
HAL Id: hal-00687217
https://hal.science/hal-00687217

Submitted on 12 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cloud-like Management of Grid Sites 1.0 Design Report
Henar Muñoz Frutos, Juan Caceres, Jose Lopez, Eduardo Huedo, Rubén

Montero, Evangelos Floros, Ioannis Konstantinou

To cite this version:
Henar Muñoz Frutos, Juan Caceres, Jose Lopez, Eduardo Huedo, Rubén Montero, et al.. Cloud-like
Management of Grid Sites 1.0 Design Report. 2010. �hal-00687217�

https://hal.science/hal-00687217
https://hal.archives-ouvertes.fr


Enhancing Grid Infrastructures with

Virtualization and Cloud Technologies

Cloud-like Management of

Grid Sites 1.0 Design Report

Deliverable D6.1 (V1.0)

16 November 2010

Abstract

This document presents the StratusLab architecture regarding automatic deploy-

ment and dynamic provision of grid services, as well as scalable cloud-like man-

agement of grid site resources. Some of the components included in the architec-

ture provide solutions for the gaps identified in the deliverable D4.1 “Reference

Architecture for StratusLab Toolkit 1.0.”. Different alternatives were taken into

consideration regarding cloud-like APIs, service definition language and contex-

tualization, scalable cloud frameworks and monitoring and accounting solutions.

Some chosen solutions include TCloud and OCCI API, OVF, OpenNebula contex-

tualization and the Claudia framework

StratusLab is co-funded by the

European Community’s Seventh

Framework Programme (Capacities)

Grant Agreement INFSO-RI-261552.



The information contained in this document represents the views of the

copyright holders as of the date such views are published.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED

BY THE COPYRIGHT HOLDERS “AS IS” AND ANY EXPRESS OR IM-

PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-

PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE MEMBERS OF THE STRATUSLAB COLLABORATION, INCLUD-

ING THE COPYRIGHT HOLDERS, OR THE EUROPEAN COMMISSION

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-

EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright c© 2010, Members of the StratusLab collaboration: Centre Na-

tional de la Recherche Scientifique, Universidad Complutense de Madrid,

Greek Research and Technology Network S.A., SixSq Sàrl, Telefónica In-

vestigación y Desarrollo SA, and The Provost Fellows and Scholars of the

College of the Holy and Undivided Trinity of Queen Elizabeth Near Dublin.

This work is licensed under a Creative Commons

Attribution 3.0 Unported License

http://creativecommons.org/licenses/by/3.0/

2 of 46

http://creativecommons.org/licenses/by/3.0/


Contributors

Name Partner Sections

Muñoz Frutos,

Henar

TID 2,3,4,5,6, 8,9

Caceres Expósito,

Juan Antonio

TID 3,5

Lopez Lopez, Jose

Manuel

TID 1,2,6

Huedo, Eduardo UCM 3,5

Montero, Rubén S. UCM 3,5

Floros, Vangelis GRNET 7, 8

Konstantinou,Ioannis GRNET 7

Document History

Version Date Comment

0.1 06 Oct. 2010 Initial version for comment.

0.2 15 Oct. 2010 TCloud, OVF, service scalability.

0.3 17 Oct. 2010 OCCI and contextualization in OpenNebula.

0.4 18 Oct. 2010 Monitoring and Accounting.

0.5 18 Oct. 2010 Introduction, Executive Summary and

Conclusions.

0.6 22 Oct. 2010 Chapter revision.

0.7 22 Oct. 2010 Typographical, English, and formatting

corrections.

0.8 5 Nov. 2010 Internal revision of the content.

0.9 11 Nov. 2010 External revision.

1.0 12 Nov. 2010 Final edition.

3 of 46



Contents

List of Figures 6

List of Tables 7

1 Executive Summary 8

2 Introduction 10

2.1 Solution of Gaps Identified by WP4 . . . . . . . . . . . . . 10

2.2 Requirements from Grid Service Providers . . . . . . . . . . 11

2.3 Organization of Following Chapters . . . . . . . . . . . . . 12

3 Cloud-like Application Programming Interfaces 13

3.1 Cloud-like APIs Alternatives . . . . . . . . . . . . . . . . . 14

3.1.1 vCloud from VMWare . . . . . . . . . . . . . . . . . . 14

3.1.2 TCloud from Telefónica . . . . . . . . . . . . . . . . . 15

3.1.3 OCCI from OGF . . . . . . . . . . . . . . . . . . . . 16

3.2 StratusLab Cloud-like APIs . . . . . . . . . . . . . . . . . 18

3.3 Grid and Cloud Integration. . . . . . . . . . . . . . . . . . 19

4 Virtual Appliance (Service) Language Definition 20

4.1 Virtual Appliance (Service) Language Description . . . . . . 20

4.2 Virtual Appliance Language Alternatives . . . . . . . . . . . 20

4.3 Open Virtualization Format . . . . . . . . . . . . . . . . . 21

4.4 Open Virtualization Format in StratusLab. . . . . . . . . . . 23

5 Virtual Machine Contextualization 24

4 of 46



6 Service Scalability 26

6.1 Service Scalability Framework Alternatives . . . . . . . . . . 26

6.2 Claudia . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 Using Claudia in StratusLab . . . . . . . . . . . . . . . . . 29

6.3.1 Deployment Scenario . . . . . . . . . . . . . . . . . . 29

6.3.2 Scalability Scenario . . . . . . . . . . . . . . . . . . . 31

6.4 Next steps in Claudia for StratusLab . . . . . . . . . . . . . 31

7 Grid Accounting and Monitoring 33

7.1 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Accounting . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2.1 Cloud infrastructure accounting requirements. . . . . . . 34

7.2.2 Integration of Cloud and Grid accounting information . . . 35

8 Updated StratusLab Architectural Design 38

9 Conclusions and Future Work 40

References 44

5 of 46



List of Figures

3.1 OCCI resources and methods . . . . . . . . . . . . . . . . . 17

3.2 StratusLab Cloud-like APIs. . . . . . . . . . . . . . . . . . . 18

4.1 OVF package and descriptor structure . . . . . . . . . . . . . 22

6.1 Claudia High Level Architecture . . . . . . . . . . . . . . . . 28

6.2 Deployment Scenario . . . . . . . . . . . . . . . . . . . . . 30

6.3 Scalability Scenario . . . . . . . . . . . . . . . . . . . . . . 31

8.1 Updated StratusLab Architecture . . . . . . . . . . . . . . . . 39

6 of 46



List of Tables

2.1 Identified Gaps and Solutions . . . . . . . . . . . . . . . . . 11

7 of 46



1 Executive Summary

The StratusLab project aims to provide system administrators and resource providers

with the functionality that will enable the efficient exploitation of computing re-

sources for the provision of grid services. StratusLab will capitalise on the inherent

attributes of cloud computing and virtualization in order to offer grid administra-

tors the ability to setup and manage flexible, scalable and fault tolerant grid sites.

This way we will enable the optimal utilization of the resource provider’s physical

infrastructure and facilitate the day-to-day tasks of the grid site administrator.

The Joint Research Activity (JRA), carried out in WP6, conducts research on

innovative automatic deployment and dynamic provision of grid services as well

as scalable cloud-like management of grid site resources. More specifically, the

objectives to be accomplished can be expressed as: i) the extension of currently

available service-level open-source elasticity frameworks on top of cloud infras-

tructures, ii) the invention of new techniques for the efficient management of vir-

tualized resources for grid services and iii) the inclusion of novel resource provi-

sioning models based on cloud-like interfaces.

Several research lines were opened to solve the gaps identified in the deriver-

able D4.1 “Reference Architecture for StratusLab Toolkit 1.0.”. Different alter-

natives were taken into consideration regarding cloud-like APIs, service definition

language and contextualization, scalable cloud frameworks and monitoring and ac-

counting solutions. Some chosen solutions include TCloud and OCCI API, OVF,

OpenNebula contextualization and the Claudia framework.

Claudia is an advanced service management toolkit that allows service providers

to dynamically control the service provisioning and scalability in an IaaS cloud.

Claudia manages services as a whole (not just virtual machines), controlling the

configuration of multiple Virtual Machine (VM) components, virtual networks and

storage support by optimizing the use of them and by dynamically scaling up/down

services applying elasticity rules, Service Level Agreements (SLAs) and business

rules.

TCloud released by Telefónica and submitted to the DMTF and OCCI from

the Open Grid Forum (OGF), are two main initiatives towards cloud computing

management, which can be used in StratusLab as interfaces for the StratusLab

components in the architecture.

As for the service definition language, Open Virtualization Format (OVF) was

chosen, since it provides a standard way for describing service and virtual ma-

8 of 46



chines. a DTMF standard. Once VMs are installed, they need to be contextualized,

i.e. to be passed configuration data at boot time. Currently, there are no stan-

dard ways to perform this step so far, but we will introduce some mechanism from

OpenNebula and some OVF recommendations (for instance ISO images).

In summary: grid infrastructures are typically static, with limited flexibility for

changing application parameters: OS, middleware and resources in general. By

introducing cloud management capabilities, grids can become dynamic. Adding

standard tools, such as virtual machines (VMs) and dual-boot, resources can be

repurposed on demand to meet the requirements of high priority applications. The

cloud platform controls which application images should be running and when.

This means dynamic application stacks on top of the available infrastructure, such

that any physical resource can be timely repurposed on demand for additional ca-

pacity.

9 of 46



2 Introduction

The Joint Research Activity (JRA) activity, carried out in WP6, conducts research

on innovative automatic deployment and dynamic provision of grid services as

well as scalable cloud-like management of grid site resources. More specifically,

the objectives to be accomplished can be expressed as [21]: i) the extension of

currently available service-level open-source elasticity frameworks on top of cloud

infrastructures, ii) the invention of new techniques for the efficient management

of virtualized resources of grid services and iii) the inclusion of novel resource

provisioning models based on cloud-like interfaces.

The present document is a continuation to the work done in D4.1, Reference

Architecture for StratusLab Toolkit 1.0 [23], where a StratusLab reference architec-

ture was defined from a set of users requirements collected in D2.1 Review of the

Use of Cloud and Virtualization Technologies in Grid Infrastructures [22]. D4.1

document identified a set of existing gaps in the current infrastructure, which are

taken as a starting point for the work to be done in the JRA activity.

Thus, the main activity and change of this document with respect to the work

done in D4.1 [23] is the inclusion of the service manager, which allows service

providers (i.e. grid service providers) to deploy their service in a simple and effi-

cient way, to dynamically control the service provisioning and to specify scalability

constrains in the IaaS cloud. Concretely, it involves the provision of all those com-

ponents needed to:

1. solve the technological gaps identified in WP4 [23].

2. provide technology to meet the requirements analyzed in D2.1 “Review of

the Use of Cloud and Virtualization Technologies in Grid Infrastructures”

[22].

2.1 Solution of Gaps Identified by WP4
Table 2.1 presents the gaps identified in D4.1 [23] together with a set of solutions

which will be discussed and analyzed in the following chapters.

As commented in D4.1 [23], there is still a gap in order to deploy a single IaaS

cloud distribution, accessible from outside the infrastructure, over a well-defined

service API. Because of this, the research activity works towards the use of stan-

dardized APIs for resource, VM and service management. These APIs will allow

10 of 46



Table 2.1: Identified Gaps and Solutions

Gaps Description Solution

APIs
Cloud like API TCloud, OCCI

Integration of cloud and grid

layers

e.g. grid certificates

VM Creation and

Contextualization

Contextualization standards

Interoperability between sites

OVF and OpenNebula

contextualization

Scalability and

reconfiguration

Scaling actions SLA-powered

services

Claudia (Service

Manager)

Monitoring Grid monitoring services Ganglia

Accounting Grid accounting services

the service manager and the virtual machine manager to be exposed as services

and to be remotely accessible. Chapter 3 will discuss the use of standardized APIs

inside StratusLab architecture, primarily TCloud and OCCI.

It is important to guarantee the interoperability among sites in order to reuse

running virtual images. Thus, a standard definition of services and virtual machines

as well as a standard VM contextualization mechanism are a must. Chapters 4 and

5 work towards the construction of standards in the contextualization and the defi-

nition of virtual machines and services. On the one side, Chapter 4 will introduce

the Open Virtualization Format (OVF) for the definition of services and virtual ma-

chines. On the other side, StratusLab has defined a contextualization mechanism

that is implemented with functionality provided in OpenNebula (Chapter 5), and

that will guarantee virtual machine interoperability between sites.

Another key goal of StratusLab is the extension of currently available service-

level open-source elasticity frameworks on top of cloud infrastructures to provide

the required expressivity of current scientific applications including service elastic-

ity rules for scaling up and down to meet SLAs. Thus, Chapter 6 will describe an

existing open source service manager called Claudia and how it is used for service

scaling.

The project will also evaluate the applicability of existing grid monitoring and

accounting tools in the context of grid-over-cloud infrastructures and will identify

their shortcomings (e.g. not being able to monitor the physical resources, since

running on the cloud layer). The results are shown on Chapter 7.

2.2 Requirements from Grid Service Providers
For the design of the architecture, it is also important to obtain requirements from

the final users. Some of these requirements were analyzed in D2.1 [22] and can be

summed up as:

11 of 46



• The StratusLab distribution must allow both full-virtualization and para-

virtualization to be used. It was already explained in D4.1 [23] and this

document continues with the same idea, the usage of hypervisors, running

on top of the physical resources (network, storage and compute) to provide

virtualization. The most popular hypervisors are KVM, Xen and VMWare.

• The StratusLab distribution must be simple enough for users themselves to

configure their own resources as a cloud. This private cloud appeals to mem-

bers of research communities. In this matter, StratusLab works towards sim-

plifying the deployment of grid service applications into the cloud, or a grid

site, etc, with the inclusion of the Service Manager.

• The cloud service must have a command line interface and a programmable

API. StratusLab provides a set of command line tools [23] and an API to ac-

cess cloud services. Surveys show that a command line interface is preferred

by both users and administrators.

• The cloud distribution must allow a broad range of grid and standard ser-

vices to be run. Ranging from standard sites to grid services and storage

services. The latter should be fast enough in order to be useful, so some kind

of performance evaluation must be carried out.

• The cloud distribution must allow dynamic service provision. Users demand

services, not just VMs, therefore service-level management is a must. Apart

from that, service requirements vary and the cloud framework must fit the

needs at each particular moment. This can only be accomplished via a wide

range of scalability mechanisms in connection with a flexible monitoring

system.

2.3 Organization of Following Chapters
The document is organized as follows: Chapter 2 provided a high level view of

the tasks to be done in the research activities (WP6) as well as a set of research

objectives. The remainder of the document is organized according to those objec-

tives. The first one involves the use of standardized APIs to access cloud services

(Chapter 3). The use of such APIs improves the interoperability as well as the

usage of standards to formalize service definition and virtual machine contextual-

ization as Chapters 4 and 5 identify. In addition, Chapter 6 presents the inclusion

of a service manager (called Claudia) inside the StratusLab architecture in order to

manage the overall service instead of isolated virtual machines and provide service

scalability and Chapter 7 introduces the usage of monitoring and accounting in

StratusLab. Finally, Chapter 8 presents the StratusLab architecture and Chapter 9

some conclusions obtained in the document.

12 of 46



3 Cloud-like Application Programming Inter-
faces

StratusLab tries to provide grid users with a homogeneous computing environment

that simplifies applications management and hides the infrastructure complexity.

The integration of grid and cloud technologies will bring grid application develop-

ers a more dynamic and flexible computing environment.

In this framework, StratusLab has to complement existing grid services by ex-

posing cloud-like APIs to users of the grid infrastructure. This will allow existing

users to experiment with these new APIs and to develop new ways to use grid

resources.

In this line, StratusLab works towards the use of cloud-like Application Pro-

gramming Interfaces (APIs) for managing cloud computing capabilities including

resource sharing. That is, service providers (e.g. grid users) can use programmatic

APIs to access to the shared resources in order to manage them. Thus, the service

providers (the cloud/grid client entity) requests resources from the infrastructure

providers or IT vendors to deploy the services and virtual machines.

Considering the abstraction layers which are included in StratusLab, two kinds

of APIs should be considered:

• The Service Manager Interface (SMI) is the API for the service manager

and the access point for service providers.

• Virtual Manager Interface (VMI) is the API for accessing to the virtual

machine manager, (OpenNebula for StratusLab). It hides the inherent un-

derlying heterogeneity existing in cloud infrastructure providers from the

service manager.

StratusLab is focused on the use of standards in the APIs definition, so that, the

software implementation can be interoperable with other providers, avoiding unde-

sirable vendor lock-in. Next sections are going to analyze some APIs alternatives

that can fit with StratusLab requirements at least in a initial state. This analysis

activity is done inside the two main initiatives for the cloud API standardization:

i) Distributed Management Task Force (DMTF) [26] as a key player in the busi-

ness arena and ii) Open Grid Forum (OGF) [19] as one of the key players in global

standardization in academia.

13 of 46



3.1 Cloud-like APIs Alternatives
In the Cloud-like APIS analysis, firstly, this document is focusedc on the work that

is being done by the DMTF. The DMTF is the leading industry organization for

the development, adoption and promotion of interoperable management standards

and technologies for IT systems and infrastructures. Inside the DMTF, the Cloud

Management Working Group (CMWG) is developing a set of prescriptive speci-

fications that deliver architectural semantics as well as implementation details to

achieve interoperable management of clouds between service requestors/develop-

ers and providers.

For the elaboration of this specifications, the CMWG is taking into account a

set of APIs provided by several leading companies of the industry. Among them we

can mention vCloud from VMWare, HP Insight Dynamics API from HP, Fujitsu

IaaS API from Fujitsu, TCloud API from Telefónica, etc. Subsections 3.1.1 and

3.1.2 will discuss the vCloud and TCloud APIs as candidates for StratusLab.

On the other hand, the document describes the Open Cloud Computing Initia-

tive (OCCI). The OGFs OCCI (Open Cloud Computing Initiative) Working Group

is aiming to deliver an API specification for remote management of cloud comput-

ing IaaS. The proliferation of IaaS providers with their own APIs (Amazon AWS,

GoGrid, Flexiscale, etc.) requires an standardization effort on defining an common

API to avoid vendor-locking and to guarantee interoperability. Subsection 3.1.3

will explain the advantage of the OCCI approach.

3.1.1 vCloud from VMWare

vCloud [28] is an initiative led by VMware that counts with the collaboration of

more than 100 partner including BT, Rackspace, SAVVIS, Sungard, T-Systems

and Verizon Business. The main aim of vCloud is to provide a complete solution

to deliver enterprise cloud services based on VMware technologies. The vCloud

API will allow application providers to deploy their application among a cloud

service provided by one of the vCloud partners. The vCloud API is based on the

principles of Representational State Transfer (REST).

The vCloud resource model includes the following entities: the Organization

that owns the applications, the Virtual Data Center (VDC) where different Re-

source Entities (virtual applications templates, media devices, etc.) and Networks

are instantiated. Finally, Virtual Application or Appliance (VApp) is an aggrega-

tion of one or more virtual machines that work together for the consecution of the

same service.

There are number of operations to query existing resources or summary of the

Organizations resources and to delete an specific resource from a VApp. All these

operations are based on typical HTTP operators (GET, POST, PUT, DELETE ) and

includes the location of the REST-oriented resource, through its URI.

vCloud application lifecycle model defines a number of steps where a number

of operations can be performed:

14 of 46



• Provisioning: creation or clonning of VApps, instantiation of the VApp tem-

plates, upload or facilitate the location of VApp parts and instantiation of

VApps defined in an OVF package (see section 4.3).

• Configuration: a client can reconfigure VApps by adding, removing or mod-

ifying OVF sections.

• Deployment: reservation of all the resources requested by the VApp.

• State operations: once the resources are reserved the VApp have to be started

by powering on all the resources, and later on it can be powered off, reset,

suspended, shutdown, rebooted, etc.

As some of the previous operations can take time, pending task can be retrieved

and cancelled. There are some other administrative operations to manage Organi-

zations, VDCs, users, etc.

As conclusion, we see that the basic service lifecycle management is very well

covered, but advanced features like dynamic scalability, advance management ca-

pabilities, monitoring or usage accounting, etc. are not included.

3.1.2 TCloud from Telefónica

The TCloud API [24] is a RESTful, resource-oriented API accessed via HTTP

which uses XML-based representations for information interchange. It constitutes

an extension of some of the main standardization initiatives in Cloud management,

such as the Open Virtualization Format (OVF), defined by the DMTF, and the

vCloud specification [28], published by VMware and submitted to the DMTF

for consideration.

TCloud API defines a set of operations to perform actions over the following

basic elements:

• Virtual Appliances (VApp). This resource represents, typically, a Virtual

Machine running on top of a hypervisor, but TCloud leaves the vendor to

determine the bounds of VApp concept.

• Virtual Data Centres (VDC). VApps resides in a VDC context. A VDC is a

set of virtual resources (e.g. networks, computing capacities) which incar-

nate VApps.

• Organizations (Org). VDCs are owned by organizations. An organization

represents any kind of independent unit which manages its own cloud re-

sources (e.g. enterprises, divisions, groups).

TCloud API defines operations to perform actions over above resources cate-

gorized as follows:

• Self-Provisioning operations. This includes capabilities for instantiating VApps

and VDC resources.

15 of 46



• Self-Management extensions. This includes capabilities to manage instanti-

ated VApps. Some examples are adding more hardware to an existing VApp

or shutting down a virtual machine.

TCloud API defines this set of core operations. More extensions may be

applied by implementers to provide actions not considered in this specification.

Along this core, TCloud defines the following extensions:

• Self-Monitoring operations. This includes capabilities for obtaining infor-

mation of virtual resources used by VApps, VDCs or Organizations. Some

examples are obtaining the amount of memory used by a VM or obtaining

the used bandwidth for a VDC.

• Self-Administration extensions. This includes capabilities for managing or-

ganizations. Some examples are creating a new organization or adding more

users to it.

TCloud is focused on adding network intelligence, reliability and security fea-

tures to cloud computing empowered by enhanced telecom network integration [24].

Moreover, TCloud aims to extend current cloud computing models providing more

flexibility and control to cloud computing customers. DMTF defines cloud com-

puting as “an approach to delivering IT services that promises to be highly agile

and lower costs for consumers, especially up-front costs”. This approach impacts

not only the way computing is used but also the technology and processes that are

used to construct and manage IT within enterprises and service providers.

In essence, compatibility for the main operations and data types defined in

vCloud are maintained in TCloud, but it provides extensions for advanced Cloud

Computing management capabilities including additional shared storage for ser-

vice data, network element provisioning (different flavors of load balancers and

firewalls), monitoring, snapshot management, etc. All these extended capabilities

will be very useful for covering the StratusLab objectives.

3.1.3 OCCI from OGF

The OCCI effort was initiated to provide a global, open, non-proprietary standard

to define the infrastructure management interfaces in the context of cloud comput-

ing. StratusLab will support this standard, which is already supported in OpenNeb-

ula, and will ensure its interoperability with other implementations.

The OpenNebula OCCI API is a RESTful service to create, control and monitor

cloud resources based on the latest draft of the OGF OCCI API specification [18].

The following sections describe the current OCCI API implemented in OpenNeb-

ula 2.0.

3.1.3.1 Resources

There are two types of resources (see Figure 3.1) that resemble the basic entities

managed by the OpenNebula system, namely:

16 of 46



Figure 3.1: OCCI resources and methods

• Pool resources: Represents a collection of elements owned by a given user.

In particular three pool resources are defined: COMPUTE COLLECTION,

NETWORK COLLECTION and STORAGE COLLECTION.

• Entry resources: Represents a single entry within a given collection: COM-

PUTE, NETWORK and STORAGE.

The NETWORK resource defines a virtual network that interconnects those

COMPUTE elements with a network interface card attached to that network. The

STORAGE resource defines a virtual disk that supports a VM block device. The

COMPUTE resource defines a virtual machine by specifying its basic configura-

tion attributes such as NIC or DISK, which include a NETWORK or STORAGE

resource, respectively.

3.1.3.2 Operations

The methods associated with each resource type, as shown in Figure 3.1, are as

follows:

• Pool resources:

– GET: to list all the entry resources in that pool resource owned by the

user.

– POST: to create a new entry resource.

• Entry resources:

– GET: to list the information associated with that resource

– PUT: to update the resource (only supported by the COMPUTE re-

source).

17 of 46



Figure 3.2: StratusLab Cloud-like APIs

– DELETE: to delete the resource.

The HTTP protocol does not provide means for notification, so this API relies

on synchronous polling to find whether a VM update is successful or not.

Currently, the implementation uses HTTP Basic Access Authentication, there-

fore it is recommended that the server-client communication is performed over

HTTPS to avoid sending user authentication information in plain text. Authorisa-

tion is handled by OpenNebula’s user management module.

3.2 StratusLab Cloud-like APIs
Previous sections explained several candidates APIs to be adopted in the Stratus-

Lab project. Taking into account the conclusions, advantages and disadvantages

described and their adaptation to StratusLab vision and requirements, StratusLab

is going to use TCloud and OCCI as Cloud-like APIs. These two APIs have the

same functionality (at the VMI level) and could be used without distinction. Thus,

StratusLab decides to use both APIs to be aligned with the standardization work

carrying out in the two main cloud standardization bodies: DMTF and OGF.

Figure 3.2 shows this double possibility. While, the SMI will be implemented

by TCloud, the VMI will be able to be both TCloud and OCCI. In addition, Stratus-

Lab gives the opportunity to grid users to interact directly with the virtual machine

manager by the direct usage of the VMI. In this second case, the OCCI standard

will be used.

Thus, StratusLab offers two standard APIs for managing the services, virtual

machines and resources. The current definition of both APIs will have to be ex-

tended to better cover all the StratusLab requirements but they represent a good

start point for the project.

18 of 46



3.3 Grid and Cloud Integration
All services used by StratusLab must be integrated with a single identity system.

OpenNebula has been already extended to support LDAP. It is important to ensure

that all StratusLab services use such strategies to limit the propagation of specific

credential mechanism across the distribution. Further, the grid uses a digital cer-

tificate mechanism to ensure proper integration of authentication and authorisation

across its services and sites. StratusLab will need to integrate with this certificate-

based mechanism in order to properly support the grid.

Another interesting solution with which we must consider is provided by the

ARGUS [6] project, which develops a solution used in the grid world to provide

authorisation decisions over distributed services.

OpenNebula comes with an internal user/password authentication and authori-

sation system and the ability to use an external driver that takes care of these duties.

In this case, some support in the access APIs, e.g. OCCI and TCloud (see 3), could

be needed, especially for authentication. Also, authorisation could be based on

based on groups and group roles, using VOMS extensions.

The current authentication/authorisation module (from now on the “auth” mod-

ule) has support for user/password and RSA private/public key authentication as

well as user quota support. By default OpenNebula comes configured to use inter-

nal user/password authentication. Moreover, the auth module is designed so it can

be easily modified or completely replaced, so it can be adjusted to a given need or

to new authorisation methods, like grid certificates, including VOMS extensions.

Authorisation systems are classes with a method called auth defined. This

method is called each time OpenNebula needs to authenticate a user. When Open-

Nebula is asked by a user to do something with one of its objects, an authorisation

message with a series of tokens describing the objects and type of actions that will

be performed. For an authorisation message to be successful, the user needs to have

permissions to perform all the actions. When the action is permitted by the policy

it should return true otherwise false or a string containing the reason for rejection

is returned.

19 of 46



4 Virtual Appliance (Service) Language Def-
inition

4.1 Virtual Appliance (Service) Language Description
As StratusLab works with different sites with a variety of services, it is required that

virtual machines are portable between sites. Thus, StratusLab needs to guarantee

interoperability in service and virtual machine definitions between sites running

the StratusLab distribution initially, and eventually to develop solutions for letting

users and sites utilize other cloud services beyond the StratusLab frontier, including

public and commercial clouds.

In a cloud environment, one key element of the interaction between Service

Providers (SPs) and the infrastructure is the service definition mechanism. In IaaS

clouds this is commonly specified by packaging the software stack (operating sys-

tems, middleware and service components) into one or more virtual machines, but

one problem commonly mentioned [10] is that each cloud infrastructure provider

has its own proprietary mechanism for service definition. This complicates inter-

operability between clouds and locks a service provider to a particular vendor.

For example, if a service provider has prepared a service to be deployed in

Amazon EC2 (using the proprietary Amazon Machine Image format) then chang-

ing this service to another cloud IP (e.g., GoGrid) is not straightforward, as the im-

age creation for each provider requires several different configuration steps. There-

fore, there is a need for standardizing this virtual application distribution in order

to avoid vendor lock-in and facilitate interoperability among IaaS clouds.

The selection of a service definition language is a key decision for the Stratus-

Lab project. Next section describes and compares several alternatives.

4.2 Virtual Appliance Language Alternatives
There are several standards to be used as the basis for the description of services to

be deployed on IaaS clouds. This section enumerates the three most relevant ones.

Configuration Description, Deployment, and Lifecycle Management Specifi-

cation (CDDLM) [1] is a format proposed by the Global Grid Forum (now part of

the Open Grid Forum) as a standard for the deployment and configuration of grid

services. CDDLM gives total control about the file format: tags names and content.

Although the creation of ad-hoc tags allow cloud users to specify any requirement,

20 of 46



so that to be flexible, it forces to find an agreement about how to represent and

interpret all the configuration parameters (such as hardware requirements, instance

configuration, elasticity rules, KPIs, etc).

Another emerging standard (from OASIS) is the Solution Deployment Descrip-

tor (SDD) [17]. SDD is oriented to the description of the management operations of

software in the different stages of its typical lifecycle: installation, configuration,

maintenance, etc. SDD does not address neither how the deployment is accom-

plished, nor how the configuration data must be interpreted. Thus, there must be

a previous agreement about how the requisites and conditions are declared and in-

terpreted. For example, the SDD proposal includes a Starter Profile [16] based on

the definitions provided by the DMTF Common Information Model (CIM) [8] to

promote interoperability. However, this format lacks ‘native’ features to describe

the requirements closer to the infrastructure level (hardware specification).

Last but not least, the Open Virtualization Format (OVF) [9] is a Distributed

Management Task Force (DMTF) [26] standard which specifies how to package

and distribute software to be run in virtual machines. OVF enables the easy pack-

aging of applications as a collection of virtual machines in a portable, secure and

technology independent way [9]. This means that the application should be easily

distributed in different data centers and interoperability problems are minimized.

Regarding the standards related with service specification, CDDLM and SDD

have limitations when considered to be used in IaaS clouds, and by extension, in

the StratusLab platform. CDDLM is not a deployment format itself, but a frame

to define configuration formats. Given that the main goal of this work was to

extend an already present standard, not creating a completely new format, it can

be concluded that CDDLM does not suit our requirements. Regarding SDD, it

is inherently flexible, but it forces service and infrastructure providers to reach

an agreement on the deployment and data models before any deployment can be

performed, while we intend the service description document to be self-contained,

without the need of using third-party specifications. In addition, SDD has some

expressiveness problems (in particular, to express infrastructure requirement).

The conclusion is that between CDDLM, SDD and OVF, the latter is the most

appropriated choice to base a service specification for covering the StratusLab re-

quirements.

4.3 Open Virtualization Format
Section 4.2 proposes several service definition languages and concludes that the

best option for the StratusLab platform is the Open Virtualization Format ( OVF) [9].

This section provides a high level view of OVF structure and objectives.

The Open Virtualization Format (OVF) objective is to specify a portable pack-

aging mechanism to foster the adoption of Virtual Appliances (VApp) (i.e. pre-

configured software stacks comprising one or more virtual machines to provide

self-contained services) as a new software release and management model (e.g.

through the development of virtual appliance lifecycle management tools) in a ven-

21 of 46



Figure 4.1: OVF package and descriptor structure

dor and platform neutral way (i.e., not oriented to any virtual machine technology

in particular). OVF is optimized for distribution and automation, enabling stream-

lined installations of VApps.

Figure 4.1 shows the structure of an OVF package. This file includes an OVF

descriptor (an XML file describing the VApp), resources used by the VApp (vir-

tual disk, ISO images, internationalization resources, etc.) and, finally, an optional

manifest and X.509 certificate files to ensure integrity and authenticity. The OVF

specification describes also the OVF environment (a guest-host communication

protocol which is used by the deployment platform to provide configuration pa-

rameters to guests at deployment time). OVF defines some procedures to fill au-

tomatically these parameters during the boot process using the OVF Environment

document and the Activation Engine script (procedures with some limitations and

that is not completely standardized yet).

Thus, OVF specifies how to package and distribute software to be run in virtual

machines. Our contribution is focused on utilizing OVF as basis for a service def-

inition language for deploying complex Internet applications in a StratusLab grid-

cloud infrastructure. These applications consist of a collection of virtual machines

(VM) with several configuration parameters (e.g., hostnames, IP addresses and

other application specific parameters) for software components (e.g., web server,

application server, database, operating system) included in the VMs. Most of these

parameters are unknown before the deployment time because the service provider

does not know particularities of the IaaS cloud or datacenter in which the deploy-

ment takes place.

22 of 46



4.4 Open Virtualization Format in StratusLab
As already mentioned, current Infrastructure as a Service (IaaS) Clouds present

their own mechanisms for service definition. This complicates interoperability

among Clouds. In addition, the current service definition mechanisms have some

limitations, mainly they only consider conventional IT infrastructure as the target

deployment platform. Therefore, there is a need for standardizing a service defini-

tion language in order to avoid vendor lock-in and facilitate interoperability among

IaaS Clouds. In order to solve this interoperability problem, our proposal is to base

the service definition on open standards and extend it when needed. It is worth

mentioning that we are not only proposing to use OVF as a way of solving the

cloud interoperability problem. We are going a step further, addressing important

issues for IaaS clouds

Standard OVF was designed considering conventional IT infrastructure (i.e.

data centers) as the target deployment platform, so it presents some flaws when

applied directly to service deployment in clouds [12] and by extension in a Stra-

tusLab infrastructure. There are several important issues that are not completely

solved (or not considered at all) in the current OVF specification, such as:

• Self-configuration: how virtual machines composing the service are dynam-

ically configured, e.g. IP addresses.

• Custom automatic elasticity: how service providers could specify rules and

actions to automatically govern the scaling up and down of the service

• Performance monitoring: how service providers define the key performance

indicators that are monitored by the cloud infrastructure, e.g. to trigger the

elasticity actions.

One of the key activities in the StratusLab project will be to solve all these

problems using extensions to the OVF standard to achieve StratusLab goals.

23 of 46



5 Virtual Machine Contextualization

Another key element is working towards the contextualization definition. Contex-

tualization is defined as the process by which a virtual machine instance is config-

ured based on virtual machine master image. In general, contextualization consists

of passing arbitrary data to the virtual machine at boot time. The goal of this pro-

cess is to configure generic installations of system services (e.g. sshd) and it is the

basis for implementing a “install once, deploy many” strategy.

However, contextualisation currently lacks standardisation. While this is an

aspect where StratusLab will engage the standardisation organisations over the

project lifetime, we currently need to define conventions that will guarantee vir-

tual machine interoperability between sites running the StratusLab distribution ini-

tially, and eventually to develop solutions for letting users and sites utilise other

cloud services beyond the StratusLab frontier, including public and commercial

clouds.

Instance level contextualization is based on the availability of data not con-

tained in the base image but available in the instance. In its most basic form it is

achieved via the use of a CD-ROM device, or attached disk. The CD-ROM con-

tent is dynamically created and mounted within the instance. This basic process is

compliant with OVF standards and is used in OpenNebula.

In general, a VM consists of one or more disk images, which contain the op-

erating system and any additional software or data required. When a new node is

needed, the images are transferred (cloned) to a suitable physical resource and a

new VM is booted. During the boot process the VM is contextualised, i.e. the base

image is specialised to work in a given environment by, for example, setting up the

network or the machine hostname. Different techniques are available to contextu-

alise a VM, for example a context server [11], or accessing a disk image with the

context data for the VM.

It is important for StratusLab to support standard image formats. We chose

ISO images (OVF recommendation), also supported by OpenNebula, to provide

configuration parameters to a newly started VM. This method is network agnos-

tic, so it can be used also to configure network interfaces. In the VM description

file, the user can specify the contents of the ISO image (files and directories), tell

the device how the ISO image will be accessible, and specify the configuration

parameters that will be written to a file for later use inside the VM.

Another issue that arose in StratusLab is the integration with DHCP for net-

24 of 46



work management. DHCP is used on most data centres and, despite OpenNebula

tries to replace all DHCP functionality, system administrators want a single point of

administration, mainly to avoid inconsistencies. Currently, in StratusLab sites us-

ing DHCP, the default DHCP server is configured to assign statically IP addresses

corresponding to predictable MAC addresses, and OpenNebula is configured to as-

sign IP and MAC addresses matching the DHCP configuration. This procedure

should be revised to avoid inconsistencies between OpenNebula and the DHPC

server, and to reduce the configuration effort.

25 of 46



6 Service Scalability

Cloud computing promises an easy way to use and access a large pool of virtual-

ized resources (such as hardware, development platforms and/or services) that can

be dynamically provisioned to adjust to a variable workload, allowing also for op-

timum resource utilization. This pool of resources is typically exploited by a pay-

per-use model in which guarantees are offered by means of customized SLAs [27].

Therefore, cloud computing automated provisioning mechanisms can help ap-

plications to scale up and down systems in a way that performance and economical

concerns are balanced. Scalability can be defined as “the ability of a particular sys-

tem to fit a problem as the scope of that problem increases (number of elements or

objects, growing volumes of work and/or being susceptible to enlargement)” [4].

The actions to scale may be classified in [4]:

Vertical scaling by adding more horsepower (more processors, memory, band-

width, etc.) to equipment used by the systems. This is the way applications

are deployed on large shared-memory servers.

Horizontal scaling by adding more of the same software or hardware resources.

For example, in a typical two-layer service, more front-end nodes are added

(or released) when the number of users and workload increases (decreases).

This is the way applications are deployed on distributed servers.

As commented in the requirements in Chapter 2, StratusLab will work on VM

reconfiguration. The vertical scaling can be considered as reconfiguration in the

sense that the virtual machine features are changed. For us, the reconfiguration

will imply stopping the current VM and deploying a new one with different VM

features. StratusLab will also work on the horizontal scaling, so that, it will be

able to scale up or down hardware and software resource instances in case they are

required.

6.1 Service Scalability Framework Alternatives
Grid applications deployed over cloud technologies should benefit from scalability

at service level, which conceals low level details from the user. There are several

off-the-shelf alternatives in the industry when it comes to scalable cloud infrastruc-

tures: Amazon Web Services, GoGrid and RightScale are among the best known.

26 of 46



Although they are well-tested solutions, these alternatives exhibit some disadvan-

tages:

1. Non-abstract, they deal with VM management instead of service manage-

ment

2. Non-standard interfaces (which leads to poor portability) on top of a single

infrastructure (which hinders federation with another clouds)

3. Lack of flexibility, in the sense of:

• Reduced set of actions available (basically limited to VM launching/re-

moving)

• Impossibility of combining metrics (neither arithmetically nor logi-

cally)

Thus, in order to overcome with these limitations the Claudia project [25] arises

being the chosen solution to be used in StratusLab.

6.2 Claudia
A means to solve those problems is to introduce a layer on top of current IaaS

clouds that provides users with the required abstraction level and allows them to

manage the service as a single entity, closer to user needs. This solution provides

a wider range of scalability mechanisms and a broader set of actions that can be

undertaken (addition, removal, reconfig, federation, ...) on top of several cloud

infrastructure providers. It also brings flexibility allowing combinations of several

metrics. Claudia follows such paradigm and is the only open source solution that

meets these requirements.

The Claudia platform [25] is an advanced service management toolkit that al-

lows service providers to dynamically control the service provisioning and scal-

ability in an IaaS Cloud. Claudia manages services as a whole, controlling the

configuration of multiple VM components, virtual networks and storage support

by optimizing the use of them and by dynamically scaling up/down services apply-

ing elasticity rules, SLAs and business rules.

Claudia can deploy services in a public cloud (Amazon, Flexiscale, GoGrid,

etc.) or in a private cloud using a Virtual Infrastructure Manager (such as Open-

Nebula, Eucalyptus, etc.) through a plug-in driver mechanism that will orchestrate

the virtual resource allocation [25], as Figure 6.1 shows.

The main component in Claudia is Clotho, which involves the Service Life-

cycle Manager (SLM) and the Scalability and Optimization Module presented in

Figure 6.1. Clotho allow for creating services and managing monitoring events and

scalability rules. It is responsible for the instantiation of service applications (con-

trolling the service lifecycle) and dynamically asking for virtualized resources to a

virtual machine manager like OpenNebula, trying to avoid over/under provisioning

and over-costs based on SLAs and business rules protection techniques.

27 of 46



Figure 6.1: Claudia High Level Architecture

Clotho provides a means for users to specify their application behavior in terms

of adding or removing more of the same software or hardware resources [4] by

means of elasticity rules [5]. The elasticity rules follow the Event-Condition-

Action approach, where automated actions to resize a specific service component

(e.g. increase/decrease allocated memory) or the deployment/undeployment of

specific service instances are triggered when certain conditions relating to these

monitoring events (KPIs) hold.

As Clotho APIs, Claudia uses the TCloud API (see 3.1.2) as a cloud-like API

for both SMI and VMI. Thus, the TCloud Server component implements a subset

of the TCloud API (see 3.1.2), acting as both as SMI and VMI.

WASUP, the monitoring system in Claudia, is the component that stores and

distributes the status of the deployed services data to the rest of the service manager

components and to the cloud users. This component aggregates the information

collected by others monitoring systems, for instance, placed in the virtual machine.

Still, it is required an analysis task to see if StratusLab monitoring tools offer the

same functionality as WASUP. In this case, WASUP would be disable.

Finally, Claudia offer a command line client used to manage and to test the

other components in the Claudia Client component. It integrates a simple TCloud

API client for service deployment features and monitoring utilities.

28 of 46



6.3 Using Claudia in StratusLab
The service manager provides a more flexible and easier to use platform to de-

ploy grid-oriented services with all the benefits of the IaaS cloud model. As it is

stated in both scenarios, now grid service providers can define the configuration

and dynamic behavior of their services in a easy and standard way. The SM hides

platform complexity to the Service Providers, avoiding complicated management

processes and allowing Service Providers to focus on the service definition.

Thus, this section tries to illustrate how the service manager will work in Stra-

tusLab with the rest of StratusLab components. Concretely, we are going to exem-

plify how the StratusLab architecture works when a service provider decides to use

the StratusLab platform to deploy one of its services. Once this service is work-

ing, the rest of use cases in StratusLab can be deployed in the Final StratusLab

architecture including the technology developed in WP6.

6.3.1 Deployment Scenario

Figure 6.2 shows a high level flow describing the deployment of the service into

the StratusLab platform. The main steps are:

1. As a previous step before the beginning of the deployment process, the ser-

vice provider must define the service structure, conditions and characteristics

in a OVF descriptor. It includes the description of all the service’s VMs (OS,

hardware characteristics, networks, etc.).

2. In addition, the service provider has to generate all the VMs involved in the

services and store them into the Appliance Repository.

3. At this point, the service provider is ready to request the service deployment.

The interface through the service manager (SM) implements the TCloud API

for supporting the needed operations at this level. The deployment request

will include the OVF descriptor.

4. The SM revises the OVF descriptor in search of useful information for the

service lifecycle management. The startup order of all the VMs of the Ser-

vice, scalability rules, resource requirements, etc. are some examples of the

available information within the OVF Descriptor. The SM also translates the

OVF Descriptor into the needed OpenNebula templates (for both networks

and VMs).

5. The next step is to provide the needed networks and to start the deployment

of VMs in the right order, by interacting with OpenNebula.

6. At this point, the OpenNebula engine has all the information to deploy the

service into the StratusLab Platform. It localizes the images in the Appliance

Repository and installs them in the corresponding resources.

29 of 46



Figure 6.2: Deployment Scenario

30 of 46



Figure 6.3: Scalability Scenario

6.3.2 Scalability Scenario

As commented previously, the service manager will provide grid service elasticity.

Thus, service providers define elasticity rules in the service manifest to assure the

right operation of their services and/or the final user experience. Moreover, the Ser-

vice Provider has defined elasticity rules which adds a new instance of a concrete

virtual machine to avoid the system overload.

Figure 6.3) shows how the StratusLab platform manages the scalability of the

a service.

The main steps are:

1. The StratusLab Monitoring System (or a grid monitoring tool) provides KPIs

values for the service to the SM.

2. The service manager evaluates, in real time, the elasticity rules of the service.

When the corresponding KPI exceeds the given threshold, the SM starts the

deployment process of a new VM instance.

3. Using the TCloud API, the SM requests for a new replica to be deployed.

The steps here are the same as in the deployment Section 6.3.1.

6.4 Next steps in Claudia for StratusLab
Although Claudia is well-suited for Stratuslab as a service manager according to

the requirements identified so far, Claudia follows a process of continuous growth

and could be extended with new requirements identified. In contact with the com-

31 of 46



munity of users, we will analyze the differen grid services to be deployed and new

grid users requirements which can appear with the usage of Claudia in StratusLab.

For instance, previous experience exists in the deployment and the scalability

of the Sun Grid Engine application. However, more grid services, such as Torque

or gLite grid services, will be used as use cases to be deployed in the StratusLab

infrastructure by using the service manager, which for sure, will provide new re-

quirements.

In addition, the service manager will need to be extended to consider the de-

ployment and configuration of load balancers. So that, the service manager, au-

tomatically, can deploy a load balancer, which is part of the application to be de-

ployed, configuring it in case new balanced replicas have been instantiated.

The integration of Claudia with management tools popular in the grid commu-

nity (e.g. Quattor) through TCloud will be another subject of study to be done in

nexts steps.

Finally, when there will be a decision in monitoring tools, Clotho will be ex-

tended to obtain the monitoring data from the chosen tools, or to populate WASUP

database with the obtained data.

32 of 46



7 Grid Accounting and Monitoring

7.1 Monitoring
In this section, we talk about the monitoring modules that will be used for the

purposes of the project. We consider three levels of monitoring, according to the

infrastructure or service we are interested in:

Physical Infrastructure In this level, we must be able to monitor the usage of the

physical bare-metal infrastructure, i.e., the machines that are the VM con-

tainers. A very popular monitoring tool that can easily collect information

for arbitrarily large clusters is Ganglia [14] (other open-source alternatives

include the Nagios [3] or the Munin [15] Monitoring Systems). Ganglia

is a scalable distributed system monitor tool for high-performance comput-

ing systems. It allows the user to remotely view live or historical statistics

(such as CPU load averages, network or memory or disk space utilization)

for all machines that are being monitored. The presentation is done through

a web front-end that provides a view of the gathered information via real-

time dynamic web pages. Moreover, this information could be used to feed

OpenNebula with monitoring information about physical machines, instead

of the current SSH probes. Ganglia meets the requirements for physical in-

frastructure monitoring for the purposes of StratusLab. Ganglia is currently

in use on over 500 clusters around the world and can scale to handle clusters

with more than 2000 nodes.

Virtual Machines Infrastructure In this layer, the StratusLab administrator must

be able to have an overview of the total virtualized resources that are cur-

rently deployed. The internal OpenNebula XML-RPC API provides ex-

tended monitoring of virtualized resources through some simple command-

line utilities. These virtualized resources may include the total number of

virtual machines that each actual node stores, the amount of allocated phys-

ical memory, the number of allocated physical CPU cores, or the bandwidth

consumption per virtual machine. Currently, OpenNebula utilizes ssh com-

mands that connect through the Cluster Front-End to each physical machine

to collect virtual-machine related information which is then stored in the

OpenNebula database. Instead of this, we could integrate OpenNebula with

Ganglia, so that Ganglia collects virtual-machine related information and

33 of 46



disseminates this information back to OpenNebula. In the case where Gan-

glia integrates with OpenNebula, we will avoid connecting with each vir-

tual machine container from the Cluster Front-End. Instead, virtual-machine

related metrics will be locally fed to Ganglia through each virtual machine

container, and Ganglia will disseminate this information to the Cluster Front-

End in a scalable and efficient manner. What is more, in this situation, the

cloud infrastructure administrators will have a unified GUI through the Gan-

glia web-based front end where they can monitor both the physical and its

virtual machine infrastructure.

Grid Services In this level we must be able to monitor the Grid Sites that are

deployed in the StratusLab infrastructure. Monitoring software that is used

in actual grid sites can be re-used in this situation, since grid applications are

unaware that they are being executed inside virtual machines.

7.2 Accounting
Accounting is a fundamental aspect for the provisioning of computing resources

regardless the type of infrastructure (cloud, grid, etc). As such, it plays in important

role for the provisioning of cloud computing resources in the context of StratusLab

project. In a nutshell, an accounting subsystem is responsible for keeping track of

the amount of computing resources consumed per user over a period of time. These

information can facilitate among other things a fair share of computing resources

among the users, through a provision mechanism that applies a set of accounting

policies defined by the resource provider.

7.2.1 Cloud infrastructure accounting requirements

Cloud resource providers deploying the StratusLab distribution will need to keep

track of usage for a diverse set of resources. A typical list of these resources is the

following:

Number of Virtual Machines The number of VMs per user is the basic metric

kept from a cloud accounting system.

Number of CPUs It is important to measure the total number of CPUs allocated

at each user. The physical infrastructure has a finite number of actual CPUs

per host machine, and their utilization must be carefully taken care of.

RAM size The total amount of RAM that is assigned to the user’s virtual ma-

chines must be included in the accounting metrics and should its use must

be regulated through the accounting policy.

Storage space The accounting module must be able to assign and “charge” users

according to the storage space they will allocate.

34 of 46



Network I/O The accounting module must measure the Internet traffic that is gen-

erated by each user, i.e., the data transfer in and out of the StratusLab phys-

ical cluster data-center (traffic that is generated between StratusLab virtual

machines should not be taken into account).

OpenNebula is implementing in release 2.0 an Accounting Toolset [20] that vi-

sualizes and reports resource usage data, and allows their integration with charge-

back and billing platforms. This add-on can be used as the basis for the accounting

module and will be further developed in order to potentially satisfy specific re-

quirements stemming from the project.

7.2.2 Integration of Cloud and Grid accounting information

StratusLab aims to facilitate and support the provisioning of grid resource over

cloud infrastructures. This is expected to impact the type and amount of accounting

information being kept. The cloud and the grid are residing in two distinct layers of

the StratusLab architecture. In principle the hosting of grid services is independent

of the underlying infrastructure being used whether this is a set of physical ma-

chines or virtualized resources within a public or private cloud environment. Grid

sites already implement their own services for keeping various accounting infor-

mation. Currently APEL [2] and DGAS [7] are the two most popular accounting

frameworks integrated in gLite and are used in the context of EGI. These account-

ing tools collect information related to resource consumption from grid users. The

primary focus is placed on information regarding grid jobs. The job is the primary

abstraction for resource consumption that encapsulates an application, information

about data produced and consumed, and the resource requirements for its proper

execution. For grid sites it is interesting to know the number of jobs submitted,

completed or failed. Information can be extracted about the users submitting jobs.

The users can be grouped into VOs. For this reason aggregated information about

VO usage can be derived. From that additional information can be extracted e.g.

statistics per application domain, per NGI, per project etc.

The accounting information in grids are currently used primarily for enforcing

Operational Level Agreements (a variation of SLAs) to grid sites that in turn en-

sure a certain quality of service offered by a grid infrastructure. Other than that,

they help create a more complete picture about resource requirements per user or

VO and are used for future planning and negotiations with resource centers. From

the technical point of view accounting data can also be important for building self-

configuration capabilities in the grid middleware. Activities like the Grid Obser-

vatory [13] are working on the systematic collection of grid usage data with the

purpose of building ontology for grid domain knowledge.

In the context of StratusLab we are interested in collecting information about

resource utilization from grid resource providers that exploit a cloud infrastructure

for deploying virtualized grid sites. We identify four different actors:

The grid user Is the end user of the grid infrastructure. A grid user submits jobs

35 of 46



to a Workload Management System comprised of a central resource sched-

uler (WMS) and a set of distributed Computing Elements that act as local

schedulers for dispatching job requests to a set of Worker Node machines. A

grid user also exploits the storage management capabilities of the grid ma-

terialized primarily by a set of Storage Elements and an LFC service that

keeps track of files and their replicas in the SEs. A grid user belongs to one

or more Virtual Organizations.

The VO manager Is the representative of a community of grid users (the Virtual

Organization) that collaborate in the context of a certain domain to solve sim-

ilar problems. A VO requires a number of computing resources to achieve

this goal. The VO manager typical will negotiated with a number of re-

source centers in order to support the VO by allocating a percentage of their

resources and make them available for the VO grid users.

The grid site manager manages a grid site by providing the necessary technical

support but also being the main contact point for interaction with the central

grid authorities (e.g. EGI.eu) and the VO managers. A grid site may choose

to support a number of different VOs based on their locality, their scientific

domain and the overall utilization of the site’s resources.

The cloud provider Is managing a set of physical resources and provides IaaS

capabilities to a set of users. These users may reside within the same admin-

istrative domain (private clouds) or can be third parties having remote access

to the virtualized resources (public clouds).

In the context of StratusLab a number of partners will be acting as cloud

providers offering cloud capabilities based on the physical infrastructure commit-

ted for the project using the cloud distribution that the project integrates. Although

the exact provision policies are expected to be defined in the coming months, and

in particular in D5.2, the grid site manager is expected to be the main contact point

for allocating resources for grid sites. Site managers may wish to deploy a com-

plete set of grid services on top of virtualized resources. Alternatively they may

wish to deploy only a subset of the resources that they control as a part of a larger

grid installation. For example a physical grid site may wish to expand the range of

WNs offered by utilizing a number of WNs from the cloud.

From the point of view of the cloud, the grid site manager will be the cloud

user and the entity for which accounting information will be kept (number of VMs,

number of CPUs) etc. Usage quota and resource usage restrictions will be enforced

on the grid site level. These restrictions will be transparent to grid users. For what

concerns VO requirements for cloud resources, this can be negotiated between the

cloud provider and the VO manager but the final allocation should be done through

a site manager. Accounting information will be available per VO but usage quota

will not be applied on a VO level.

36 of 46



The grid site itself will probably need to keep information of cloud resource

usage per grid user. This will be especially important in the case the grid site

exhibits some kind of elasticity behavior. For example the instantiation of a new

WN VM may be the result of a users requesting additional CPU cores to run their

applications. A grid site will probably need to keep track of this usage thus the

grid middleware should inform the cloud middleware about the grid user using a

specific resource. Since grid users are identified by a digital certificate it will be

enough to associate the usage of a specific could resource with a certificate DN.

Inversely, the grid accounting system will need to expand in order to include

information about consumption of virtualized resources. Thus alongside the grid

job information regarding memory and CPU consumption grid, accounting will

keep information about the number and type of VMs instantiated, the amount of

time used, the total network traffic among virtualized resources, the amount of

virtualized storage used etc. The information will be kept per site and will help

derive statistics for virtualized grid resources utilization per user and per VO.

Apparently, the above requirements need to be further developed by discus-

sions with two more projects that are directly involved with the provision of grid

services in Europe, namely EGI-InSPIRE and EMI. In particular, with EGI-InSPIRE

we will discuss the accounting procedures and policies for grid sites. Finally, with

EMI we will need to look into the technical requirements from the point of view

of the middleware be it the cloud middleware integrated in StratusLab or the grid

middleware developed by EMI.

37 of 46



8 Updated StratusLab Architectural Design

Figure 8.1 presents a high level design of the StratusLab architecture with all the

components required to build an IaaS cloud with advanced functionalities provided

in the JRA package. It is possible to see that the picture is quite similar to the one

presented in D4.1 [23], plus the inclusion of the service manager component and

the usage of the web APIs to access to both the service manager and OpenNebula.

OpenNebula is the virtual machine manager and it is charge of orchestrating re-

quests and managing the allocation of resources, as well as the lifecycle of running

virtual images. It will be deployed in a site and will manage the required resources

(cluster, machines, storage, nodes, etc.).

The service manager works on top of OpenNebula. The SM is responsible for

managing the overall service, not only the virtual machines of which it is com-

posed. The input of the service manager is the service manifest formalized in the

OVF language. It contains information about the virtual appliance to be deployed,

that is to say, service and virtual machines information, as well as network and

storage features. Each one of the virtual machines and networks is deployed in the

physical infrastructure by OpenNebula, which will be in charge of managing them

and sending the information to the SM which continues with the service manage-

ment.

In order to obtain service scalability according to service providers’ require-

ments, the service manager is able to manage the service scale up or down process

following elasticity rules defined by the service providers. These rules are formal-

ized again in the OVF using its extension capabilities.

The access to both OpenNebula and service manager is through the TCloud

API (explained in Section 3.1.2). This means that both components are exposed as

services, so that, they can be accessed via the web.

Finally, accounting and monitoring functionalities are provided unified at the

physical and virtualization layer by a single component (see Section 7). This com-

ponent also interacts with the accounting and monitoring facilities of the grid ser-

vices running inside the virtualized environment provided by OpenNebula. The

accounting and monitoring component also interacts with the service manager in

order to feed the latter with the relevant information needed for enabling the fair

share of virtualized resources. This picture is still rather abstract since decisions

on accounting and monitoring tools remain to be made, and will be reflected in the

next version of this document.

38 of 46



Figure 8.1: Updated StratusLab Architecture

39 of 46



9 Conclusions and Future Work

This document has been a starting point of the activities that are going to be carried

out in the research workpackage. In a way, it is an input for grid service providers

in StratusLab to know what the research activities are able to do, so that, they can

provide requirements and feedback to guide the WP6 work in next months. On

the other hand, it has provided a updated version of the StratusLab architecture

including WP6 activities, and it is a starting point for technical discussion (e.g.

monitoring tools in StratusLab).

Concretely, this document has analyzed the inclusion of a service manager

(called Claudia) inside the StratusLab architecture (on top of the OpenNebula) in

order to manage the overall service instead of isolated virtual machines. In addi-

tion to provide a higher abstraction level to the service provider, it allows service

providers to define the service’s behavior in terms of service scalability. For the

definition of this service behavior as well as the service, virtual machines and net-

works features, the document has analyzed the OVF standard. Contextualization

information for VM has been defined and used in OpenNebula. Furthermore, the

usage of standards API has been identified as an important point to be included in

StratusLab. Thus, TCloud and OCCI are the main alternatives to be the APIs to

access to the Service Manager and Virtual Machine Manager. Regarding monitor-

ing and accounting, some alternatives have been identifies as a starting point for

discussion next months.

Next steps in this WP will be the deployment of the Service Manager and

the APIs server in the StratusLab testbed, to test its functionality and to check its

advantages. Some user stories will be created following the Scrum methodology

which StratusLab is following. Thus, the user stories will be described using a

narrative style, for instance as a grid service provider I want to deploy my grid

service just specifying all my requirements in a xml file or as a grid service provider

I want to scale up my service when..., or as a grid service provider I want to the

balanced virtual machines in my services are scaled up when by balancer needs it

that is when ....

To start with testing, we will use some grid existing service application, for

instance the Grid Sun Engine (since this application has already been tested with

the service manager and all the required artifact has been created). Other applica-

tions more suitable for StratusLab will be also considered like Torque. In addition,

we will analyze how to integrate gLite services and the Quattor application with

40 of 46



the service manager, that is, to see how these services can be deployed by using

Claudia.

Finally, this document will be updated in the D6.4 Cloud-like Management of

Grid Sites 2.0 Design Report at PM15.

41 of 46



Glossary

Appliance Virtual machine containing preconfigured software or services

Appliance Repository Repository of existing appliances

CDDLM Configuration Description, Deployment, and Lifecycle

Management

DHCP Dynamic Host Configuration Protocol

DMTF Distributed Management Task Force

Front-End OpenNebula server machine, which hosts the VM manager

Hybrid Cloud Cloud infrastructure that federates resources between

organizations

IaaS Infrastructure as a Service

IP Infrastructure Provider

Instance a deployed Virtual Machine

JRA Joint Research Activity

Machine Image Virtual machine file and metadata providing the source for Virtual

Images or Instances

NFS Network File System

Node Physical host on which VMs are instantiated

OASIS Organization for the Advancement of Structured Information

Standards

OCCI Open Cloud Computing Initiative

OGF Open Grid Forum

OVF Open Virtualization Format

Public Cloud Cloud infrastructure accessible to people outside of the provider’s

organization

Private Cloud Cloud infrastructure accessible only to the provider’s users

Regression Features previously working which breaks in a new release of the

software containing this feature

Service Manager/SM A toolkit to provides Service Providers to dynamically control the

Service provisioning and scalability

Service Provider/SP The provider who offers the application to be deploy in the Cloud

SMI Service Manager Interface

SSD Solution Deployment Descriptor

Virtual Machine / VM Running and virtualized operating system

VMI Virtual Manager Interface

VO Virtual Organization

42 of 46



VOMS Virtual Organization Membership Service

Web Monitor Web application providing basic monitoring of a single

StratusLab installation

Worker Node Grid node on which jobs are executed

43 of 46



References

[1] P. Anderson and E. Smith. System administration and cddlm. In Proceedings

of the GGF12 CDDLM Workshop. Global Grid Forum, 2004.

[2] APEL. Accounting Processor for Event Logs. http://goc.grid.sinica.edu.

tw/gocwiki/ApelHome.

[3] W. Barth. Nagios: System and network monitoring. No Starch Press San

Francisco, CA, USA, 2008.

[4] J. Cáceres, L. M. Vaquero, L. Rodero-Merino, A. Polo, and J. J. Hierro.

Service Scalability over the Cloud. In B. Furht and A. Escalante, edi-

tors, Handbook of Cloud Computing, pages 357–377. Springer US, 2010.

10.1007/978-1-4419-6524-0 15.

[5] C. Chapman, W. Emmerich, F. G. Márquez, S. Clayman, and A. Galis. Soft-

ware architecture definition for on-demand cloud provisioning. In HPDC ’10:

Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing, pages 61–72, New York, NY, USA, 2010. ACM.

[6] Collective. Argus authorization service. Online resource, 2010. https://twiki.

cern.ch/twiki/bin/view/EGEE/AuthorizationFramework.

[7] DGAS. Distributed Grid Accounting System. http://www.to.infn.it/dgas/

index.html.

[8] DMTF. CIM Infrastructure Specification. Specification DSP0004 v2.6.0.

Technical report, Distributed Management Task Force, Mar 2010.

http://dmtf.org/sites/default/files/standards/documents/DSP0004 2.6.

0 0.pdf.

[9] DMTF. Open virtualization format specification. Specification

DSP0243 v1.0.0d. Technical report, Distributed Management

Task Force, Sep 2008. https://www.coin-or.org/OS/publications/

optimizationServicesFramework2008.pdf.

[10] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing

360-degree compared. In 2008 Grid Computing Environments Workshop,

pages 1–10. IEEE, November 2008.

44 of 46

http://goc.grid.sinica.edu.tw/gocwiki/ApelHome
http://goc.grid.sinica.edu.tw/gocwiki/ApelHome
10.1007/978-1-4419-6524-0_15
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
http://www.to.infn.it/dgas/index.html
http://www.to.infn.it/dgas/index.html
http://dmtf.org/sites/default/files/standards/documents/DSP0004_2.6.0_0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0004_2.6.0_0.pdf
https://www.coin-or.org/OS/publications/optimizationServicesFramework2008.pdf
https://www.coin-or.org/OS/publications/optimizationServicesFramework2008.pdf


[11] T. Freeman and K. Keahey. Contextualization: Providing One-Click Virtual

Clusters. In Proceedings of the eScience08 Conference, December 2008.

[12] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M. Vaquero.

Service specification in cloud environments based on extensions to open stan-

dards. In COMSWARE ’09: Proceedings of the Fourth International ICST

Conference on COMmunication System softWAre and middlewaRE, pages 1–

12, New York, NY, USA, 2009. ACM.

[13] Grid Observatory. http://www.grid-observatory.org.

[14] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed moni-

toring system: design, implementation, and experience. Parallel Computing,

30(7):817–840, 2004.

[15] Munin. Munin (network monitoring application). Online resource. http:

//munin-monitoring.org/.

[16] OASIS. Oasis sdd starter profile. In Specification, Organization for the

Advancement of Structured Information Standards. Organization for the Ad-

vancement of Structured Information Standards, 2008.

[17] OASIS. Oasis solution deployment descriptor (sdd). In Specification, Orga-

nization for the Advancement of Structured Information Standards. Organi-

zation for the Advancement of Structured Information Standards, 2008.

[18] OCCI-WG. Open Cloud Computing Interface Specification. Technical report,

Open Grid Forum, 2009. http://forge.ogf.org/sf/go/doc15731.

[19] OGF. Open Grid Forum (OGF). Online resource. http://www.ogf.org/.

[20] OpenNebula. OpenNebula Accounting Toolset. http://www.opennebula.

org/documentation:rel2.0:accounting.

[21] Stratuslab Consortium. Stratuslab Description of Work, 2009.

[22] Stratuslab Consortium. Deliverable 2.1 Review of the Use of Cloud

and Virtualization Technologies in Grid Infrastructures. Online re-

source., 2010. http://stratuslab.eu/lib/exe/fetch.php?media=documents:

stratuslab-d2.1-v1.2.pdf.

[23] Stratuslab Consortium. Deliverable 4.1 Reference Architecture for Stratus-

Lab Toolkit 1.0. Online resource., 2010. http://stratuslab.eu/lib/exe/fetch.

php?media=documents:stratuslab-d4.1-v1.0.pdf.

[24] Telefónica. TCloud API Specification, Version 0.9.0. Online resource., 2010.

http://www.tid.es/files/doc/apis/TCloud API Spec v0.9.pdf.

45 of 46

http://www.grid-observatory.org
http://munin-monitoring.org/
http://munin-monitoring.org/
http://www.ogf.org/
http://www.opennebula.org/documentation:rel2.0:accounting
http://www.opennebula.org/documentation:rel2.0:accounting
http://stratuslab.eu/lib/exe/fetch.php?media=documents:stratuslab-d2.1-v1.2.pdf
http://stratuslab.eu/lib/exe/fetch.php?media=documents:stratuslab-d2.1-v1.2.pdf
http://stratuslab.eu/lib/exe/fetch.php?media=documents:stratuslab-d4.1-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php?media=documents:stratuslab-d4.1-v1.0.pdf
http://www.tid.es/files/doc/apis/TCloud_API_Spec_v0.9.pdf


[25] TID. The claudia project. Online resource., 2010. http://claudia.

morfeo-project.org/wiki/index.php/Main Page.

[26] DMTF. The distributed management task force webpage. Online resource.,

2010. http://www.dmtf.org.

[27] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in

the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev.,

39(1):50–55, 2009.

[28] VMWare. vCloud API Programming Guide, Version 0.8.0. Online re-

source., 2009. http://communities.vmware.com/static/vcloudapi/vCloud

API Programming Guide v0.8.pdf.

46 of 46

http://claudia.morfeo-project.org/wiki/index.php/Main_Page
http://claudia.morfeo-project.org/wiki/index.php/Main_Page
http://www.dmtf.org
http://communities.vmware.com/static/vcloudapi/vCloud_API_Programming_Guide_v0.8.pdf
http://communities.vmware.com/static/vcloudapi/vCloud_API_Programming_Guide_v0.8.pdf

	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Solution of Gaps Identified by WP4
	Requirements from Grid Service Providers
	Organization of Following Chapters

	Cloud-like Application Programming Interfaces
	Cloud-like APIs Alternatives
	vCloud from VMWare
	TCloud from Telefónica
	OCCI from OGF

	StratusLab Cloud-like APIs
	Grid and Cloud Integration

	Virtual Appliance (Service) Language Definition
	Virtual Appliance (Service) Language Description
	Virtual Appliance Language Alternatives
	Open Virtualization Format
	Open Virtualization Format in StratusLab

	Virtual Machine Contextualization
	Service Scalability
	Service Scalability Framework Alternatives
	Claudia
	Using Claudia in StratusLab
	Deployment Scenario
	Scalability Scenario

	Next steps in Claudia for StratusLab

	Grid Accounting and Monitoring
	Monitoring
	Accounting
	Cloud infrastructure accounting requirements
	Integration of Cloud and Grid accounting information


	Updated StratusLab Architectural Design
	Conclusions and Future Work
	References

