
HAL Id: hal-00687220
https://hal.science/hal-00687220

Submitted on 11 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

RNS arithmetic in Fpk and application to fast pairing
computation
Sylvain Duquesne

To cite this version:
Sylvain Duquesne. RNS arithmetic in Fpk and application to fast pairing computation. Journal of
Mathematical Cryptology, 2011, 5 (1), pp.51-88. �10.1515/jmc.2011.006�. �hal-00687220�

https://hal.science/hal-00687220
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

J. Math. Cryptol. 5 (2011), 51–88
DOI 10.1515/JMC.2011.006 © de Gruyter 2011

RNS arithmetic in Fpk

and application to fast pairing computation

Sylvain Duquesne

Communicated by Alfred Menezes

Abstract. In this work, we are interested in arithmetic on large prime field and their ex-
tensions of small degree. We explain why it is very interesting to use RNS arithmetic for
the base field Fp when computations in Fpk have to be done, essentially thanks to lazy
reduction. This is for example the case for pairing computations on ordinary curves (as
MNT or BN curves). We show that using RNS can considerably decrease the number of
basic operations required for a pairing computation in many popular situations.

Keywords. Extension filed a arithmetic, Residue Number System, lazy reduction, elliptic
curves, pairing.

2010 Mathematics Subject Classification. 11T55, 11T71, 14G50, 94A60.

1 Introduction

In recent years, pairing based write cryptography became more and more popu-
lar. Thus efficient software and hardware implementation are necessary. For some
time past, ordinary curves superseded supersingular curves [14,50] on large prime
fields. Such pairings involve many arithmetic in extensions of small degrees of the
base field. Hence one approach angle for efficient pairing computation is the op-
timization of extension field arithmetic. The Residue Number System (RNS) has
already been introduced in elliptic curve cryptography in [5,6]. This is a system to
represent numbers which uses the Chinese Remainder Theorem. It is recalled in
Section 2. Contrary to standard arithmetic in Fp, the RNS introduces a large gap
of complexity between the multiplication and the reduction step of a modular mul-
tiplication. In extension fields, we show in Section 3 how lazy reduction allows
to considerably decrease number of reduction. Hence the RNS is particularly well
suited for extension field arithmetic and consequently for pairing computations. In
Section 4, after some background on pairings and their computation, we study in
detail the complexities of RNS-based implementations of current pairings (Tate,

This work was supported by the French ANR projects no. 07-BLAN-0248 “ALGOL” and 09-BLAN-
0020-01 “CHIC”.

52 S. Duquesne

Ate, R-Ate) and compare it to standard complexities. For this, we made some as-
sumptions (for example on the cost of RNS multiplications or on the negligibility
of additions compared to multiplications) so that, in practice, our results will fluc-
tuate depending on the implementation platform. We will concentrate on MNT
and BN curves, which are the most popular today for embedding degrees 6 and 12
since their cardinality can be prime or almost prime contrary to other constructions
in the literature. In all cases, we obtain significant theoretical savings so that the
RNS is very promising for future pairing implementations, especially in hardware.

2 Efficient arithmetic on prime fields

2.1 Modular multiplication

Elliptic curve arithmetic over Fp mainly involves modular multiplications mod-
ulo p. Such a modular multiplication can be decomposed into one classic multipli-
cation followed by one modular reduction. Because of the small size of numbers
used in elliptic curve cryptography (192 to 512 bits, i.e., 6 to 16 32-bit words),
the multiplication is performed by a common method. Let us consider a and b,
as two n-word integers given in radix representation (i.e., x D

Pn
iD0 xiB

i with
0 � xi < B). Then ab can be computed by a succession of word multiplications
and additions (which will be considered in the following as basic word operations).
We can summarize this by the equation

ab D b0aC B.b1aC B.b2aC � � � C Bbna/ : : : /:

The complexity is then n2 word multiplications. We note that for the current ECC
key sizes, Karatsuba or Toom–Cook approaches are not competitive as discussed
in the study made by the GMP group [1].

The reduction of an integer modulo p consists of finding the remainder of the
Euclidean division of this integer by p. This operation is costly. It can be substan-
tially sped up by using the Montgomery reduction or by using a special modulo.

Montgomery general reduction algorithm

In [48], Montgomery proposed to substitute the reduction modulo p by a division
by a power of the radix B (which is a simple shift). The result is not exactly a
mod p but aB�n mod p. This problem can be overcome by using Montgomery
representation where a0 D a�Bn mod p.

Algorithm 2.1. Montgomeryp.c/
Require: c.D ab/ < pBn, Bn�1 � p < Bn,

a precomputed value .�p�1 mod Bn/.

RNS in Fpk and pairings 53

Ensure: r such that r � cB�n .mod p/ and r < 2p.
q �c�p�1 mod Bn
r .c C qp/=Bn

The complexity of this reduction is n2 C n word operations [19]. For a < Bn,
its Montgomery representation is obtained via Aslgorithm 2.1 with c D a�.Bn
mod p/. In the same way, if a0 is the Montgomery representation of a, then we
recover a using Algorithm 2.1 with c D a0. Of course, such conversion is done
only once at the beginning and once at the end of the complete cryptographic com-
puting so that all the computations can be done in Montgomery representations.
Hence we ignore the cost of the conversion from Montgomery to classic represen-
tation (and reciprocally) in the following. We note, as r < 2p, that a comparison
and a final subtraction could occur, but the output of Algorithm 2.1 can be used as
input by adding a condition on p, specifically 4p < Bn.

Reduction using special modulo

Usually, when using ECC, one can choose the underlying field without restrictions.
In this case, the cost of a modular reduction can be reduced to several shifts and
additions. This is why the generalized Mersenne number class was introduced [22,
57]. This is used in most of the standards. However, this approach has several
drawbacks:

� It requires a dedicated architecture to such a particular p which cannot be used
for other prime fields. Consequently, it is not practical in either software or
hardware implementation and many customers prefer flexible products.

� In pairing based cryptosystems based on ordinary curves, the underlying fields
cannot be chosen because curves are built via complex multiplication methods.
Moreover, it has been shown in [52] that the use of such special moduli can
introduce weakness in pairing based cryptosystems.

For these reasons we do not consider this approach in this paper.

2.2 The Residue Number Systems (RNS)

The Residue Number Systems are a corollary of the Chinese Remainder Theo-
rem (CRT). They are based on the fact that a number a can be represented by
its residues .a1; a2; : : : ; an/ modulo a set of coprime numbers .m1; m2; : : : ; mn/,
called RNS basis, thus ai D a mod mi . We generally assume that 0 � a < M DQn
iD1mi . The elements ai are called RNS-digits. The strongest advantage of such

a system is that it distributes large integer operations on the small residue values.

54 S. Duquesne

The operations are performed independently on the residues. In particular, there is
no carry propagation. These systems were introduced and developed in [32,58,59].
A good introduction can be found in [41].

For constructing an arithmetic over Fp, we assume that M D
Qn
iD1mi is such

that p < M . In this system, two numbers a and b can be represented by their re-
mainders modulo the mi , i D 1; : : : ; n:

a D .a1; : : : ; an/ and b D .b1; : : : ; bn/:

A multiplication modulo M is reduced to n independent RNS-digits products. An
RNS-digits product is equivalent to a classical digit product followed by a modular
reduction modulo mi , which represents few additions (see [8, 9]),

r D .a1�b1 mod m1; : : : ; an�bn mod mn/ � a�b .mod M/: (2.1)

In this paper, we consider an RNS basis .m1; : : : ; mn/ with elements such that
mi D 2h � ci , where ci is small and sparse, ci < 2h=2. The reduction modulo
mi is, in this case, obtained with few shift and additions as in Section 2.1. As
explained in [5, 8, 9, 20] this property ensures that an RNS-digits product can be
considered to be equivalent to 1:1 word-product (word D h-bits). Of course, this
assumption is depending on the platform in practice.

RNS Montgomery reduction

We now focus on the multiplication modulo p using the Montgomery algorithm
presented in [3] and [4]. This is a direct transposition of the classical Montgomery
method. The main difference is due to the representation system. When the Mont-
gomery method is applied in a classical radix B number system, the value Bn
occurs in the reduction, division and Montgomery factor. In RNS, this value is
replaced by M . However, an auxiliary RNS basis is needed to handle the inverse
of M . Hence some operations as the initial product must be performed on the two
bases, which cost 2n words-products.

For two numbers a and b given in RNS, this algorithm evaluates r D abM�1

mod p in RNS. As in the classical Montgomery method given in Section 2.1, this
problem can be overcome by using Montgomery representation where a0 D a�M
mod p, which is stable for the Montgomery product and addition. Of course, the
conversion is done only once at the beginning by performing Montgomery product
with a and .M 2 mod p/ as operands, and once at the end of the complete cryp-
tographic computing with 1 as second operand. Hence this transformation will be
neglected in the following. Moreover, as the RNS is not redundant, this represen-
tation is well suited for cryptography without any conversion [7].

RNS in Fpk and pairings 55

Algorithm 2.2 presents the RNS Montgomery reduction (c can be considered as
the result of an RNS product on the two bases), where all the operations considered
are in RNS. We clarify on which basis they are done.

Algorithm 2.2. MontgR_RNS.c; p/
Require: Two RNS bases B D .m1; : : : ; mn/, and B0 D .mnC1; : : : ; m2n/,

such that M D
Qn
iD1mi < M

0 D
Qn
iD1mnCi and gcd.M;M 0/ D 1,

a prime number p such that 4p < M and gcd.p;M/ D 1; p is repre-
sented in basis B0 and �p�1 is precomputed in basis B,

a positive integer c represented in RNS in both bases, with c < Mp.

Ensure: A positive integer r � cM�1 .mod p/ represented in RNS in both ba-
ses, with r < 2p.

1: q .c/�.�p�1/ in B

2: Œq in B� �! Œq in B0� First base extension
3: r .c C q�p/�M�1 in B0

4: Œr in B � � Œr in B0� Second base extension

Note that instructions 1 and 3 of Algorithm 2.2 above are RNS additions or mul-
tiplications which are performed independently for each element of the basis, so
they are very efficient (linear). Instructions 2 and 4 represent RNS base extensions
which are quadratic and then costly. To reduce this cost, we can use two different
full RNS extensions as shown in [3, 4].

Finally, it is shown in [5] that the overall complexity of Algorithm 2.2 is 7
5
n2C

8
5
n RNS-digits products.
If we operate with an architecture of n basic word-arithmetic cells, RNS arith-

metic can be easily performed in a parallel manner due to the independence of the
RNS-digits operations. A parallel evaluation of the multiplication (in both bases)
requires only two steps whereas Algorithm 2.2 can be done in 12

5
nC 3

5
steps [5].

Advantages of the RNS

Even though the number of operations needed for the reduction is somewhat higher
than in a classical representation (n2 C n words products for the classical Mont-
gomery reduction), RNS has some important advantages.

� Assuming that for ECC size the multiplication needs n2 word-products, the
RNS approach is asymptotically quite interesting for a modular multiplica-
tion which represents 2n2 C n word-products in classical systems and .7

5
n2 C

18
5
n/�1:1 in RNS.

56 S. Duquesne

� As shown in [34], RNS is easy to implement, particularly in hardware, and it
provides a reduced cost for multiplication and addition and a competitive mod-
ular reduction. Furthermore, due to the independence of the modular opera-
tions, computations can be performed in a random way and the architecture
can be parallelized.

� An RNS based architecture is flexible: with a given structure of nmodular digit
operators, it is possible to handle any values of p such that 4p < M . Hence
the same architecture can be used for different levels of security and several
base fields for each of these levels.

� There is a large gap between the cost of the reduction and the cost of the mul-
tiplication (7

5
n2 vs. 2n) which is much smaller in classical systems (n2 C n

vs. n2). We can take great advantage of this gap by accumulating multiplica-
tions before reduction. This method is called lazy reduction.

2.3 Lazy reduction

Lazy reduction is often used in optimized implementations [44, 54, 61] and, inde-
pendently of this work, in the context of pairing implementations [2]. It consists in
delaying the reduction step after computing several products which must be sum-
med. For example, assume that we want to compute ab C cd with a; b; c and d
in Fp, where p is an n-word prime number. A classical implementation involves
2 modular multiplications and then requires 4n2 C 2n word-products. In a lazy
reduction implementation, we first compute the 2 multiplications and add them
before a unique reduction step. Thus it requires only 3n2 C n word-products. Of
course, this implies that the reduction algorithm can take larger integers as input
(less than 2p2 instead of less than p2 in the above example). It means that Bn or
M must be larger than p. This is not really cumbersome since there are several
means to do this:

� If, as often in cryptography, the size of p is an exact multiple of the word size
of the architecture, we need an additional word to handle Bn or M . Of course,
this method becomes costly if n is small as for example on 64-bit architecture.

� Use a prime p whose size is a little bit smaller than an exact multiple of the
word size of the architecture. Then Bn or M can be chosen larger than p. The
(psychological) drawback is that we obtain security levels which are not stan-
dard. For example, a 254-bit prime p is used in [2, 15] ensuring 127 bits of se-
curity.

� If larger words are used, like 36 bits words on FPGA, there are also sufficiently
extra bits to handle Bn or M for cryptographic applications [34].

RNS in Fpk and pairings 57

This method is particularly interesting if an RNS arithmetic is used because
of the large gap of complexity between the multiplication and the reduction step.
As an example: while the classical computation of ab C cd requires 14

5
n2 C 36

5
n

RNS-digits products, the use of lazy reduction requires only 7
5
n2C 28

5
nRNS-digits

products. Hence lazy reduction is particularly well adapted to RNS arithmetic.
This has already been used in [5,6] for elliptic curve cryptography. The goal of this
paper is to use it for efficient arithmetic on extension fields and consequently for
pairing based cryptography.

3 Fast arithmetic in Fpk combining lazy reduction and RNS

3.1 Polynomial reduction

Efficient arithmetic in finite extensions of prime fields are usually done with sparse
polynomials with small coefficients so that the cost of the reduction modulo this
polynomial is given by some additions. More precisely, we give this cost when the
extension is defined by a trinomial or a binomial, which is almost always the case
in practice.

Proposition 3.1. Let p be a prime number and Xk � ıXd � " be in FpŒX� such
that d � k=2 and ı; " small (by ‘small’ we mean that the multiplication by such a
number is cheap in Fp). The reduction modulo Xk � ıXd � " of a degree 2k � 1
polynomial requires only few additions in FpŒX�.

Proof. Write a degree 2k � 1 polynomial P as X2k�dP1 C XkP2 C P3, where
P1; P2 and P3 are polynomials of degree respectively at most d � 1, k � d � 1
and k � 1. We have

P D .ıXd C "/Xk�dP1C .ıX
d
C "/P2CP3 mod Xk � ıXd � "

D ıXkP1C "X
k�dP1C ıX

dP2C "P2CP3 mod Xk � ıXd � "

D ı.ıXd C "/P1C "X
k�dP1C ıX

dP2C "P2CP3 mod Xk � ıXd � "

D ı2XdP1C ı"P1C "X
k�dP1C ıX

dP2C "P2CP3 mod Xk � ıXd � "

D ıXd .ıP1CP2/C ".ıP1CP2CX
k�dP1/CP3 mod Xk � ıXd � ":

It is easy to verify that all polynomials involved in this sum have degree less than
or equal to k � 1, so that this last expression is the reduced form of P . This sum
requires only
� 4 additions in FpŒX�,
� 2 multiplications by monomials in FpŒX�, which are nothing but shifts of the

coefficients and then are usually almost free,

58 S. Duquesne

� 3 multiplications by ı or ", which can be counted as few additions in FpŒX�
since ı and " are assumed to be small.

Note that most of these cheap operations are even non-existent if the extension is
defined by a binomial.

This means that, if the irreducible polynomial defining Fpk is well chosen, the
cost of the reduction step in Fpk arithmetic is negligible compared to a multiplica-
tion in FpŒX�. In all the cases we are interested in this paper, and more generally
in cryptography, such cheap reduction always holds. Hence we will focus in this
paper on multiplication in FpŒX�.

3.2 Multiplication in Fpk

These multiplications can be done using schoolbook method or using alternative
well-known methods like Karatsuba or Toom–Cook. In this paper, we are inter-
ested in small values of k so that methods based on FFT are not interesting. Several
people have already studied in detail which method must be used for each value
of k and each construction of the extension. For example, [25] is very complete
for extensions used in pairing-based cryptography. We will not recall these results
here but use them for our comparisons. Anyway, whatever the method used, it re-
quires k� multiplications in Fp, with 1 < � � 2. The use of lazy reduction in this
case is immediate. We just have to delay the reduction steps at the end of the com-
putation. Then, only k reductions in Fp are required.

Example with k D 2

Assume p � 3 modulo 4 so that �1 is not a square in Fp. Then Fp2 can be de-
fined by FpŒX�=.X2C1/. We want to compute the product of P D a0Ca1X and
Q D b0 C b1X . Using schoolbook multiplication, we have

PQ D a0b0 � a1b1 C .a0b1 C a1b0/X:

This is the typical case where lazy reduction is interesting since ab C cd patterns
occur. Finally, such a multiplication in Fp2 involves 4 multiplications in Fp but
only 2 modular reductions. Note that, as elements in Fp2 have 2 independent com-
ponents, it is not possible to have less than 2 reductions in Fp in the general case.
Thus, using Karatsuba multiplication allows us to perform only 3 multiplications
in Fp but always 2 reductions thanks to the formula

PQ D a0b0 � a1b1 C ..a0 C a1/.b0 C b1/ � a0b0 � a1b1/X:

RNS in Fpk and pairings 59

The interest of using the RNS for the arithmetic in Fpk then becomes evident. In-
deed, the expensive step of the RNS, namely the reduction step, is used linearly
when Fpk arithmetic is performed whereas the cheaper step, namely the multi-
plication step, is used quadratically or sub-quadratically in k. More precisely, we
have the following property:

Proposition 3.2. Let p be a prime number which can be represented by n words in
radix representation and n RNS-digits in RNS representation. Let Fpk be a finite
extension of Fp defined by a sparse polynomial with small coefficients. We assume
that the multiplication in FpŒX� requires k� multiplications in Fp, with 1 < � � 2,
and that we use lazy reduction in Fp. A multiplication in Fpk then requires

� .k� C k/n2 C kn word multiplications in radix representation,

� 1:1�
�
7k
5
n2 C 10k�C8k

5
n
�

word multiplications if RNS is used.

Proof. A complete multiplication in Fpk requires k� multiplications in Fp thanks
to Karatsuba-like methods and k reductions in Fp thanks to the use of the lazy
reduction method. We have seen in Section 2.1 that a multiplication in Fp re-
quires n2 word multiplications and that a reduction requires n2 C n of them. This
trivially gives the first assertion. The second one is obtained thanks to the cost
of RNS multiplication (2n RNS-digits products) and reduction (7

5
n2 C 8

5
n RNS-

digits products) given in Section 2.2, which must be multiplied by 1.1 to have an
equivalent in word multiplications.

Most of the gain is due to the accumulation of many products before reducing
and not only 2 as in [5, 6]. Of course, both the classical and the RNS reduction al-
gorithms must be adapted. Indeed, input data can have a large size compared to p
because of this accumulation process. More precisely, input data have maximal
size k0p2, where k0 has the same size than k (it is not equal to k only because of
the polynomial reduction step). Then it is sufficient to choose the radix such that
Bn > k0p (or the RNS basis such thatM > k0p). Moreover, if we want to use the
output of the reduction algorithm (which is in Œ0; 2pŒ) as an input without a final
comparison and subtraction, each product becomes less than 4p so that we have to
choose Bn > 4k0p (or M > 4k0p). This is not restrictive in practice as long as k
is not too large as explained in Section 2.3.

For values of k and n greater than or equal to 6, the gain is spectacular. For
instance, if n D k D 6 and � D 1:5 (which is a mean between Karatsuba and
Toom–Cook complexities), a multiplication in Fp6 requires 781 word multiplica-
tions in radix representation while it requires only 590 in RNS. Of course, this is
just a rough estimation to give an idea of the expected gain. Each particular situa-
tion must be studied in detail. In this paper, we did it for the extension degrees 6

60 S. Duquesne

and 12 for two reasons:

� they are of particular interest in pairing-based cryptography as we will see at
the end of this paper,

� the classical arithmetic on such extensions is well studied ([25, 26]) which fa-
cilitates comparisons.

Some other extension degrees, like 2, 8 or 10, also have an interest in pairing-based
cryptography but do not involve new materials relatively to 6 and 12. They can be
done by the interested reader or can be demanded from the author. Note that, by
increasing k, RNS can provide more benefits compared to radix representation
because there is no k�n2 term in the Proposition 3.2.

3.3 Lazy arithmetic in Fp6

In this section, we recall the different ways to perform efficient arithmetic in Fp6
and combine them with lazy reduction and of course RNS arithmetic. In fact, we
are especially interested in multiplication in Fp6 . There are three different ways
to build Fp6 , namely as a quadratic extension of a cubic one, as a cubic extension
of a quadratic one or directly as a sextic extension (i.e., with an irreducible poly-
nomial of degree 6). For each of these constructions Devegilli et al. [25] studied in
detail all the possible arithmetic (schoolbook, Karatsuba, Toom–Cook and Chung–
Hasan for squaring). Their conclusions are:

� The Toom–Cook method requires asymptotically less multiplications or squar-
ings in Fp but is inefficient in practice for cryptographic sizes because it re-
quires many additions in Fp.

� The most efficient implementation for multiplication and squaring is obtained
when Fp6 is built as a quadratic extension of a cubic one. This is due to the
fact that there are very efficient formulas for quadratic and cubic extensions,
but not for higher degrees.

We then assume in the following that Fp6 is built as a quadratic extension of a cubic
one. Of course, those extensions are built as in Proposition 3.2 so that the reduction
step in Fp6 is negligible compared to the multiplication step. In this case, accord-
ing to [25], the most efficient way to perform a multiplication is to use the Karat-
suba method for both the multiplication in the quadratic extension and in the cubic
extension. The cost of a multiplication in Fp6 is then 18 multiplications in Fp. Con-
cerning squaring, there are several methods more or less equivalent in [25]. The
choice is depending on the cost of the squaring in Fp compared to a multiplication.
In this paper, we assume that these costs are the same so that the best squaring in

RNS in Fpk and pairings 61

Fp6 requires 12 multiplications in Fp using Karatsuba squaring for the cubic ex-
tension and the complex method for the quadratic one.

Performing lazy reduction is immediate assuming that it is possible to reduce
sums of several products. To ensure this, we have to relax the condition on Bn> 4p
(for Montgomery reduction) orM >4p (for RNS arithmetic). However, this is not
restrictive in practice as explained in Section 2.3.

Finally, the cost of a multiplication in Fp6 is 18multiplication in Fp and 6mod-
ular reductions whereas a squaring requires only 12 multiplications but also 6 re-
ductions.

3.4 Example of degree 6 extension in 192 bits

In this section, we give an explicit example of degree 6 extension of a 192-bit prime
field. This example comes from [50] and is linked to an MNT curve suitable for
pairing based cryptography, which is the subject of the next section. Let Fp be de-
fined by the prime number

p D 4691249309589066676602717919800805068538803592363589996389:

In this case, Fp6 can be defined by a quadratic extension of a cubic one thanks to
the polynomials X3 � 2 and Y 2 � ˛, where ˛ is a cubic root of 2,

Fp3 D FpŒX�=.X
3
� 2/ D FpŒ˛� and

Fp6 D Fp3 ŒY �=.Y
2
� ˛/ D Fp3 Œˇ�:

As we want to use lazy reduction, the arithmetic of this extension must be com-
pletely unrolled. Hence let

A D a0 C a1˛Ca2˛
2
C
�
a3 C a4˛Ca5˛

2
�
ˇ and

B D b0 C b1˛Cb2˛
2
C
�
b3 C b4˛Cb5˛

2
�
ˇ

be two elements of Fp6 . Using Karatsuba on the quadratic extension leads to

AB D
�
a0 C a1˛Ca2˛

2
� �
b0 C b1˛Cb2˛

2
�

C ˛
�
a3 C a4˛Ca5˛

2
� �
b3 C b4˛Cb5˛

2
�

C

h�
a0 C a3 C .a1 C a4/˛C.a2 C a5/˛

2
�

�
�
b0 C b3 C .b1 C b4/˛C .b2 C b5/˛

2
�

�
�
a0 C a1˛Ca2˛

2
� �
b0 C b1˛Cb2˛

2
�

�
�
a3 C a4˛Ca5˛

2
� �
b3 C b4˛Cb5˛

2
�i
ˇ:

62 S. Duquesne

Using Karatsuba again to compute each of these 3 products leads to

AB D a0b0 C 2
�
a4b4 C .a1 C a2/.b1 C b2/ � a1b1

C .a3 C a5/.b3 C b5/ � a3b3 � a5b5
�

C
�
a3b3 C .a0 C a1/.b0 C b1/ � a0b0 � a1b1

C 2.a2b2 C .a4 C a5/.b4 C b5/ � a4b4 � a5b5/
�
˛

C
�
a1b1 C 2a5b5 C .a0 C a2/.b0 C b2/ � a0b0 � a2b2

C .a3 C a4/.b3 C b4/ � a3b3 � a4b4
�
˛2

C
�
.a0 C a3/.b0 C b3/ � a0b0 � a3b3

C 2
�
.a1 C a2 C a4 C a5/.b1 C b2 C b4 C b5/

� .a1 C a4/.b1 C b4/ � .a2 C a5/.b2 C b5/

� .a1 C a2/.b1 C b2/C a1b1 C a2b2

� .a4 C a5/.b4 C b5/C a4b4 C a5b5
��
ˇ

C
�
.a0 C a1 C a3 C a4/.b0 C b1 C b3 C b4/ � .a0 C a3/.b0 C b3/

� .a1 C a4/.b1 C b4/ � .a0 C a1/.b0 C b1/C a0b0 C a1b1

� .a3 C a4/.b3 C b4/C a3b3 C a4b4

C 2
�
.a2 C a5/.b2 C b5/ � a2b2 � a5b5

��
˛ˇ

C
�
.a1 C a4/.b1 C b4/ � a1b1 � a4b4

C .a0 C a2 C a3 C a5/.b0 C b2 C b3 C b5/

� .a0 C a3/.b0 C b3/ � .a2 C a5/.b2 C b5/

� .a0 C a2/.b0 C b2/C a0b0 C a2b2

� .a3 C a5/.b3 C b5/C a3b3 C a5b5
�
˛2ˇ:

It is easy to verify that this formula requires 18 multiplications in Fp. Of course,
it also requires many additions, but this is due to the Karatsuba method, not to lazy
reduction. As explained in Section 3.3, it requires only 6 reductions thanks to the
accumulation of all the operations in each component. However, this accumula-
tion implies that the input of the reduction step can be very large. More precisely,
thanks to the existence of the schoolbook method for computingAB , we can easily
prove that if the components of A and B (i.e., the ai and the bi) are between 0 and
2p (which is the case when Algorithm 2.1 or 2.2 is used for reduction) then each
component of AB is between 0 and 44p2. This means that Bn in Montgomery re-
presentation and M in RNS representation must be greater than 44p to perform
lazy reduction in this degree 6 field.

RNS in Fpk and pairings 63

3.5 Lazy arithmetic in Fp12

The same work as in Section 3.3 can be done in the case of Fp12 . This has al-
ready been done in the recent literature because of the success of Barreto–Naehrig
curves. For example, Devegili, Scott and Dahab explain in [26] that Fp12 must be
built as a tower of extensions: quadratic on top of a cubic on top of a quadratic.
This is nothing but Section 3.3 applied to a quadratic extension of Fp. Then, if the
Karatsuba method is used for the multiplication in this quadratic extension, a mul-
tiplication in Fp12 requires 54multiplications in Fp and 12modular reductions and
a squaring requires 36 multiplications in Fp and 12 modular reductions.

3.6 Other useful operations in Fpk

Three other operations in Fpk are necessary for pairing computations, the inver-
sion, the Frobenius action (i.e., powering to the p) and the squaring in cyclotomic
subgroups. Of course, additions in Fpk are also often used. It is not clear that they
are always negligible especially for small values of n. It depends on the implemen-
tation context. However, they are usually cheap compared to multiplications and
we chose not to take them into account in this work.

Inversion

Performing an inversion in Fpk must be done very carefully because it is an expen-
sive operation. The general idea is that the inverse of an element is the product of
its conjugates divided by its norm. This allows to replace an inversion in Fpk by an
inversion in Fp and some multiplications. For example, in Fp2 D FpŒX�=X2 � "
we have

1

a0 C a1
p
"
D
a0 � a1

p
"

a20 � "a
2
1

and an inversion in Fp2 requires 1 inversion, 2 squarings, 2 multiplications and
3 reductions in Fp. In the same way an inversion in Fp3 (defined by a cubic root)
requires 1 inversion, 9 multiplications, 3 squarings and 7 reductions in Fp ([54]).
We can easily deduce that an inversion in Fp6 , built as a quadratic extension of a
cubic one, requires 1 inversion, 36 multiplications and 16 reductions in Fp. In the
same way, if Fp12 is built as in Section 3.5, it is easy to show that an inversion
requires 1 inversion, 97 multiplications ([35]) and 35 reductions in Fp.

Frobenius action

Contrary to the inversion, the Frobenius action in Fpk is cheap. Indeed, it is easy
to prove that if ¹�iºiD0::k�1 (with �0 D 1) is a basis for Fpk as a Fp vector space,

64 S. Duquesne

we have 0@k�1X
iD0

ai�i

1Ap D a0 C k�1X
iD1

ai�
p
i :

Thus, if the �pi are precomputed, this Frobenius operation requires only k.k � 1/
multiplications in Fp and k � 1 reductions. In fact, we can do even better with a
good choice of the basis. For example, if the extension is defined by a root
 of
the polynomial Xk � ", then �i D
 i and for 1 � i � k � 1,

�
p
i D

ip
D ci

ri D ci�ri

with ci 2 Fp and 0 � ri < k. In this case, computing the Frobenius action requires
only k � 1 multiplications and k � 1 reductions in Fp. This is the case for the
example given in Section 3.4, where additionally p � 1 mod 6 so that ri D i .
Of course, the same holds also for raising up an element to any power of p.

Squaring in cyclotomic subgroups

Finally, we have already seen that squaring in a degree 6 extension of Fq usually
requires 12 multiplications and 6 reductions in the base field Fq . However, as no-
ticed in [33], if the element to be squared lies in the cyclotomic subgroup

Gˆ6.Fq/ D ¹A 2 Fq6 j A
ˆ6.q/ D 1º;

where ˆ6 denotes the 6-th cyclotomic polynomial, this can be done faster. More
precisely, assuming the extension is defined by a binomial, such squarings require
only 3 squarings in Fq2 (and always 6 reductions). For example, squaring an ele-
ment of Gˆ6.Fp/ � Fp6 requires only 6 multiplications and squaring an element
of Gˆ6.Fp2/ � Fp12 requires only 18 multiplications.

4 Pairing on elliptic curves and their computation

4.1 Pairings in cryptography

Bilinear pairings on elliptic curves have been introduced in cryptography in the
middle of the 90’s for cryptanalysis. Indeed, they allow to transfer the discrete lo-
garithm on an elliptic curve to a discrete logarithm in the multiplicative group of a
finite field, where subexponential algorithms are available [29, 45]. In 2000, Joux
introduced the first constructive use of pairings with a tripartite key exchange pro-
tocol [38]. Since then, it has been shown that pairings can be used to construct new
protocols like identity based cryptography [17] or short signature [18]. As a conse-
quence, pairings became very popular in asymmetric cryptography and computing

RNS in Fpk and pairings 65

them as fast as possible is very important. Let us first briefly recall the state of the
art in this field and then explain how an RNS arithmetic can be helpful.

4.2 The Tate pairing

The most popular pairing used in cryptography is the Tate pairing. We present it
here in a simplified and reduced form because it is the one usually used in cryp-
tographic applications. More details and generalities can be found in [16, 23]. In
this paper we assume that E is an elliptic curve defined over Fp by an equation

y2 D x3 C a4x C a6: (4.1)

Let ` be a prime divisor of #E.Fp/ D p C 1 � t , where t denotes the trace of the
Frobenius map on the curve. The embedding degree k of E with respect to ` is the
smallest integer such that ` divides pk�1. This means that the full `-torsion of the
curve is defined over the field Fpk . For any integerm and `-torsion point P , if Pm
is the point mP on E, f.m;P / is the function defined on the curve whose divisor is
div.f.m;P // D mP � Pm � .m � 1/O. The Tate pairing can then be defined by

eT W E.Fp/Œ`��E.Fpk /! F�
pk
=
�
F�
pk

�`
;

.P;Q/ 7! f.`;P /.Q/
pk�1
` :

The first step to compute the Tate pairing is the computation of f.`;P /.Q/. It is
done thanks to an adaptation of classical scalar multiplication algorithm due to
Miller [46], which is given here in a more general case to cover other pairings.

Algorithm 4.1. Miller.m; P;Q/
Require: An integer m with binary representation .ms�1; : : : ; m0/2, two points
P and Q in E.Fpk /.

Ensure: f.m;P /.Q/ 2 Fpk .
T P

f 1

for i from s � 2 downto 0 do
f f 2:

g.T;T /.Q/

v2T .Q/
T 2T

if mi D 1 then
f f:

g.T;P/.Q/

vTCP .Q/
T T C P

end if
end for
return f

66 S. Duquesne

In this algorithm, g.A;B/ is the equation of the line passing through the points
A and B (or tangent to E in A if A D B) and vA is the equation of the vertical
line passing by A, so that g.A;B/

vACB
is the function on E involved in the addition of A

and B .
The second step is to raise f to the power p

k�1
`

. There are several ways to
speed up the pairing computation:

� simplifying and optimizing the operations inside the Miller loop ([10, 12, 13,
24, 53]),

� constructing pairing-friendly elliptic curves ([11, 14, 21, 27, 31, 39, 47, 51, 55])
and a good survey is [28],

� more recently, reducing the length of the Miller loop ([36,37,43,60]) thanks to
the introduction of new pairings,

� simplifying the final exponentiation ([30, 40, 56]).

Note that it is not interesting to use better exponentiation techniques as sliding
windows for pairing computations. This is because even if 3P , for instance, can be
precomputed, the writing up of f requires an additional (expensive) multiplication
in Fpk by the function involved in the computation of 3P .

4.3 Ordinary curves with prescribed embedding degrees

The embedding degree k is usually very large so that computing in Fpk is not rea-
sonable. This is reassuring regarding the destructive use of pairings but annoying
if one wants to use pairing based cryptosystems. Curves with small embedding de-
grees can be obtained in two different ways. The first one is to use supersingular
curves. However, this work focuses on large characteristic base fields and, in this
case, the embedding degree is less than or equal to 2, which is too small for security
reasons without working on artificially large base fields. The second one is to use
ordinary curves with prescribed embedding degrees constructed via the complex
multiplication method as surveyed in [28]. We will focus here on the most pop-
ular ones, namely the MNT curves having an embedding degree equal to 6 ([47])
and the BN curves having embedding degree equal to 12 ([14]).

MNT curves

In [47], the authors explain how to use the complex multiplication method to con-
struct ordinary elliptic curves with embedding degrees 3, 4 and 6. Their goal was
to characterize elliptic curves with small embedding degrees to protect against de-
structive use of pairings, but it has also been used as a mean to construct ordinary
curves with embedding degree 6.

RNS in Fpk and pairings 67

Theorem 4.2. Let p be a large prime and E be an ordinary elliptic curve defined
over Fp such that #E.Fp/ D pC 1� t is prime. Then E has embedding degree 6
if and only if there exists l 2 Z such that p D 4l2 C 1 and t D 1˙ 2l .

The strategy to generate ordinary elliptic curve of prime order with embedding
degree 6 is the following:

� Select a small discriminantD which is 3 mod 8 but not 5 mod 10 and such that
�8 is a quadratic residue modulo 3D.

� Compute solutions .X D 6l ˙ 1; Y / of the generalized Pell equation X2 �
3DY 2 D �8 until the values of p and #E.Fp/ corresponding to this value of l
are prime numbers of the desired size.

� Repeat with another D if not found.

The main drawback of this method is that the consecutive solutions of generalized
Pell equations grow exponentially so that only very few curves are found. How-
ever, it is possible to relax the constraints in order to obtain more curves as done
in [31, 55]. As an example, the following 192-bit curve has been found with this
method ([50]).

Proposition 4.3. Let p be the prime number given in Section 3.4. The curve de-
fined over Fp by the equation

y2 D x3 � 3x

C 3112017650516467785865101962029621022731658738965186527433

has embedding degree 6 and cardinality 2`, where ` is the prime number

` D 2345624654794533338301358959942345572918215737398529094837:

Barreto–Naehrig curves

Barreto and Naehrig devised in [14] a method to generate pairing friendly elliptic
curves over a prime field, with prime order and embedding degree 12. The equation
of the curve is

y2 D x3 C a6; a6 ¤ 0;

and the trace of the Frobenius t , the cardinality of the curve r and the base field
Fp are parameterized as

� t D 6l2 C 1,
� r D 36l4 � 36l3 C 18l2 � 6l C 1,
� p D 36l4 � 36l3 C 24l2 � 6l C 1.

68 S. Duquesne

For example, a6 D 3 and l D �6000000000001F 2D (hex) are such that both r
and p are prime numbers ([26]). Other examples with low Hamming weight can
be found in [51].

4.4 Fast Tate pairing computation

In this section we explain how to efficiently compute the Tate pairing.

Formulas for Miller loop

Of course, the easiest way to speed up the pairing computation is to choose `
as sparse as possible. As this can be done in many cases, we give only formulas
for the “doubling” step of the Miller loop, which are therefore representative of the
whole Miller loop. Moreover, the formulas for the addition are included in the final
Algorithms 5.1 and 5.2.

We assume in this section that Jacobian coordinates have been chosen because
it is usually the case in pairing implementations (cf. [15,35,49]). Of course, other
choices are possible depending on the implementation context. For example, pro-
jective coordinates require less multiplications (but many more additions) if a6 is
small ([2, 24]). However, this has almost no consequences for the results obtained
in this paper because its main topic is low-level arithmetic. Let E be an elliptic
curve defined as in (4.1).

Let P D .XP ; YP ; ZP / and T D .XT ; YT ; ZT / be two points inE.Fpk / given
in Jacobian coordinates andQ D .xQ; yQ/ 2 E.Fpk / given in affine coordinates.
Formulas for the “doubling” step of the Miller loop are given by

A D 3X2T C a4Z
4
T ;

C D 4XT Y
2
T ;

X2T D A
2
� 2C;

Y2T D A.C �X2T / � 8Y
4
T ;

Z2T D 2YTZT ;

gT;T .Q/ D
2YTZ

3
T yQ � A.Z

2
T xQ �XT / � 2Y

2
T

2YTZ
3
T

;

vT;T .Q/ D
xQZ

2
2T �X2T

Z22T
:

If the Tate pairing is used, then the point P (and consequently the point T) is in
E.Fp/ so that most of the terms in these formulas are in Fp. The only elements

RNS in Fpk and pairings 69

lying in the extension field Fpk are xQ and yQ and we will now see that, thanks
to the use of twists, we can almost assume that they are lying in a proper subfield
of Fpk . This will have important consequences on the efficiency of the Miller loop.

Use of twists

Definition 4.4. Two elliptic curves E and QE defined over Fq are said to be twisted
if there exists an isomorphism‰d between E and QE defined over an extension Fdq
of Fq . The degree of this twist is the degree of the smallest extension on which‰d
is defined.

The possible twist degrees are 2, 3, 4 and 6, depending on the embedding de-
gree k. We will focus in this paper on even embedding degrees k and twists of de-
gree 2 and 6. We have the following properties:

� Let � be a non-quadratic residue in Fpk=2 . The curves E and QE given by the
equations

E W y2 D x3 C a4x C a6; QE W �y2 D x3 C a4x C a6

are twisted by the twist of order 2 (i.e., defined over Fpk)

‰2 W QE ! E;

.x; y/ 7! .x; y�
1
2 /:

� An elliptic curveE defined as in (4.1) has a degree 6 twist if and only if a4 D 0.
If � is an element in Fpk=6 which is not a sixth power, then E is the twisted of
the curve QE defined by

y2 D x3 C
b

�

by the twist of order 6

‰6 W QE ! E;

.x; y/ 7! .x�
1
3 ; y�

1
2 /:

Let ‰ be such a twist. As E and QE are isomorphic over Fpk , we can define a vari-
ant of the Tate pairing without loss of generality as

eT .P;Q/ D f.`;P /.‰.Q//
pk�1
` :

This is nothing but the Tate pairing defined on E.Fp/Œ`�� QE.Fpk /. For the twists
given above, this means that the coordinates of Q can be written as .xQ; yQ�

1
2 /

70 S. Duquesne

or .xQ�
1
3 ; yQ�

1
2 /, where xQ and yQ are defined over Fpk=d . There are three im-

portant consequences on the Miller loop.

� The computation of f involves only Fpk=d arithmetic (but the result is still
in Fpk).

� The vertical lines, and more generally all the factors of f lying in a proper sub-
field of Fpk (as Fp or Fpk=d), are wiped out by the final exponentiation. Hence,
in the doubling step for example, only the expression 2YTZ3T yQ�A.Z

2
T xQ�

XT /� 2Y
2
T has to be computed before the writing up of f . This is the famous

denominator elimination introduced in [10].
� In the case of twists of order 6 for Tate pairings, this expression has the partic-

ular form
g0 C g2�

1
2 C g3�

1
3 ;

where g0 2 Fp and g1; g2 2 Fp2 , which contains only 5 coefficients instead
of 12. Hence the multiplication by such an element during the writing up of f
is cheaper than a complete multiplication in Fpk . More precisely, the multipli-
cation of an arbitrary element of Fpk by g0 requires 12 multiplications in Fp
and the one by g2�

1
2 Cg3�

1
3 requires 27 multiplications in Fp using Karatsuba.

Finally, this operation requires 39 multiplications in Fp instead of 54 for a com-
plete Karatsuba multiplication in Fpk . Even if this expression has a different
form for other pairings, it is still sparse and we can also perform this multipli-
cation with only 39 multiplications in Fp.

Final exponentiation

For the Tate pairing (but also for other pairings), the exponent of the final expo-
nentiation is p

k�1
`

, which has the size of pk�1 and the base field is Fpk . Hence, at
first sight, the final exponentiation seems to be very expensive. Hopefully, Koblitz
and Menezes show in [42] that this cost can be reduced thanks to the factorization

pk � 1

`
D
�
pk=2 � 1

��pk=2 C 1
ˆk.p/

��
ˆk.p/

`

�
;

whereˆk is the k-th cyclotomic polynomial. The fact thatˆk.p/ divides pk=2C1
(as polynomials in p) is a direct consequence of the definition of k as the smallest
integer such that ` divides pk � 1. Then, the final exponentiation can be split into
three parts. The first two parts are very fast since they are obtained via cheap Fro-
benius computations.

The third part, usually called the hard part, is given by the exponent ˆk.p/
`

. In
the general case, the best way is to develop this exponent in base p so that, thanks
to multi-exponentiation, its cost is the same as if an exponent of the size of p were

RNS in Fpk and pairings 71

used. However, both in the case of MNT curves and BN curves, we can do better
thanks to the parametrization of p and `. For example, in the case of MNT curves,
we have

p6 � 1

`
D
�
p3 � 1

� �p3 C 1
ˆ6.p/

��
ˆ6.p/

`

�
with

ˆ6.p/ D p
2
� p C 1;

p D 4l2 C 1;

` D 4l2 � 2l C 1;

and an elementary calculation gives

p6 � 1

`
D .p3 � 1/.p C 1/.p C 2l/:

Then, the final exponentiation is obtained thanks to several easy Frobenius appli-
cations and an exponentiation with 2l as an exponent (whose size is the half of the
size of p). Note that it also involves an inversion in Fp6 .

Of course, it is better to choose l as sparse as possible, but MNT curves are rare
so that it is not feasible in practice. Then, efficient exponentiation methods, as slid-
ing window, must be used.

On the contrary, the parameter can be chosen sparse for BN curves and it is not
so easy to reduce the size of the exponent. More precisely, the hard part of the final
exponentiation for BN curves consist in raising f to the

p3 C .6l2 C 1/p2 C .36l3 � 18l2 C 12l � 1/p C 36l3 � 30l2 C 18l � 2:

This can be computed using a multi-addition chain requiring 3 exponentiations to
the l , 13 multiplications, 4 squarings, and 7 Frobenius actions in Fp12 ([56]). As
p � 36l4, the cost is around three-quarters of the cost of an exponentiation with
an exponent having the same size as p.

Finally, the result of the first two steps of the final exponentiation has order
ˆk.p/. Then, as noticed in [33], it is in Gˆk .Fq/ so squaring such an element
(which is the most used operation in the hard part of the exponentiation) is less
expensive than a classical squaring in Fpk as explained in Section 3.6. More re-
cently, Karabina proposed to compress the elements of Gˆ6.Fp2/ before squaring
([40]). This method provides faster squaring steps in the final exponentiation, but
it involves extra inversions so that its efficiency is depending on the platform.
It is successfully used in software in [2] but is probably much less interesting in
hardware implementations. Moreover, it will have negligible consequences on our
result because it can be used both in RNS and in radix representation. So we did
not use it in this work.

72 S. Duquesne

4.5 Other pairings

Recently, some variants of the Tate pairing appear in the literature. The main goal
is to reduce the length of the Miller loop. The price to be paid is that the points P
and Q are swapped. This means that the elliptic curve arithmetic will hold in Fpk
(or Fpk=d for twisted versions) instead of Fp so that even if the number of steps in
the Miller loop will decrease, the cost of each step will increase. We give here the
Ate and R-Ate pairings.

The Ate pairing

This pairing was first introduced in [37]. It is defined by

eA W E.Fpk / \ Ker.� � p/�E.Fp/Œ`�! F�
pk
=
�
F�
pk

�`
;

.Q;P / 7! f.t�1;Q/.P /
pk�1
` ;

where � is the Frobenius map on the curve. This construction works because, since
Q 2 Ker.��p/ and ` j #E.Fp/ D pC1� t , we have �.Q/ D .t �1/Q. Finally,
because t � 1 �

p
`, the length of the Miller loop is divided by 2 compared to the

Tate pairing. This pairing is optimal for MNT curves in the sense of [60].

The R-Ate pairing

This is a generalization of the Ate pairing introduced in [43]. We give here its ex-
pression only in the case of BN curves. If l is the parameter used to construct the
BN curve and b D 6l C 2, the R-Ate pairing is defined by

eR W E.Fpk / \ Ker.� � p/�E.Fp/Œ`� ! F�
pk
=
�
F�
pk

�`
with

.Q;P / 7!
�
f.b;Q/.P /:

�
f.b;Q/.P /:g.bQ;Q/.P /

�p
:g.�..bC1/Q/;bQ/.P /

�pk�1
`
;

where g.A;B/ is the equation of the line passing through A and B . In this case,
l �

4
p
`, so the length of the Miller loop is divided by 4 compared to the Tate

pairing. This pairing is optimal for BN curves in the sense of [60]. Note that the
so-called optimal Ate pairing used in recent implementations ([2,15]) is almost the
same as the R-Ate pairing: it only requires one multiplication in Fp12 less. Hence
the results we obtained in this work for the R-Ate pairing are also valid for the
optimal Ate pairing.

RNS in Fpk and pairings 73

5 RNS arithmetic for fast pairing computation

When the embedding degree is large, the RNS does not yield to any noteworthy
improvement on the computation of T or g.Q/ but, thanks to its linear complexity
regarding the extension degree, we obtain very important improvements on the
writing up of f and the final exponentiation. As these are the most expensive steps
of the Tate pairing computation, we can say that the RNS arithmetic is particularly
well adapted to fast pairing computation. But let us see more in detail the expected
gains for most popular pairing friendly curves (in large characteristic), say MNT
curves and BN curves.

5.1 Using RNS for MNT curves

We assume in this section thatE is an elliptic curve defined over Fp by an equation
(4.1) and obtained as described in Section 4.3 so that p D 4l2 C 1 for some inte-
ger l . We also assume that Fp6 is built as a quadratic extension of Fp3 ,

Fp6 D Fp3 ŒY �=.Y
2
� �/ D Fp3 Œˇ�:

Tate Pairing

As MNT curves have a twist of order 2, the input elements of the Tate pairing can
be written in the form P D .xP ; yP / 2 E.Fp/Œ`� and Q D .xQ; yQˇ/ with xQ
and yQ 2 Fp3 . Applying the improvements explained in Section 4.4, the Tate pair-
ing is then given by Algorithm 5.1.

Algorithm 5.1. Tate.P;Q/
Require: p D 4l2 C 1 prime,

E a MNT elliptic curve defined over Fp,

` j #E.Fp/ prime with binary representation .`s�1; : : : ; `0/2,

P D .xP ; yP / 2 E.Fp/Œ`�,

Q D .xQ; yQˇ/ with xQ and yQ 2 Fp3 .

Ensure: eT .P;Q/ 2 Fp6 .
1: T D .XT ; YT ; ZT / .xP ; yP ; 1/

2: f 1

3: for i from s � 2 downto 0 do
4: A D 3X2T C a4Z

4
T ; C D 4XT Y

2
T

5: X2T D A
2 � 2C

6: Y2T D A.C �X2T / � 8Y
4
T

7: Z2T D 2YTZT

74 S. Duquesne

8: g D Z2TZ
2
T yQˇ � AZ

2
T xQ C AXT � 2Y

2
T

9: f f 2:g

10: T ŒX2T ; Y2T ; Z2T �

11: if `i D 1 then
12: E D xPZ

2
T �XT ; F D yPZ

3
T � YT

13: XTCP D F
2 � 2XTE

2 �E3

14: YTCP D F.XTE
2 �XTCP / � YTE

3

15: ZTCP D ZTE

16: g D ZTCPyQˇ �ZTCPyP � F.xQ � xP /

17: f f:g

18: T ŒXTCP ; YTCP ; ZTCP �

19: end if
20: end for
21: f f p

3�1

22: f f pC1

23: f f p:f 2l

24: return f

Let us now precisely analyze the complexity of each line of this algorithm. Note
that we choose to not distinguish multiplication and squaring in Fp for simplicity
because this has no notable consequence on our study.
� The lines 4 to 7 are the standard doubling of the point T 2 E.Fp/ in Jacobian

coordinates and require 10 multiplications in Fp (if a4 has no special form).
Lazy reduction can be used when computing A and Y2T so that 8 modular re-
ductions are necessary.

� In the same way, the lines 12 to 15 are for the mixed addition of T and P and
require 11 multiplications and 10 reductions in Fp.

� As xQ and yQ are in Fp3 , line 8 requires 9 multiplications in Fp. Note that
this is not a good idea to write A.Z2T xQ C XT / in line 8 because it requires
2 multiplications of an element of Fp3 by an element of Fp instead of one.
However, we can use the lazy reduction technique on the constant term of this
expression. Finally, 8 modular reductions are necessary.

� The situation is the same for line 16, which requires 7 multiplications and 6
modular reductions in Fp.

� Line 9 involves both a multiplication and a squaring in Fp6 . The cost of such
operations is detailed in Section 3.3. We deduce that the total complexity for
this line is 30 multiplications and 12 modular reductions in Fp.

� The situation for line 17 is similar and leads to 18 multiplications and 6 reduc-
tions.

RNS in Fpk and pairings 75

� Line 21 is computed as f
p3

f
. As f 2 Fp6 , the exponentiation by p3 is nothing

but the conjugation on Fp3 Œˇ� so it is for free. Finally, this step requires a multi-
plication and an inversion in Fp6 . As recalled in Section 3.6, such an inversion
can be done with only 1 inversion, 36 multiplications and 16 reductions in Fp.
Finally, this first step of the final exponentiation requires 54 multiplications, 22
modular reductions and one inversion in Fp.

� Line 22 involves one multiplication in Fp6 and one application of the Frobenius
map. We have seen in Section 3.6 that, if the polynomial defining Fp6 is well
chosen (which is always the case in practice) the Frobenius map requires only
5 modular multiplications in Fp. Hence this second step of the final exponenti-
ation requires 23 multiplications and 11 reductions in Fp.

� The hard part of the final exponentiation involves one Frobenius (i.e., 5 modu-
lar multiplications), one multiplication in Fp6 (18 multiplications and 6 reduc-
tions) and one exponentiation by 2l . We have already seen that l cannot be cho-
sen sparse for MNT curves, so that advanced exponentiation methods must be
used. In line 21 and 22, f has been raised to the power .p6 � 1/=ˆ6.p/, so
that it is in Gˆ6.Fp/ and can be squared with only 6 multiplications and 6 re-
ductions in Fp as explained in Section 3.6. Then, for each step of this exponen-
tiation, the cost is 6 multiplications and 6 reductions and 18 additional multi-
plications and 6 reductions if a multiplication is required by the exponentiation
algorithm.

It is now necessary to fix the security level to have an idea of the overall com-
plexity of the Tate pairing. We choose a 96-bit security level which is quite reason-
able for embedding degree 6. Hence ` has bit-length 192 which means that the
lines 4 to 9 are done 191 times and the lines 12 to 17 around 96 times. Concerning
the hard part of the final exponentiation, as 2l is 96 bits long, it is reasonable to
use the sliding window method with a window size of 3 for computing f 2l . It re-
quires 96 squarings in Fp6 and, on average, 24 multiplications in Fp6 (plus 3 for
precomputations).

Then, as summarized in Table 1, the full Tate pairing computation requires
13977 multiplications but only 8242 reductions. For this level of security, 6 (32-bit)
words are necessary so a radix implementation requires

13977�62C8242�.62C6/ D 849336

word multiplications whereas an RNS implementation requires

1:1

�
13977�2�6C8242�

�
7

5
62C

8

5
6

��
D 728468

word multiplications. This represents a gain of 14.2%.

76 S. Duquesne

multiplications reductions

lines 4 to 7 10 8
line 8 9 8
line 9 30 12

doubling step 49 28

lines 12 to 15 11 10
line 16 7 6
line 17 18 6

addition step 36 22

Miller loop 12815 7460

line 21 54 22
line 22 23 11
line 23 1085 749

final exponentiation 1162 782

Tate pairing 13977 8242

Table 1. Number of Fp operations for the Tate pairing on MNT curves for 96 bits of
security.

Ate pairing

The algorithm is very similar to Algorithm 5.1, but the arguments P and Q are
swapped. This means that operations of the lines 4 to 7 and 12 to 15 are done in
Fp3 so multiplications are 6 times more expensive and reductions only 3 times.
It is easy to prove that, if the coordinates of T are .XT ; YTˇ; ZT /, the lines 8
and 16 must be replaced by

80 g D Z2TZ
2
T yPˇ C A.XT �Z

2
T xP / � 2�Y

2
T

160 g D �ZTCQyQˇ CZTCQyP � F.xP � xQ/

whereZ2T ,Z2T , A D 3X2T �a4Z
4
T , Y 2T ,ZTCP and F D yQZ3T �YT were com-

puted in Fp3 during the previous steps. The first requires 18 multiplications and 12
reductions in Fp whereas the second requires 15 multiplications and 6 reductions.
All these costs are summarized in Table 2. Moreover, since t � 1 has bit-length 96
and Hamming weight around 48, the doubling step must be done 95 times in the
Miller loop and the addition step 47 times. Finally, the final exponentiation is the
same as for the Tate pairing.

RNS in Fpk and pairings 77

multiplications reductions

lines 4 to 7 60 24
line 8’ 18 12
line 9 30 12

doubling step 108 48

lines 12 to 15 66 30
line 16’ 15 6
line 17 18 6

addition step 99 42

Miller loop 14913 6534

final exponentiation 1162 782

Ate pairing 16075 7316

Table 2. Number of Fp operations for the Ate pairing on MNT curves for 96 bits of
security.

Then, the full Ate pairing computation requires 16075 multiplications but only
7316 reductions. This yields to 885972 word multiplications in radix representa-
tion but only 695046 in RNS which represents a gain of 21.5%.

Note that the Ate pairing is not really interesting for MNT curves because most
of the computations are done in Fp3 . This is not the case for BN curves because the
twist used has order 6 so that the arithmetic involved in Ate pairing will be in Fp2 .
Moreover, we can again half the exponent in this case thanks to the R-Ate pairing.

5.2 Using RNS for BN curves

BN curves have a twist of order 6 so that all the improvements given in Section 4.4
can be used. This is one of the reasons of the current success of BN curves.

We assume in this section that E is an elliptic curve defined over Fp by an
equation of the form

y2 D x3 C a6

and obtained as described in Section 4.3. We also assume that Fp12 is built as a qua-
dratic extension of a cubic extension of Fp2 , which is easily compatible with the
use of twists of order 6. More precisely, letting � be an element in Fp2 which is
not a sixth power, we build

Fp6 D Fp2 ŒY �=.Y
3
� �/ D Fp2 Œˇ�; Fp12 D Fp6 ŒZ�=.Z

2
� ˇ/ D Fp6 Œ
�:

Thus Fp12 can also be defined by Fp2 Œ
�.

78 S. Duquesne

Tate pairing

Thanks to the twist defined by �, the second input of the Tate pairing can be written
as

Q D .xQ

2; yQ

3/ with xQ and yQ 2 Fp2 :

Applying the improvements explained in Section 4.4, the Tate pairing is given by
Algorithm 5.2.

Algorithm 5.2. Tate.P;Q/
Require: p D 36l4 � 36l3 C 24l2 � 6l C 1 prime,

E a BN elliptic curve defined over Fp,

` j #E.Fp/ prime with binary representation .`s�1; : : : ; `0/2,

P D .xP ; yP / 2 E.Fp/Œ`�;Q D .xQ
2; yQ
3/ with xQ; yQ 2 Fp2 .

Ensure: eT .P;Q/ 2 Fp12 .
1: T D .XT ; YT ; ZT / .xP ; yP ; 1/

2: f 1

3: for i from s � 2 downto 0 do
4: A D 3X2T ; C D 4XT Y

2
T

5: X2T D A
2 � 2C

6: Y2T D A.C �X2T / � 8Y
4
T

7: Z2T D 2YTZT
8: g D Z2TZ

2
T yQ

3 � AZ2T xQ

2 C AXT � 2Y

2
T

9: f f 2:g

10: T ŒX2T ; Y2T ; Z2T �

11: if `i D 1 then
12: E D xPZ

2
T �XT ; F D yPZ

3
T � YT

13: XTCP D F
2 � 2XTE

2 �E3

14: YTCP D F.XTE
2 �XTCP / � YTE

3

15: ZTCP D ZTE

16: g D ZTCPyQ

3 � FxQ

2 �ZTCPyP C FxP /

17: f f:g

18: T ŒXTCP ; YTCP ; ZTCP �

19: end if
20: end for
21: f f p

6�1

22: f f p
2C1

23: f f p
3C.6l2C1/p2C.36l3�18l2C12l�1/pC36l3�30l2C18l�2

24: return f

RNS in Fpk and pairings 79

Let us now analyze the complexity of each line of this algorithm.

� As explained for MNT curves, the lines 4 to 7 require 7 multiplications and
6 modular reductions whereas the lines 12 to 15 require 11 multiplications and
10 modular reductions.

� As xQ and yQ are in Fp2 , line 8 requires 8 modular multiplications in Fp and
lazy reduction cannot be used.

� In the same way, line 16 requires 6 multiplications but only 5 modular reduc-
tions because lazy reduction is used on the constant term.

� Line 9 involves both a squaring and a multiplication in Fp12 . As explained in
Section 3.5, such a squaring involves 36 multiplications and 12 modular reduc-
tions. We have seen in Section 4.4 that, thanks to its special form, the multipli-
cation by g requires only 39 multiplications and 12 reductions. We deduce that
the total complexity for this line is 75 multiplications and 24 reductions in Fp.

� The situation for line 17 is similar and leads to 39 multiplications and 12 re-
ductions.

� Line 21 is computed as f p
6

f
. As computing f p

6

is for free (conjugation),
this step requires a multiplication and an inversion in Fp12 . We have seen in
Section 3.6 that an inversion can be done with only 1 inversion, 97 multiplica-
tions and 35 reductions in Fp. Finally, this first step of the final exponentiation
requires 151 multiplications, 47 modular reductions and 1 inversion in Fp.

� Line 22 involves one multiplication in Fp12 and one powering to p2. We have
seen in Section 3.6 that the Frobenius map (and its iterations) requires 11 mod-
ular multiplications in Fp. Thus this step requires 65 multiplications and 23 re-
ductions in Fp.

� The hard part of the final exponentiation is given by line 23. It can be computed
using a multi-addition chain requiring 3 exponentiations to the l , 13 multipli-
cations, 4 squarings, and 7 Frobenius actions in Fp12 [56]. Contrary to MNT
curves, l can be chosen sparse for BN curves, so classical square-and-multiply
can be used. Moreover, f has been raised to the power .p12 � 1/=ˆ6.p2/ in
line 21 and 22, so it is in Gˆ6.Fp2/ and can be squared with only 18 multi-
plications and 12 reductions in Fp as explained in Section 3.6. For the (few)
steps of these exponentiations corresponding to non-zero bits of the exponent,
54 additional multiplications and 12 additional reductions are necessary.

Again, it is necessary to fix the security level to have an idea of the overall com-
plexity of the Tate pairing. We choose a 128-bit security level for which BN curves
are well suited. We also have to fix the Hamming weight of l (and consequently

80 S. Duquesne

the one of `). We assume here that l has weight 11 and ` has weight 90 as in the
example given in Section 4.3. This is only an example and smaller values of these
weight can be used for an optimal implementation as in [2, 15, 51], but it has neg-
ligible effects on our results. This means that lines 4 to 9 are done 255 times and
lines 12 to 17, 89 times. Finally, the hard part of the final exponentiation involves
3 exponentiation by l which has bit-length 63 and Hamming weight 11 so each of
them requires 62 doubling in Gˆ6.Fp2/ and 10 multiplications in Fp12 . This ac-
count is summarized in Table 3.

multiplications reductions

lines 4 to 7 7 6
line 8 8 8
line 9 75 24

doubling step 90 38

lines 12 to 15 11 10
line 16 6 5
line 17 39 12

addition step 56 27

Miller loop 27934 12093

line 21 151 47
line 22 65 23
f l 1656 660

line 23 5819 2261

final exponentiation 6035 2331

Tate pairing 33969 14424

Table 3. Number of Fp operations for the Tate pairing on BN curves for 128 bits of
security.

Then, the full Tate pairing computation requires 33969 multiplications but only
14424 reductions. Note that we obtain the same number of multiplications for the
Miller loop as in [35] (since we use the same optimizations), but the number of
reductions is much smaller.

For this level of security, 8 (32-bit) words are necessary so a radix implementa-
tion requires

33969�82C14424�.82C8/ D 3212544

RNS in Fpk and pairings 81

word multiplications whereas an RNS implementation requires

1:1

�
33969�2�8C14424�

�
7

5
82C

8

5
8

��
D 2222574

word multiplications. This represents a gain of 30.8%.

Ate pairing

The algorithm is very similar to Algorithm 5.2, but the arguments P and Q are
swapped. This means that operations of the lines 4 to 7 are done in Fp2 so multipli-
cations are 3 times more expensive and reductions only 2 times. It is easy to prove
that, if the coordinates of T are .XT
2; YT
3; ZT /, the lines 8 and 16 must be
replaced by

800 g D Z2TZ
2
T yP � AZ

2
T xP
 C .AXT � 2Y

2
T /

3

1600 g D ZTCQyP � FxP
 C .F xQ �ZTCQyQ/

3

where Z2T , A D 3X2T , Y 2T , ZTCP and F D yQZ3T � YT were computed during
the previous steps. The first requires 15 multiplications and 12 reductions in Fp
whereas the second requires 10 multiplications and 6 reductions. Moreover, the
value obtained for g has only terms in
;
3 and a constant term, so that a multi-
plication by g requires only 39 multiplications instead of 54 as explained in Sec-
tion 4.4.

Finally, in our example, t�1 has bit-length 128 and Hamming weight 29 and the
final exponentiation is the same as for the Tate pairing. The number of operations
required for all the steps of the computation of the Ate pairing is summarized in
Table 4.

Then, the full Ate pairing computation requires 21836 multiplications but only
9491 reductions. This yields to 2080856 word multiplications in radix representa-
tion but only 1453380 in RNS which represents a gain of 30.1%.

R-Ate pairing

In the R-Ate pairing, the operations in the final exponentiation and in the (shorter)
Miller loop are the same, but an additional step is necessary at the end of the Miller
loop. This step is the computation of

f:
�
f:g.T;Q/.P /

�p
:g.�.TCQ/;T /.P /;

where T D .6l C 2/Q is computed during the Miller loop and � is the Frobenius
map on the curve. This step involves the following operations.
� One step of addition as in the Miller loop (computation of TCQ andg.T;Q/.P /)

which requires 40 multiplications and 26 reductions in Fp.

82 S. Duquesne

multiplications reductions

lines 4 to 7 17 12
line 8” 15 12
line 9 75 24

doubling step 107 48

lines 12 to 15 30 20
line 16” 10 6
line 17 39 12

addition step 79 38

Miller loop 15801 7160

final exponentiation 6035 2331

Ate pairing 21836 9491

Table 4. Number of Fp operations for the Ate pairing on BN curves for 128 bits of
security.

� One application of the Frobenius map on the curve. As p � 1 mod 6 for BN
curves, this operation requires only 2 multiplications in Fp2 by precomputed
values.

� One non-mixed addition step (computation of g.�.TCQ/;T /.P /). It is easy to
prove that it requires 60 multiplications and 40 reductions in Fp.

� Two multiplication by the previous results, both requiring 39 multiplications
and 12 reductions in Fp.

� One Frobenius requiring 11 modular multiplications.

� One full multiplication in Fp12 requiring 54 multiplications and 12 reductions
in Fp.

Then, this step requires 249 multiplications and 117 reductions in Fp. Finally, in
our example, 6l C 2 has bit-length 66 and Hamming weight 9 so the cost of the
R-Ate pairing is given in Table 5.

Then, the full R-Ate pairing computation requires 15019 multiplications but
only 6405 reductions. This yields to 1310528 word multiplications in radix rep-
resentation but only 905552 in RNS which represents a gain of 30.9%. Note that
using the optimal Ate pairing as in [2, 15, 35] is only saving some multiplications
in the additional step (both in RNS and in radix representation), so that we obtain
a similar result.

RNS in Fpk and pairings 83

multiplications reductions

doubling step 107 48

addition step 79 38

Miller loop 7587 3424

additional step 249 117

final exponentiation 6035 2331

R-Ate pairing 13871 5872

Table 5. Number of Fp operations for the R-Ate pairing on BN curves for 128 bits
of security.

6 Conclusion

In this work we explained why the RNS arithmetic is particularly well suited for
computation in extension fields essentially thanks to the use of lazy reduction.
As a consequence, it is interesting to use such an arithmetic for pairing compu-
tation in large characteristic especially in contexts where the other advantages of
the RNS arithmetic can be exploited (hardware architecture, parallel implementa-
tion). More precisely, we proved that using RNS for MNT curves when 96 bits
of security are required involves 14.2 to 21:5% less basic operations. This gain
reach more than 30% for BN curves with 128 bits of security whatever the pairing
used (Tate, Ate, R-Ate, optimal). This is of course only an estimate which is made
under assumptions (an RNS-digits product is equivalent to 1.1 classical digit prod-
uct, additions in Fp have not been taken into account, 32-bit architecture, no need
of extra word to handle lazy reduction, . . .). Hence the real gain will depend on
the implementation platform, but it shows that RNS arithmetic is very promising
for pairing implementations.

Most of the gains are coming from arithmetic in extension fields so that choos-
ing other systems of coordinate (affine, projective, Edwards, . . .), other pairings or
other high-level improvements in pairing implementations will not change these
results. Moreover, it is beyond doubt that better gain will occur in other situations
in pairing-based cryptography for two main reasons.

� For larger security levels or for curves of non-prime order (i.e., with log.p/
log.`/ > 1),

the number of words necessary to represent elements in Fp will increase, which
is favorable to RNS arithmetic.

� Larger embedding degrees involve arithmetic in larger extension field, which
is linear in RNS but quadratic in radix representation. Thus RNS can benefit
from larger embedding degrees in comparison with radix representation.

84 S. Duquesne

Finally, RNS arithmetic is very promising for efficient pairing implementation and
it would be attractive to develop a dedicated architecture such as the one described
in [34].

Bibliography

[1] GNU – Multiple-Precision Library, http://gmplib.org/.

[2] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys and J. López, Faster explicit
formulas for computing pairings over ordinary curves, Cryptology ePrint Archive,
Report 2010/526, 2010, http://eprint.iacr.org/.

[3] J-C. Bajard, L-S. Didier and P. Kornerup, An RNS Montgomery modular multipli-
cation algorithm, IEEE Transactions on Computers 47 (1998), 766–776.

[4] J-C. Bajard, L-S. Didier and P. Kornerup, Modular multiplication and base exten-
sions in residue number systems, in: 15th IEEE Symposium on Computer Arithmetic,
pp. 59–65, IEEE Computer Society Press, Los Alamitos, CA, 2001.

[5] J-C. Bajard, S. Duquesne and M. Ercegovac, Combining leak–resistant arithmetic for
elliptic curves defined over Fp and RNS representation, Cryptology ePrint Archive,
Report 2010/311, 2010, http://eprint.iacr.org/.

[6] J-C. Bajard, S. Duquesne, M. Ercegovac and N. Meloni, Residue systems efficiency
for modular products summation: Application to Elliptic Curves Cryptography, in:
Advanced Signal Processing Algorithms, Architectures, and Implementations XVI,
pp. 631304.1–631304.11, Proceedings of SPIE 6313, SPIE, Bellingham, WA, 2006.

[7] J-C. Bajard and L. Imbert, A full RNS implementation of RSA, IEEE Transactions
on Computers 53 (2004), 769–774.

[8] J-C. Bajard, M. Kaihara and T. Plantard, Selected RNS bases for modular multipli-
cation, in: 19th IEEE International Symposium on Computer Arithmetic, pp. 25–32,
IEEE Computer Society Press, Los Alamitos, CA, 2009.

[9] J-C. Bajard, N. Meloni and T. Plantard, Efficient RNS bases for Cryptography, in:
Proceedings of the 17th IMACS World Congress: Scientific Computation, Applied
Mathematics and Simulation, Paris, France, July 11–15, 2005.

[10] P. Barreto, H. Kim, B. Lynn and M. Scott, Efficient algorithms for pairing-based
cryptosystems, in: Advances in Cryptology – CRYPTO 2002, pp. 354–369, Lecture
Notes in Computer Science 2442, Springer-Verlag, Berlin, Heidelberg, 2002.

[11] P. Barreto, B. Lynn and M. Scott, Constructing elliptic curves with prescribed em-
bedding degrees, in: Security in Communication Networks – SCN 2002, pp. 257–
267, Lecture Notes in Computer Science 2576, Springer-Verlag, Berlin, Heidelberg,
2003.

[12] P. Barreto, B. Lynn and M. Scott, Efficient implementation of pairing-based cryp-
tosystems, Journal of Cryptology 17 (2004), 321–334.

http://gmplib.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

RNS in Fpk and pairings 85

[13] P. Barreto, B. Lynn and M. Scott, On the selection of pairing-friendly groups, in: Se-
lected Areas in Cryptography – SAC 2003, Lecture Notes in Computer Science 3006,
pp. 17–25, Springer-Verlag, Berlin, Heidelberg, 2004.

[14] P. Barreto and M. Naehrig, Pairing-friendly elliptic curves of prime order, in: Se-
lected Areas in Cryptography – SAC 2005, Lecture Notes in Computer Science 3897,
pp. 319–331, Springer-Verlag, Berlin, Heidelberg, 2006.

[15] J. L. Beuchat, J. E. González-Díaz, S. Mitsunari, E. Okamoto, F. Rodríguez-Hen-
ríquez and T. Teruya, High-speed software implementation of the optimal Ate pair-
ing over Barreto–Naehrig curves, in: Pairing-Based Cryptography – Pairing 2010,
pp. 21–39, Springer-Verlag, Berlin, Heidelberg, 2010.

[16] I. F. Blake, G. Seroussi and N. P. Smart, Advances in Elliptic Curve Cryptography,
Cambridge University Press, Cambridge, 2005.

[17] D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, in: Ad-
vances in Cryptology – CRYPTO 2001, Lecture Notes in Computer Science 2139,
pp. 213–229, Springer-Verlag, Berlin, Heidelberg, 2001.

[18] D. Boneh, B. Lynn and H. Shacham, Short signatures from the Weil pairing, Journal
of Cryptology 17 (2004), 297–319.

[19] A. Bosselaers, R. Govaerts and J. Vandewalle, Comparison of three modular reduc-
tion functions, in: Advances in Cryptology – CRYPTO 94, Lecture Notes in Com-
puter Science 773, pp. 175–186, Springer-Verlag, Berlin, Heidelberg, 1994.

[20] R. P. Brent and H. T. Kung, The area-time complexity of binary multiplication, Jour-
nal of the Association for Computing Machinery 28 (1981), 521–534.

[21] F. Brezing and A. Weng, Elliptic curves suitable for pairing based cryptography,
Designs, Codes and Cryptography 37 (2005), 133–141.

[22] J. Chung and A. Hasan, More generalized mersenne numbers, in: Selected Areas in
Cryptography – SAC 2003, Lecture Notes in Computer Science 3006, pp. 335–347,
Springer-Verlag, Berlin, Heidelberg, 2004.

[23] H. Cohen and G. Frey, Handbook of Elliptic and Hyperelliptic Curve Cryptography,
Discrete Mathematics and Its Applications 31, Chapman & Hall/CRC, Boca Raton,
FL, 2006.

[24] C. Costello, T. Lange and M. Naehrig, Faster pairing computations on curves with
high-degree twists, in: Public Key Cryptography – PKC 2010, Lecture Notes in
Computer Science 6056, pp. 224–242, Springer-Verlag, Berlin, Heidelberg, 2010.

[25] A. J. Devegili, C. Ó hÉigeartaigh, M. Scott and R. Dahab, Multiplication and squar-
ing on pairing-friendly fields, Cryptography ePrint Archive, Report 2006/471, 2006,
http://eprint.iacr.org/.

[26] A. J. Devegili, M. Scott and R. Dahab, Implementing cryptographic pairings over
Barreto–Naehrig curves, in: Pairing-Based Cryptography – Pairing 2007, pp. 197–
207, Springer-Verlag, Berlin, Heidelberg,2007.

http://eprint.iacr.org/

86 S. Duquesne

[27] D. Freeman, Constructing pairing-friendly elliptic curves with embedding degree 10,
in: Algorithmic Number Theory Symposium – ANTS-VII, pp. 452–465, Lecture Notes
in Computer Science 4076, Springer-Verlag, Berlin, 2006.

[28] D. Freeman, M. Scott and E. Teske, A taxonomy of pairing-friendly elliptic curves,
Journal of Cryptology 23 (2010), 224–280.

[29] G. Frey and H. G. Rück, A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class group of curves, Mathematics of Computation 62 (1994),
865–874.

[30] S. Galbraith and M. Scott, Exponentiation in pairing-friendly groups using homo-
morphisms, in: Pairing-Based Cryptography – Pairing 2008, pp. 211–224, Springer-
Verlag, Berlin, Heidelberg, 2008.

[31] S. D. Galbraith, J. F. McKee and P. C. Valenca, Ordinary abelian varieties having
small embedding degree, Finite Fields and Their Applications 13 (2007), 800–814.

[32] H. L. Garner, The residue number system, IRE Transactions on Electronic Comput-
ers, EL 8 (1959), 140–147.

[33] R. Granger and M. Scott, Faster squaring in the cyclotomic subgroup of sixth degree
extensions, in: Public Key Cryptography – PKC 2010, pp. 209–223, Lecture Notes in
Computer Science 6056, pp. 224–242, Springer-Verlag, Berlin, Heidelberg, 2010.

[34] N. Guillermin, A high speed coprocessor for elliptic curve scalar multiplication
over Fp , in: Cryptographic Hardware and Embedded Systems – CHES 2010, Lecture
Notes in Computer Science 6225, pp. 48–64, Springer-Verlag, Berlin, Heidelberg,
2010.

[35] D. Hankerson, A. Menezes and M. Scott, Software implementation of pairings, in:
Identity-Based Cryptography, pp. 188–206, Cryptology and Information Security
Series 2, IOS Press, Amsterdam, 2009.

[36] F. Hess, Pairing lattices, in: Pairing-Based Cryptography – Pairing 2008, pp. 18–38,
Springer-Verlag, Berlin, Heidelberg, 2008.

[37] F. Hess, N. P. Smart and F. Vercauteren, The Eta pairing revisited, IEEE Transactions
on Information Theory 52 (2006), 4595–4602.

[38] A. Joux, A one round protocol for tripartite Diffie–Hellman, Journal of Cryptology
17 (2004), 263–276.

[39] E. Kachisa, E. Schaefer and M. Scott, Constructing Brezing–Weng pairing-friendly
elliptic curves using elements in the cyclotomic field, in: Pairing-Based Cryptogra-
phy – Pairing 2008, pp. 126–135, Springer-Verlag, Berlin, Heidelberg, 2008.

[40] K. Karabina, Squaring in cyclotomic subgroups, Cryptology ePrint Archive, Report
2010/542, 2010, http://eprint.iacr.org/.

[41] D. E. Knuth, Seminumerical Algorithms. The Art of Computer Programming. Vol-
ume 2, Addison-Wesley, Reading, Mass., 1981.

http://eprint.iacr.org/

RNS in Fpk and pairings 87

[42] N. Koblitz and A. Menezes, Pairing-based cryptography at high security levels, in:
Proceedings of Cryptography and Coding 2005, pp. 13–36, Lecture Notes in Com-
puter Science 3796, Springer-Verlag, Berlin, Heidelberg, 2005.

[43] E. Lee, H. S. Lee and C. M. Park, Efficient and generalized pairing computation on
abelian varieties, IEEE Transactions on Information Theory 55 (2009), 1793–1803.

[44] C. H. Lim and H. S. Hwang, Fast implementation of elliptic curve arithmetic in
GF(pn), in: Public Key Cryptography – PKC 2000, pp. 405–421, Lecture Notes in
Computer Science 1751, Springer-Verlag, Berlin, Heidelberg, 2000.

[45] A. Menezes, T. Okamoto and S. Vanstone, Reducing elliptic curve logarithms to log-
arithms in a finite field, IEEE Transactions on Information Theory 39 (1993), 1639–
1646.

[46] V. S. Miller, The Weil pairing, and its efficient calculation, Journal of Cryptology 17
(2004), 235–261.

[47] A. Miyaji, M. Nakabayashi and S. Takano, New explicit conditions of elliptic curve
traces for FR-reduction, IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences 84 (2001), 1234–1243.

[48] P. L. Montgomery, Modular multiplication without trial division, Mathematics of
Computation 44 (1985), 519–521.

[49] M. Naehrig, R. Niederhagen and P. Schwabe, New software speed records for cryp-
tographic pairings, in: LATINCRYPT, pp. 109–123, Lecture Notes in Computer Sci-
ence 6212, Springer-Verlag, Berlin, Heidelberg, 2010.

[50] D. Page, N. P. Smart and F. Vercauteren, A comparison of MNT curves and super-
singular curves, Applicable Algebra in Engineering, Communication and Computing
17 (2006), 379–392.

[51] G. Pereira, M. Simplício Jr., M. Naehrig and P. Barreto, A family of implementation-
friendly BN elliptic curves, to appear in Journal of Systems and Software (2011),
Cryptology ePrint Archive, Report 2010/429, 2010.

[52] O. Schirokauer, The number field sieve for integers of low weight, Mathematics of
Computation 79 (2010), 583–602.

[53] M. Scott, Computing the Tate pairing, in: Topics in Cryptology – CT-RSA 2005
pp. 293–304, Lecture Notes in Computer Science 3376, Springer-Verlag, Berlin,
Heidelberg, 2005.

[54] M. Scott, Implementing cryptographic pairings, in: Pairing-based cryptography –
Pairing 2007, pp. 177–196, Lecture Notes in Computer Science 4575, Springer-Ver-
lag, Berlin, Heidelberg, 2007.

[55] M. Scott and P. Barreto, Generating more MNT elliptic curves, Designs, Codes and
Cryptography 38 (2006), 209–217.

88 S. Duquesne

[56] M. Scott, N. Benger, M. Charlemagne, L. Dominguez Perez and E. Kachisa, On the
final exponentiation for calculating pairings on ordinary elliptic curves, in: Pairing-
Based Cryptography – Pairing 2009, pp. 78–88, Lecture Notes in Computer Sci-
ence 5671, Springer-Verlag, Berlin, Heidelberg, 2009.

[57] J. A. Solinas, Generalized mersenne numbers, Research Report CORR-99-39, Cen-
ter for Applied Cryptographic Research, University of Waterloo, 1999.

[58] A. Svoboda and M. Valach, Operational circuits, Stroje na Zpracovani Informaci,
Sbornik III, Nakl. CSAV, Prague (1955), 247–295 (in Czech).

[59] N. S. Szabo and R. I. Tanaka, Residue Arithmetic and Its Applications to Computer
Technology, McGraw-Hill, New York, 1967.

[60] F. Vercauteren, Optimal pairings, IEEE Transactions on Information Theory 56
(2010), 455–461.

[61] D. Weber and T. Denny, The solution of McCurley’s discrete log challenge, in: Ad-
vances in Cryptology – CRYPTO 98, pp. 458–471, Lecture Notes in Computer Sci-
ence 1462, Springer-Verlag, Berlin, Heidelberg, 1998.

Received October 30, 2010; revised February 17, 2011; accepted March 20, 2011.

Author information

Sylvain Duquesne, IRMAR, UMR CNRS 6625, Université Rennes 1,
Campus de Beaulieu, 35042 Rennes cedex, France.
E-mail: sylvain.duquesne@univ-rennes1.fr

mailto:sylvain.duquesne@univ-rennes1.fr

