OPENNEBULA DISK FREE, that data will be pushed to OpenNebula as DISK FREE.

It is also possible to push metrics with the same name as the standard metrics in

the previous table, that way the user can change the way those metrics are com-

puted. For example, OPENNEBULA TOTALCPU will be used instead of the inter-

32 of 47

Table 4.1: Ganglia and OpenNebula metrics

Ganglia metric OpenNebula metric

cpu num TOTALCPU

cpu speed CPUSPEED

mem total TOTALMEMORY

mem free FREEMEMORY

cpu idle FREECPU

bytes out NETTX

bytes in NETRX

nal TOTALCPU computation it is defined.

33 of 47

5 Scalable and Elastic Management of Grid

Site Infrastructure

The T6.2 Scalable and Elastic Management of Grid Site Infrastructure will adapt an

open-source VIM (Virtual Infrastructure Manager), OpenNebula [6], to the typical

operations of a grid site, in particular to support to define complete grid services

at the infrastructure level, as a set of related virtual machines with possible de-

ployment dependencies. In addition, virtual resource placement heuristics will be

added to optimize different infrastructure metrics (e.g. utilization or energy con-

sumption) and to fulfill grid service constraints (e.g. affinity of related virtual re-

sources or SLA). The development of cloud-aware image management techniques

and cloud-aware network management techniques will be included.

5.1 Virtual Resource Placement Heuristics

5.1.1 Evaluation of Placement Policies in OpenNebula

In OpenNebula, it is possible to implement several placement policies by carefully

choosing the RANK expression. Each VM has its own rank and so its own policy,

therefore different policies can be applied to different instance types. Possible

policies are:

• Packing Policy: It is aimed at minimizing the number of cluster nodes in

use. The heuristic used is to pack the VMs in the cluster nodes to reduce

VM fragmentation, therefore those nodes with more VMs running are used

first. For example:

RANK = RUNNING VMS

• Striping Policy: The objective is to maximize the resources available to VMs

in a node. The heuristic used is to spread the VMs in the cluster nodes,

therefore those nodes with less VMs running are used first. For example:

RANK = "- RUNNING VMS"

• Load-aware Policy: The objective is to maximize the CPU available to VMs

in a node. The heuristic is to use those nodes with less CPU load, therefore

those nodes with more free CPU are used first. For example:

RANK = FREECPU

34 of 47

More policies will be developed and evaluated using heuristics based on the

information gathered from new monitoring metrics gathered as described in sec-

tion 4.4. For example, the packing policy could be combined with a technique to

selectively power on and shut down machines to achieve energy savings.

5.2 Cloud-Aware Image Management Techniques

5.2.1 Development of a Image Repository in OpenNebula for Im-

age Management

The Image Repository system allows OpenNebula administrators and users to set

up images, which can be operative systems or data, to be used in VMs easily.

These images can be used by several VMs simultaneously, and also shared with

other users. There are three different types of images in OpenNebula:

• OS: A working operating system. Every VM template must define one DISK

referring to an image of this type.

• CDROM: Readonly data. Only one image of this type can be used in each

VM template.

• DATABLOCK: A storage for data, which can be accessed and modified from

different VMs. These images can be created from previous existing data, or

as an empty drive. VM templates can use as many datablocks as needed.

Users can manage the image repository from the OpenNebula command line

interface with the oneimage command. Users can create new images specify-

ing an image template. Another way to create a new image is copying it from

an existing one. To do this, the user has to mount the original image in a VM

template, and tell OpenNebula to save the image in a different onei (using the

save as operation). OpenNebula will save the changes made to the source image

as a new one when the machine is shut down. The image owner –or the OpenNeb-

ula administrator– can delete an image from the repository.

An image can be public for every user to use in their VMs, or private. Public

images are always cloned before being used. An image can be also persistent or

not. Persistent images are never cloned but rather used from the original image.

Therefore, an image cannot be public and persistent at the same time.

5.2.2 Support for Multiple Storage Backends to Access Persis-

tent Images in the Image Repository

VM disk images can be provisioned using two approaches: block devices and files.

The image repository has been architected to support these two approaches and to

easily incorporate different technologies in each area. The first drivers support file-

based VM disks of any type (persistent and volatile, OS and data disks, and public

and private images). These set of drivers are targeted at distributed file-systems

that implements POSIX interfaces like GlusterFS or Lustre among others.

35 of 47

5.2.3 External Image Catalogs

The Image Repository serves as a natural place to store the images within a site,

usually managed as any other data repository (e.g. backups). However in a feder-

ated environment, and specially in Grids, there is the need of sharing VM images

across sites. An image catalog is a collection of VM images exposed remotely that

are downloaded, adapted and registered to run in a given site. In this case the im-

age repository would act as a cache of the remote catalogs. We are exploring this

hybrid storage model to integrate VMs from StratusLab services (Marketplace) as

well as third-party providers (Amazon S3).

5.2.4 VM Contextualization Using Image Information

Using CONTEXT parameter in the VM description file, it is possible to tell Open-

Nebula to create a contextualization image and to fill it with values. Variables

inside CONTEXT section will be added to context.sh file inside the contextu-

alization image. A new method has been added to specify these variables using

variables from the image template:

• $IMAGE[<image attribute>, IMAGE ID=]: Any sin-

gle value variable in the image template, like for example:

root = "$IMAGE[ROOT PASS, IMAGE ID=0]"

5.3 Cloud-Aware Network Management Techniques

5.3.1 Dynamic Modification of “Fixed” Virtual Networks

Virtual networks of type “fixed” have been improved to allow its dynamic modifi-

cation without the need of re-creating them. This will potentially support an elastic

management of public IPs as follows: each user is assigned with a private set of

IPs obtained from the site’s public IP pools. Then, VMs can request specific IPs

from the elastic set of the user. The sysadmins of a site can add or remove IPs from

the user’s network using this new functionality, so implementing elasticity for the

public addresses.

5.3.2 Evaluation of Additional VLAN Models for Virtual Network

Management

We are evaluating different alternatives for virtual network management. For ex-

ample, Open vSwitch1 is targeted at multi-server virtualization deployments, where

the existing Linux networking stack presents some limitations. These environ-

ments are often characterized by highly dynamic end-points, the maintenance of

logical abstractions, and (sometimes) integration with or offloading to special pur-

pose switching hardware. Additionally, we are adding support to host-managed

802.1Q VLANs. In this case the OpenNebula network manager creates bridges

1http://openvswitch.org

36 of 47

and tagged interfaces for VMs as needed, when the VM is booted; and remove

them upon VM disposal.

5.3.3 Automatic Setup of Simple TCP/UDP Firewall Rules for

VMs

Each NIC defined in a VM can include simple filter rules based on destination

ports. In particular the following can be used:

• BLACK TCP PORTS, WHITE TCP PORTS: To filter a set of specific ports

or alternatively to only allow traffic to the set (individual ports or ranges) of

ports specified.

• BLACK UDP PORTS, WHITE UDP PORTS: Same as above for the UDP

protocol

This is implemented by dynamically creating iptables rules that captures the

FORWARDING packets and setting up custom iptables chains for the VM inter-

faces.

5.3.4 VM Contextualization Using Virtual Network Information

Using CONTEXT parameter in the VM description file, it is possible to tell Open-

Nebula to create a contextualization image and to fill it with values. Variables

inside CONTEXT section will be added to context.sh file inside the contextu-

alization image. A new method has been added to specify these variables using

variables from the Virtual Network template:

• $NETWORK[<vnet attribute>, NETWORK ID=<vnet id>]: Any

single value variable in the Virtual Network template, like for example:

dns = "$NETWORK[DNS, NETWORK ID=3]"

5.4 Others

5.4.1 Improved Fault Tolerance

Fault tolerance has been improved in OpenNebula 2.2 to automatically trigger re-

covery actions when a physical host or VM fails. Most of the actions are specified

as hooks, which are custom scripts triggered by OpenNebula when a change in the

state of a particular resource (Host or VM) is detected.

Failures are categorized depending on whether they come from the physical

infrastructure (Host failures), from the virtualized infrastructure (VM failures) or

from the virtual infrastructure manager (OpenNebula crash):

• Host failures: When OpenNebula detects that a host is down, a hook can be

triggered to deal with the situation. OpenNebula comes with a script out-of-

the-box that can act as a hook to be triggered when a host enters the ERROR

state. This can be very useful to limit the downtime of a service due to a

hardware failure, since it can redeploy the VMs on another host.

37 of 47

• VM failures: The VM lifecycle management can fail in several points. The

following two cases should cover them:

– VM fails: This may be due to a network error that prevents the image

to be staged into the node, a hypervisor related issue, a migration prob-

lem, etc. The common symptom is that the VM enters the FAILED

state. In order to deal with these errors, a VM hook can be set to re-

submit the failed VM (or, depending the production scenario, delete

it).

– VM crash: This point is concerned with crashes that can happen to a

VM after it has been successfully booted (note that here boot doesn’t

refer to the actual VM boot process, but to the OpenNebula boot pro-

cess, that comprises staging and hypervisor deployment). OpenNeb-

ula is able to detect such crashes, and report it as the VM being in an

UNKNOWN state. This failure can be recovered from using the onevm

restart functionality.

• OpenNebula crash: OpenNebula can recover from a crash occurred in its

core daemon, since all the information regarding infrastructure configuration

and the state of the virtualized resources is stored on a persistent backend.

Therefore, the oned daemon can be restarted after a crash, and all the run-

ning VMs will be reconnected with and monitored from this point onwards.

Pending machines will be placed on a suitable host just as before the Open-

Nebula crash, as well as other non-transient states. However VMs not in a

final state may need to be recovered manually, as in general the VM drivers

are stateless.

5.4.2 Grouping of Physical Hosts in Clusters

OpenNebula 2.0 introduced support to cluster physical hosts. By default, all hosts

belong to the default cluster. The administrator can create and delete clusters,

and add and remove hosts from these clusters using the onecluster command.

Thanks to this feature, the administrator can logically group hosts by any attribute

like the service provided (e.g. CLUSTER = production), the physical location

(e.g. CLUSTER = roomA) or a given characteristic (e.g. CLUSTER = intel).

38 of 47

6 Cloud like-Interfaces Specific for the Sci-

entific Community

The Task 6.3 Cloud-like Interfaces Specific for the Scientific Community will de-

fine the cloud interfaces for the system to provide a Grid as a Service. To provide

such a grid or Cluster as a Service interface the following extensions to current

cloud approaches has to be considered: i) the ability to specify a grid service as

a whole, ii) the ability to specify the characteristics of each component of a grid

service including virtual networks and storage, iii) the ability to specify context

information (e.g. CA certificates or component role) to each service component so

it can be integrated within other grids and the integration of Grid services within

the IaaS interface.

6.1 Cloud IaaS API
StratusLab has to complement existing grid services by exposing cloud-like APIs

to users of the grid infrastructure. This will allow existing users to experiment

with these new APIs and to develop new ways to use grid resources. StratusLab

works towards the use of cloud-like Application Programming Interfaces (APIs)

for managing cloud computing capabilities including resource sharing. That is,

grid service users can use programmatic APIs to access to the shared resources in

order to manage them. Thus, the service providers (the cloud/grid client entity)

requests resources from the infrastructure providers or IT vendors to deploy the

services and virtual machines.

Considering the abstraction layers which are included in StratusLab, two kinds

of APIs should be considered:

• The Service Manager Interface (SMI) is the API for the service manager

and the access point for service providers. From the state of the art in the

D6.1 [12], TCloud API was selected as SMI.

• Virtual Manager Interface (VMI) is the API for accessing to the virtual

machine manager, (OpenNebula for StratusLab). It hides the inherent un-

derlying heterogeneity existing in cloud infrastructure providers from the

service manager. From the state of the art in the D6.1 [12], OCCI API was

selected as the SMI.

39 of 47

Figure 6.1: OCCI implementation in OpenNebula.

6.1.1 TCloud as the Claudia API

The TCloud API [14] is a RESTful, resource-oriented API accessed via HTTP

which uses XML-based representations for information interchange. It constitutes

an extension of some of the main standardization initiatives in Cloud management,

such as the Open Virtualization Format (OVF), defined by the DMTF, and the

vCloud specification [4], published by VMware and submitted to the DMTF for

consideration. TCloud API defines a set of operations to perform actions over: i)

Virtual Appliances (VApp), which is a Virtual Machine running on top of a hyper-

visor, ii) Hw resources the virtual hardware resources that the VApp contains, iii)

Network both public and private networks, and iv) Virtual Data Center (VDC) as

a set of virtual resources (e.g. networks, computing capacities) which incarnate

VApps. TCloud API defines operations to perform actions over above resources

categorized as follows: Self-Provisioning operations to instantiating VApps and

VDC resources and Self-Management to manage the instantiated VApps (power

on a VApp). In addition, it provides extensions on monitoring, storage, and so on.

StratusLab incorporate an implementation of the TCloud specification, the tcloud-

server as Claudia API.

6.1.2 Enhancements in OGF OCCI Implementation in OpenNeb-

ula

The OpenNebula OCCI API is a RESTful service to create, control and monitor

cloud resources based on the OGF OCCI 1.0 API specification. The OpenNebula

OCCI service, as shown in Figure 6.1, is implemented upon the new OpenNebula

Cloud API (OCA) layer that exposes the full capabilities of an OpenNebula private

cloud; and Sinatra1, a widely used light web framework.

The OCCI interface has been enhanced to expose more OpenNebula function-

1www.sinatrarb.com

40 of 47

ality for image management, including save as operation and metadata attributes

like public or persistent, for virtual network management, including meta-

data attributes, as well as for fine grain resource specification.

6.2 Integration of Grid services

6.2.1 Authentication in OpenNebula Based on LDAP and Grid/VOMS

Certificates

The authentication and authorization mechanisms are separated into two services.

An authentication proxy (developed in WP2) identifies users and passes the user in-

formation to the virtual machine manager. OpenNebula, through its “auth” module,

will then make authorization decisions based on the specific request. OpenNebula

will create new users dynamically, assigning them the default rights and quotas.

Multiple mechanisms can be used simultaneously: username/password pairs main-

tained in a configuration file, username/password pairs from an LDAP server, grid

certificates, and VOMS proxies created from grid certificates.

6.2.2 Authorization Based on Groups and Roles in OpenNebula

The authorization system in OpenNebula is being extended to support groups of

users and access rules (roles) to manage OpenNebula resources. These groups and

roles can be used, for example, to map attributes specified in VOMS certificates.

A group in OpenNebula is a way to categorize users, in the same fashion as

UNIX groups. Therefore, a user is a member of a primary group and can also be in

more than one secondary groups. There is a special administration group (similar

to wheel) whose users can perform any action (by default).

The permissions are managed with an ACL, with a deny by default policy.

Therefore, rules can be added to grant permissions, not to deny them or restrict

other rules. If any of the rules allows the user to perform the requested action, it is

granted, without having to establish a precedence.

There are also a set of hard-coded rules in the core, that cannot be modified

and have preference over the ACL table. According to these hard-coded rules, the

oneadmin user (ID=0) can perform any operation over any object and the owner

of an object can perform any operation over that object.

41 of 47

7 Conclusions and Future Work

This document has provided an overview of the work done within the scope of WP6

in the first period of the project regarding the dynamic provision of grid services,

the development of a scalable and elastic management of grid site and Cloud like-

interfaces specific for the scientific community.

In this first period of the project, a grid site has been deployed and scaled. The

introduction of the Claudia in the StratusLab distribution has allows to define the

grid site as a whole, so that, the grid administrator only has had to specify the grid

site features in a XML format (OVF) and Claudia has processed it and requests

to the different involved components. In addition, through OVF and OpenNebula

contextualization and some developed scripts, the different VMs involved in the

grid site have been configured correctly.

The number of WNs in the grid site has to scale up and down according to

the number of existing jobs and a number of grid administrator defined rules and

thresholds. Claudia is in charge of providing this scalability functionality, by the

existence of a rule engine which evaluates the defined rules. In the OVF, also it is

possible to define the KPI used in this case the queue job utilization and rule which

this KPI drives.

In addition some work has been done in order to adapt OpenNebula to the

typical operations of a grid site. In particular, some virtual resource placement

heuristics are being evaluated to optimize different infrastructure metrics. Some

work is being done towards cloud-aware image management techniques by the

development of a image repository in OpenNebula and support of multiple storage

backbends. Finally, some work in techniques for the management of cloud-aware

networks has been carried out.

The task related to cloud-like interfaces has started by the introduction of Cloud

service API like TCloud and OCCI which has been discussed and explained in

previous documents.

As future work, the work on grid site scalability is going to continue in order

to satisfy the requirements taken from experimentation. This means to add the

possibility to expand and contract a grid site according to the job queue utilization.

Currently, Claudia only scale up or down a concrete VM, but the idea is to be able

to define the way to scale up and down. Also considering in scalability, the VMs

un-deployed for scaling down, have to be decided by the CE according to its usage.

Finally, some process will be to implement a “lazy scale-down” strategy according

42 of 47

to which the scale-down pace is lower than the scale-up counterpart in order to

better accommodate job fluctuations and speedup job execution be reducing the

time required for site scale-up.

Equally important is the issue of resource accounting and the integration of grid

sites accounting system with the respective cloud services accounting. This issue

has been identified from the early stages of the project but work on it had to be

postponed until we gained enough experience from the operation of cloud and grid

services in the context of WP5. This experience will help us identify an integration

path between the two worlds and design a solution for grid/cloud interoperation. In

this process it will be also necessary to include relevant stakeholders from the do-

main of grid operations (e.g. through the collaboration with EGI-InSPIRE project)

and middleware development (EMI).

Regarding the scalable and elastic management of grid site infrastructure, fu-

ture work will be focused on the use of different storage backends to access external

image catalogs, thus integrating the OpenNebula Image Repository with the Stra-

tusLab Marketplace as well as third-party providers like Amazon S3. Support for

new VLAN models, based on Open vSwitch and host-managed 802.1Q VLANs,

will be also implemented.

Finally, in order to provide an interface for grid or cluster as a service, some

work is going to be done to extend current cloud approaches. For example, the abil-

ity to specify context information for each service component (e.g. CA certificates

or component role) so it can be integrated within other grids; or the integration of

more grid services within the IaaS interface.

43 of 47

Glossary

ACL Access Control List

Appliance Virtual machine containing preconfigured software or services

APEL Accounting Processor for Event Logs

Appliance Repository Repository of existing appliances

CDDLM Configuration Description, Deployment, and Lifecycle

Management

CE Compute Element

DHCP Dynamic Host Configuration Protocol

DMTF Distributed Management Task Force

Front-End OpenNebula server machine, which hosts the VM manager

Hybrid Cloud Cloud infrastructure that federates resources between

organizations

IaaS Infrastructure as a Service

IP Infrastructure Provider

Instance a deployed Virtual Machine

JRA Joint Research Activity

KPI Key Performance Indicator

Machine Image Virtual machine file and metadata providing the source for Virtual

Images or Instances

NFS Network File System

Node Physical host on which VMs are instantiated

OASIS Organization for the Advancement of Structured Information

Standards

OCCI Open Cloud Computing Initiative

OGF Open Grid Forum

OVF Open Virtualization Format

Public Cloud Cloud infrastructure accessible to people outside of the provider’s

organization

Private Cloud Cloud infrastructure accessible only to the provider’s users

Regression Features previously working which breaks in a new release of the

software containing this feature

Service Manager/SM A toolkit to provides Service Providers to dynamically control the

Service provisioning and scalability

Service Provider/SP The provider who offers the application to be deploy in the Cloud

SMI Service Manager Interface

44 of 47

SLA Service Level Agreement

SE Storage Element

SSD Solution Deployment Descriptor

Virtual Machine / VM Running and virtualized operating system

TCloud It is a RESTful API use for Cloud service management

VMI Virtual Manager Interface

VIM Virtual Infrastructure Manager

VO Virtual Organization

VOMS Virtual Organization Membership Service

Web Monitor Web application providing basic monitoring of a single

StratusLab installation

Worker Node Grid node on which jobs are executed

45 of 47

References

[1] J. Cáceres, L. M. Vaquero, L. Rodero-Merino, A. Polo, and J. J. Hierro.

Service Scalability over the Cloud. In B. Furht and A. Escalante, edi-

tors, Handbook of Cloud Computing, pages 357–377. Springer US, 2010.

10.1007/978-1-4419-6524-0 15.

[2] C. Chapman, W. Emmerich, F. G. Márquez, S. Clayman, and A. Galis. Soft-

ware architecture definition for on-demand cloud provisioning. In HPDC ’10:

Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing, pages 61–72, New York, NY, USA, 2010. ACM.

[3] Cluster Resources. Terascale Open-Source Resource and QUEue Manager.

http://www.clusterresources.com/products/torque-resource-manager.

php.

[4] DMTF. Open virtualization format specification. Specification

DSP0243 v1.0.0d. Technical report, Distributed Management

Task Force, Sep 2008. https://www.coin-or.org/OS/publications/

optimizationServicesFramework2008.pdf.

[5] E. Huedo, R. Moreno-Vozmediano, R. Montero, and I. Llorente. Architec-

tures for Enhancing Grid Infrastructures with Cloud Computing. In M. Cafaro

and G. Aloisio, editors, Grids, Clouds and Virtualization, Computer Commu-

nications and Networks, chapter 3, pages 55–69. Springer, 2011.

[6] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. T. Foster. Virtual Infras-

tructure Management in Private and Hybrid Clouds. IEEE Internet Comput-

ing, 13(5):14–22, 2009.

[7] StratusLab. APEL Image. Online resource. http://appliances.stratuslab.

eu/images/grid/apel/sl-5.5-x86 64-grid.apel/1.0/sl-5.5-x86 64-grid.

apel-1.0.img.gz.

[8] StratusLab. CE Image. Online resource. http://appliances.stratuslab.eu/

images/grid/ce/sl-5.5-x86 64-grid.ce/2.0/sl-5.5-x86 64-grid.ce-1.0.

img.gz.

46 of 47

10.1007/978-1-4419-6524-0_15
http://www.clusterresources.com/products/torque-resource-manager.php
http://www.clusterresources.com/products/torque-resource-manager.php
https://www.coin-or.org/OS/publications/optimizationServicesFramework2008.pdf
https://www.coin-or.org/OS/publications/optimizationServicesFramework2008.pdf
http://appliances.stratuslab.eu/images/grid/apel/sl-5.5-x86_64-grid.apel/1.0/sl-5.5-x86_64-grid.apel-1.0.img.gz
http://appliances.stratuslab.eu/images/grid/apel/sl-5.5-x86_64-grid.apel/1.0/sl-5.5-x86_64-grid.apel-1.0.img.gz
http://appliances.stratuslab.eu/images/grid/apel/sl-5.5-x86_64-grid.apel/1.0/sl-5.5-x86_64-grid.apel-1.0.img.gz
http://appliances.stratuslab.eu/images/grid/ce/sl-5.5-x86_64-grid.ce/2.0/sl-5.5-x86_64-grid.ce-1.0.img.gz
http://appliances.stratuslab.eu/images/grid/ce/sl-5.5-x86_64-grid.ce/2.0/sl-5.5-x86_64-grid.ce-1.0.img.gz
http://appliances.stratuslab.eu/images/grid/ce/sl-5.5-x86_64-grid.ce/2.0/sl-5.5-x86_64-grid.ce-1.0.img.gz

[9] StratusLab. SE Image. Online resource. http://appliances.stratuslab.eu/

images/grid/se/sl-5.5-x86 64-grid.se/2.0/sl-5.5-x86 64-grid.se-2.0.

img.gz.

[10] StratusLab. WN Image. Online resource. http://appliances.stratuslab.eu/

images/grid/wn/sl-5.5-x86 64-grid.wn/2.0/sl-5.5-x86 64-grid.wn-1.0.

img.gz.

[11] Stratuslab Consortium. Deliverable 4.1 Reference Architecture for Stratus-

Lab Toolkit 1.0. Online resource., 2010. http://stratuslab.eu/lib/exe/fetch.

php?media=documents:stratuslab-d4.1-v1.0.pdf.

[12] Stratuslab Consortium. Deliverable 6.1 Cloud-like Management of Grid Sites

1.0 Design Report. Online resource., 2010. http://stratuslab.eu/lib/exe/

fetch.php/documents:stratuslab-d6.1-v1.0.pdf.

[13] Stratuslab Consortium. Deliverable 6.2 Cloud-like Management of Grid Sites

1.0 Software. Online resource., 2011. http://stratuslab.eu/lib/exe/fetch.

php/documents:stratuslab-d6.2-v1.1.pdf.

[14] Telefónica. TCloud API Specification, Version 0.9.0. Online resource., 2010.

http://www.tid.es/files/doc/apis/TCloud API Spec v0.9.pdf.

[15] TID. The Claudia project. Online resource., 2010. http://claudia.

morfeo-project.org/wiki/index.php/Main Page.

[16] YAIM. YAIM Ain’t an Installation Manager. http://yaim.info.

47 of 47

http://appliances.stratuslab.eu/images/grid/se/sl-5.5-x86_64-grid.se/2.0/sl-5.5-x86_64-grid.se-2.0.img.gz
http://appliances.stratuslab.eu/images/grid/se/sl-5.5-x86_64-grid.se/2.0/sl-5.5-x86_64-grid.se-2.0.img.gz
http://appliances.stratuslab.eu/images/grid/se/sl-5.5-x86_64-grid.se/2.0/sl-5.5-x86_64-grid.se-2.0.img.gz
http://appliances.stratuslab.eu/images/grid/wn/sl-5.5-x86_64-grid.wn/2.0/sl-5.5-x86_64-grid.wn-1.0.img.gz
http://appliances.stratuslab.eu/images/grid/wn/sl-5.5-x86_64-grid.wn/2.0/sl-5.5-x86_64-grid.wn-1.0.img.gz
http://appliances.stratuslab.eu/images/grid/wn/sl-5.5-x86_64-grid.wn/2.0/sl-5.5-x86_64-grid.wn-1.0.img.gz
http://stratuslab.eu/lib/exe/fetch.php?media=documents:stratuslab-d4.1-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php?media=documents:stratuslab-d4.1-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.1-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.1-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.2-v1.1.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.2-v1.1.pdf
http://www.tid.es/files/doc/apis/TCloud_API_Spec_v0.9.pdf
http://claudia.morfeo-project.org/wiki/index.php/Main_Page
http://claudia.morfeo-project.org/wiki/index.php/Main_Page
http://yaim.info

	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Organization of Following Chapters

	Grid services requirements
	Grid Site Deployment
	Grid Site Operation
	Monitoring
	Accounting
	Grid Site Elasticity

	Dynamic Provision of Grid Services
	Grid Site Specification
	OVF for specifying Grid sites
	OVF extensions required for the grid site specification

	Grid Site Deployment
	Grid site Contextualization
	Claudia implementation changes
	Grid site deployment introducing Claudia

	Grid Site Scalability
	Scalability Information in the OVF
	Probe development
	Load Balancer Support
	Grid site scalability introducing Claudia

	Advanced Monitoring Techniques
	Development of Ganglia Probes for Monitoring the Virtual Infrastructure
	Integration of Ganglia Monitoring Information in OpenNebula

	Scalable and Elastic Management of Grid Site Infrastructure
	Virtual Resource Placement Heuristics
	Evaluation of Placement Policies in OpenNebula

	Cloud-Aware Image Management Techniques
	Development of a Image Repository in OpenNebula for Image Management
	Support for Multiple Storage Backends to Access Persistent Images in the Image Repository
	External Image Catalogs
	VM Contextualization Using Image Information

	Cloud-Aware Network Management Techniques
	Dynamic Modification of ``Fixed'' Virtual Networks
	Evaluation of Additional VLAN Models for Virtual Network Management
	Automatic Setup of Simple TCP/UDP Firewall Rules for VMs
	VM Contextualization Using Virtual Network Information

	Others
	Improved Fault Tolerance
	Grouping of Physical Hosts in Clusters

	Cloud like-Interfaces Specific for the Scientific Community
	Cloud IaaS API
	TCloud as the Claudia API
	Enhancements in OGF OCCI Implementation in OpenNebula

	Integration of Grid services
	Authentication in OpenNebula Based on LDAP and Grid/VOMS Certificates
	Authorization Based on Groups and Roles in OpenNebula

	Conclusions and Future Work
	References

