
HAL Id: hal-00687191
https://hal.science/hal-00687191

Submitted on 12 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First Year Software Integration Report
Marc-Elian Bégin, Louise Merifield

To cite this version:

Marc-Elian Bégin, Louise Merifield. First Year Software Integration Report. 2011. �hal-00687191�

https://hal.science/hal-00687191
https://hal.archives-ouvertes.fr

Enhancing Grid Infrastructures with

Virtualization and Cloud Technologies

First Year Software Integration Report

Deliverable D4.3 (V1.0)

15 June 2011

Abstract

This document reports on the integration activities performed during the first year

of StratusLab, focusing on lessons learned and identifying the areas of improve-

ments, not only for the first release of the StratusLab software, but also on the

process used during the development, integration and test, such that the second

year of the project builds on these lessons and improves its performance.

StratusLab is co-funded by the

European Community’s Seventh

Framework Programme (Capacities)

Grant Agreement INFSO-RI-261552.

The information contained in this document represents the views of the

copyright holders as of the date such views are published.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED

BY THE COPYRIGHT HOLDERS “AS IS” AND ANY EXPRESS OR IM-

PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-

PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE MEMBERS OF THE STRATUSLAB COLLABORATION, INCLUD-

ING THE COPYRIGHT HOLDERS, OR THE EUROPEAN COMMISSION

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-

EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright c© 2011, Members of the StratusLab collaboration: Centre Na-

tional de la Recherche Scientifique, Universidad Complutense de Madrid,

Greek Research and Technology Network S.A., SixSq Sàrl, Telefónica In-

vestigación y Desarrollo SA, and The Provost Fellows and Scholars of the

College of the Holy and Undivided Trinity of Queen Elizabeth Near Dublin.

This work is licensed under a Creative Commons

Attribution 3.0 Unported License

http://creativecommons.org/licenses/by/3.0/

2 of 26

http://creativecommons.org/licenses/by/3.0/

Contributors

Name Partner Sections

Marc-Elian Bégin SixSq All

Louise Merifield SixSq All

Document History

Version Date Comment

0.1 2 June 2011 Initial version for comment.

0.2 12 June 2011 Corrections from Louise Merifield.

0.3 14 June 2011 Added execution summary.

1.0 15 June 2011 Final version.

3 of 26

Contents

List of Figures 5

List of Tables 6

1 Executive Summary 7

2 Introduction 9

3 Agile Process: Scrum 11

3.1 Agile Overview . 11

3.2 StratusLab First Year Scrum Measurements 13

4 Engineering Practices 16

4.1 Continuous Integration and Deployment 16

4.2 Configuration Management and Version Control 17

4.3 Building Software . 18

4.4 Hudson . 20

4.5 Installation Strategies . 21

5 Lessons Learned 23

6 Conclusion 26

4 of 26

List of Figures

2.1 StratusLab v1.0 Architectural Vision 10

3.1 Scrum Overview. 12

3.2 Work-Package Interactions. 14

3.3 Sprints Overview . 15

4.1 Packaging Publishing . 19

4.2 Hudson Jobs for Daily Smoke Tests on Full Installation 22

4.3 Hudson Release Jobs . 22

5 of 26

List of Tables

3.1 First Year StratusLab Releases. 14

6 of 26

1 Executive Summary

StratusLab is a two year project, with a challenging programme of work. The

project exists in the context of cloud and grid computing, a fast and very dynamic

field in distributed software engineering. In order to manage this challenging sit-

uation, the project decided to adopt an agile software development process, called

Scrum, alongside a set of engineering practices, some taken from eXtreme Pro-

gramming (XP).

This report describes the strategy and techniques used during the first year of

the project to deliver this architecture, over a set of incremental deliveries, building

on the strength of the previous, generating feedback from users, and feeding this

back into the prioritisation of the functionality released with every iteration.

While the Agile eco-system is rich and diverse (e.g. Extreme Programming

- XP, Scrum, Lean Development, Kanban, Core Principals), StratusLab chose to

focus its organisational structure on Scrum. Scrum has a clear model and is pre-

scriptive of the dynamics between the customer and the provider, the emergence of

functional specification (i.e. Product Backlog) and the rhythm of development (i.e.

sprints). While other methods would also apply, such as XP (as well as derivatives

like Test-driven development - TDD), we focused our effort on the Scrum part of

the development process.

The Scrum process described early in this document focuses on the manage-

ment of functionality and prioritization of features for each StratusLab release.

This report then changes its focus towards the engineering practices used in the

integration and test activities required to deliver high-quality StratusLab software.

To deliver a quality solution the StratusLab project employs a set of practices

of continuous automated integration and deployment in the course of the develop-

ment process. The set of practices (properly pipelined, automated and frequently

executed) allows for rapid feedback on the quality of the software stack at all levels

as well as its delivery models.

The project uses Git (a distributed revision control system) as its code reposi-

tory. The build procedures themselves in StratusLab are implemented using Maven2.

This tool is the de-facto standard in the Java world, but also provides support for

other languages. Maven2 provides a rich set of plugins, capable of performing

complex tasks.

In order to guarantee that everything is working as we move forward with new

features, improvements and fixes, the project uses a continuous integration (CI)

7 of 26

infrastructure, composed of a main server and a number of dedicated ‘slave’ ma-

chines.

Having reviewed and explained the methodologies and processes used to in-

tegrate and test StratusLab, the last part of this report brings together important

lessons learned. These include a wide range of lessons:

• Further improvements to the continuous integration system

• Documentation updates for every development and integration task

• Further automation of machine re-imaging to ensure clean installations using

Quattor

• Push patches back to external code providers faster to reduce flakiness in our

build system

• Continue working on HEAD/master branch whenever possible

• Continue to commit on a regular basis

• Continue to encourage a stop-the-line culture regarding Hudson jobs to avoid

committing code on a broken system

• Improve and increase variety of modern operating systems support for Stra-

tusLab user tools and cloud system.

• Continue to support manual and automated installation capabilities

The first year of the project was very productive with several releases and nu-

merous sprints delivering significant functionality towards the project goal of deliv-

ering a fully functional high quality cloud distribution. The build and test activities

summarised in this report were also a great source of lessons learned, which we are

convinced will help the project improve even further in its second year.

8 of 26

2 Introduction

StratusLab is a two year project with a challenging programme of work. The

project exists in the context of cloud and grid computing, a fast and very dynamic

field in distributed software engineering. In order to manage this challenging sit-

uation, the project decided to adopt an agile software development process, called

Scrum, alongside a set of engineering practices, some taken from eXtreme Pro-

gramming (XP).

Figure 2.1 shows the high-level architectural vision of StratusLab v1.0. This

report describes the strategy and techniques used during the first year of the project

to deliver this architecture, over a set of incremental deliveries, building on the

strength of previous experience, generating feedback from users, and feeding this

back into the prioritisation of the functionality released with every iteration.

As you can see in this diagram, StratusLab is composed of a number of com-

ponents and services, each integrated and tested individually and as a whole, using

an automated procedure and on a regular basis (i.e. generally several times per

day). This report describes how the development, integration and test activities are

orchestrated and synchronised to produce the StratusLab distribution.

9 of 26

Figure 2.1: StratusLab v1.0 Architectural Vision

10 of 26

3 Agile Process: Scrum

3.1 Agile Overview
While the Agile eco-system is rich and diverse (e.g. Extreme Programming - XP,

Scrum, Lean Development, Kanban, Core Principals), StratusLab chose to focus on

organisational structure on Scrum. Scrum has a clear model and is prescriptive of

the dynamics between the customer and the provider, the emergence of functional

specification (i.e. Product Backlog) and the rhythm of development (i.e. sprints).

While other methods would also apply, such as XP (as well as derivatives like

Test-driven development - TDD), we focused our efforts on the Scrum part of the

development process.

The main reasons for choosing Scrum were:

• Client centric approach encouraging convergence towards fulfilling the real

needs

• Improved project visibility

• Promotes trust between all stakeholders

• Controlled incorporation of changes

• Continuous inspection and improvement of the process

• Higher quality software

• Simpler solutions, easier to maintain and evolve

• More predictable delivery of functionality

While a complete description of Agile and Scrum is outside the scope of this

report, the following explains the main artefacts and processes involved in Stratus-

Lab’s implementation of Scrum. In Scrum, each iteration (called a sprint) starts

with a planning meeting. During this meeting, high-priority requirements are re-

viewed, analysed, decomposed into tasks and selected for the next sprint. The

duration of each sprint varies normally between one and four weeks, with a trend

towards shorter sprints. StratusLab decided to standardise at around three weeks, to

take into account the integration overhead and the distributed nature of our teams.

11 of 26

Figure 3.1: Scrum Overview

Each sprint ends with a sprint review, composed of two events: a retrospective and

a demo. The objective of the retrospective is to review the past sprints’ perfor-

mance, with a focus on emulating what was particularly effective, while eliminat-

ing impediments. For the demo, the team assembles and deploys the software and

presents the implementation of the requirements selected for that sprint. Different

stakeholders can be invited to this event, if necessary, including for example end-

users. This is an important generator of feedback and insights, which can be fed

into the requirements, and provide new data for prioritisation.

Another important Scrum event (but also required by most agile methods) is

the daily meeting, daily stand-up or daily Scrum. The sole purpose of this meeting,

which should not exceed 15 minutes, is to foster continuous and fluid communi-

cation between all teams. Stand-up meetings focus on reporting what has been

accomplished since the last meeting, what is planned until the next meeting and

identification of any impediments. Further, to alleviate the fact that for StratusLab,

stand-up meetings cannot be performed face-to-face, a new item to the standard

topics is a mention of the state of the Hudson continuous integration server, such

that any failures are highlighted to all and corrective actions are immediately sched-

uled. StratusLab stand-up meetings take place Monday to Friday at 10:30 sharp,

Paris time.

Scrum also defines three key roles:

Product Owner The person responsible for maintaining the Product Backlog by

representing the interests of the stakeholders.

Scrum Master The person responsible for the Scrum process, making sure it is

used correctly and maximizing its benefits.

The Team A cross-functional group of people responsible for managing itself to

develop the product.

12 of 26

These three roles are mapped differently to each project structure, depending on

the project, its stakeholders, contractual setup, distribution of skills and locations

across participants, etc. In StratusLab, the role of Product Owner is fulfilled by a

group composed of all work-package leaders and senior technical members of the

project. Charles Loomis, the project director, arbitrates and help focus the group

regarding prioritisation. The role of Scrum Master is generally held by Marc-Elian

Bégin, WP4 leader, but is regularly filled by other members when required.

Each sprint is concluded with a demo. This is the opportunity to show the

project members, via a alive demo, the completion of each user story, improve-

ments and bug fixes. Over the course of the project, the definition attached to com-

pleting an item of work (definition of ‘done’) evolved and is expected to continue

evolving. This natural evolution also follows the maturity of our build and test

infrastructure, discussed in more detail in Chapter 4.5. This improvement to the

doneness of our tasks is important the reduce the risk that problems are discovered

during deployment by WP5, or worse that we break a feature already delivered in

a previous version (also called regression).

An additional reason for choosing relatively short three-week sprints is that,

assuming we can release often enough, bug fixes can be released with normal re-

leases, as opposed to requiring special bug fixing releases. While this policy might

have to be revisited if critical problems are detected to which an urgent fix is re-

quired, it offers a much simpler rollout model.

3.2 StratusLab First Year Scrum Measurements
The main artefact driving the Scrum process is the ‘Product Backlog’. For Stratus-

Lab, the Product Backlog is captured using JIRA (and the GreenHopper plugin).

While the planning meetings, demos and daily stand-up events, described in

the previous section, provide the ‘tactical’ process for efficient project execution,

we also need a longer term and strategically focused think tank. This important

function is fulfilled by the Technical and Scientific Coordination Group (TSCG),

chaired by Ruben Montero from UCM, to which all work-package leaders and

senior project members contribute. From the set of priorities defined by the TSCG,

the product backlog is maintained (i.e. items added and removed), including clear

priorities.

Figure 3.2 illustrates the virtuous cycle feeding the StratusLab agile process.

The diagram clearly shows the important role and actions each activity has and

performs. This feeds into the feature prioritisation performed by the TSCG, as

well as the architectural vision required to provide a solution. Using our agile

approach we can then more easily follow and adapt to deliver these features.

As mentioned above, the StratusLab Product Backlog is captured with JIRA

using three types of tickets:

User Story A feature requiring several tasks to complete, possibly involving sev-

eral partners, but sized such that it can be implemented within a single sprint.

13 of 26

 !"#$%&'(!)*++#,*!&'(!

-(..&/(%&'(!
 !"#$%&!'(&)$*+,-$'%+(./','
0.1$')',(2$012+.+',"0,!"'$,!
(.'3"($,-(+"$3'($%0'('$0.1$
"(43+"(2(.,'$0"($'0/'5(16

7"+.8$,!8(,-("$(9+'/.8$,!!&'
+.,!0%!-("(.,$1+',"+:3/!.;
"(13%+.8$1(<(&!=2(.,$(>!",'
0.1$209+2+?+.8$@3.%/!.0&+,)6

)#0#.(1,#!"
A+&&$80='$+.$@3.%/!.0&+,)$*+,-$.(*
,!!&'0.1%"(0,($.!<(&$'("<+%('
,-0,$20#($1+',"+:3,(1$%!2=3/.8
"('!3"%('$2!"($"('=!.'+<(0.1
$$$$$$$$$"!:3',6

)#,(!+"%&'(!
B(=&!)$="!13%/!.$8"+1$"('!3"%(
%(.,("'$!<("$,-($C,"0,3'D0:$'("<+%('
,!$1(2!.',"0,($,-(+"$0:+&+,)$,!$2((,
E0.1$(9%((1F$430&+,)0.1"(&+0:+&+,)
$$$$$$$',0.10"1'6

G1<("/'($,-($:(.(5,'$!@$,-($
C,"0,3'D0:$H!!&#+,$,!$I3"!=(0.
'%+(./5%$%!223.+/('$0.1$,!$
012+.+',"0,!"'$!@$"('!3"%(
$$$%(.,("'6

 !"#"$%
J'($!@$'%"32$0.1$08+&(
'!K*0"($1(<(&!=2(.,

="!%(''('$(.'3"('$@!%3'(1;
-+8-L430&+,);0.1"0=+1&)$
$$$$$$$(<!&<+.8$"(&(0'('6

Figure 3.2: Work-Package Interactions

Table 3.1: First Year StratusLab Releases

Release Number Date Sprint

v0.1 9 November 2010 Sprint 5

v0.2 23 December 2010 Sprint 7

v0.3 15 March 2011 Sprint 10

Bug A bug, requiring a simple fix, normally affecting a single component

Improvement A small upgrade in current functionality, not requiring a new User

Story

This level of granularity allows us to manage all items during sprint execution.

During the first year of the project, we have completed 14 sprints (including

sprint 0). Figure 3.3 gives an overview of the number of items completed for each

sprint. We can also correlate important project events on this picture. For example,

the dip in sprints 7 and 8 correspond to the winter and new year break, where sev-

eral team members were on holiday, therefore reducing the task force available to

complete items. The surge in bugs in sprint 3 corresponds to our first release (v0.1)

where certification in view of production deployment identified issues. From sprint

10, the number of ‘improvements’ started to grow, corresponding to feedback from

usage, expressed as small improvement requests, as opposed to new functionality.

During the first year of the project, three releases (see details in Table 3.1 were

performed, with two more in June 2011 (i.e. v0.4 and v1.0).

Each release was tested and deployed on dedicated test machines, prior to being

released to WP5.

14 of 26

Figure 3.3: Sprints Overview

15 of 26

4 Engineering Practices

The Scrum process described in Chapter 3 focuses on the management of function-

ality and prioritization of features for each StratusLab release. This chapter focuses

on the engineering practices used in the integration and test activities required to

deliver high-quality StratusLab software.

4.1 Continuous Integration and Deployment
To deliver a quality solution the StratusLab project employs a set of practices of

continuous automated integration and deployment in the course of the development

process. The set of practices (properly pipelined, automated and frequently exe-

cuted) allows for rapid feedback on the quality of the software stack on all of its

levels as well as its delivery models.

To facilitate continuous integration effort the StratusLab project uses Hudson.

Build Automation Build automation is handled using Apache Maven. All sep-

arate software components of the StratusLab project (identified as separate

projects in the git repository) are Maven projects. This allows for a common

build interface and specification of concise instructions for the components

testing, building and upload to the project’s distribution repositories.

Building all commits to baseline To reduce the number of conflicting code changes,

regular commits (many times a day by a single developer) to the code base-

line are encouraged and being practiced. The commits are immediately unit-

tested, built, deployed and functionally tested to reduce the window between

commit and the feature/fix actual functional usage/testing. The latter fa-

cilitates an immediate awareness by the developers of any possible failures

caused by the code changes. In case of failures, responsible people are noti-

fied immediately by email.

Deployment, Integration and System Testing A special infrastructure compris-

ing physical nodes as well as virtual machines was deployed by the project

to resemble as much as possible a scaled production environment. The in-

frastructure is used to exercise per-component feature testing and what is

most important run integration as well as system tests by simulation of user-

like system usage on dynamically deployed latest snapshot versions of the

software stack.

16 of 26

Release Automation To ease the software stack release procedure special Maven

build targets were defined for each component and per-component release

jobs were created in Hudson. Also, a common catch-all release job per sup-

ported Linux distribution triggering the per-component release jobs was cre-

ated. The latter allows the release of the StratusLab software stack with

virtually a single click.

4.2 Configuration Management and Version Control
The project uses Git (a distributed revision control system) as its code reposi-

tory. The project’s Git repository1 contains the following logically identified sub-

projects each often composed of more than one sub-module, from which the build

procedure produces a number of software packages.

stratuslab-authn Authentication proxy for OpenNebula and Claudia, providing

support for local or LDAP managed username/password, as well as X509

and grid certificates

stratuslab-benchmarks A set of standard benchmarks for the cloud installation

stratuslab-claudia Claudia system

stratuslab-client End-user client for remote creation and management of virtual

machines, system administrator installation and configuration tools, web-

monitor for simple monitoring of physical nodes and virtual machines.

stratuslab-image-recipes Image recipes for creating base virtual images from

standard operating systems

stratuslab-marketplace Marketplace providing a service for query and registra-

tion of virtual appliances metadata (both machine and disk images), with

cryptography support of authors and endorsers of the images.

stratuslab-one StratusLab custom OpenNebula build, integrating the latest up-

grades, patches and customisation for StratusLab

stratuslab-quattor Set of Quattor templates for automated installation and con-

figuration of StratusLab

stratuslab-registration A registration web application providing confirmation work-

flow for users of a specific StratusLab installation.

stratuslab-storage A persistent storage web application for the creation and man-

agement of persistent disk for virtual image instances.

project-documents All project documents, including deliverables and dissemina-

tion material

1Based at https://code.stratuslab.eu/git/

17 of 26

https://code.stratuslab.eu/git/

Using a common Git store, all code contributors can share code. Like all good

version control systems, Git provides a merge feature, ensuring that conflicting

commits can be resolved without loss of information. All team members are en-

couraged to commit (and push) their code often.

An important component in StratusLab is OpenNebula. In order to better sup-

port StratusLab, the OpenNebula team at UCM developed new features and pro-

vided bug fixes requested and reported by StratusLab integration and operation

activities. However, OpenNebula has a different and much slower release cycle,

incompatible with StratusLab’s aggressive release strategy. In order to resolve this

issue the UCM team created a clone Git repository (OpenNebula also uses Git

for managing its code) dedicated to StrartusLab. This allows UCM to rollout di-

rectly to this repository code so that StratusLab can release, independently from

OpenNebula releases. In order to avoid the risk of divergence between the master

OpenNebula code base and StratusLab’s custom version, UCM regularly merges

back to the master code base.

The same applies for patches. StratusLab team members regularly modify

OpenNebula extensions (e.g. to fix bugs, extend functionality). This is done by

defining patch files that are applied by the Maven build procedure (see next section

for detail). These patches have the advantage of providing immediate fixes, but

over time can become expensive to maintain as the code they patch changes over

time. To mitigate this situation, OpenNebula regularly integrates these patches into

the mainstream code base, so that these patches can be removed.

4.3 Building Software
The build procedures themselves in StratusLab are implemented using Maven2.

This tool is the de-facto standard in the Java world, but also provides support for

other languages. Maven2 provides a rich set of plugins, capable of performing

complex tasks. Here are the operations that we execute using Maven2 when build-

ing StratusLab packages:

• extract and install dependencies

• build binaries

• execute unit tests

• package

• install

• configure

• deploy to remote server

• release

18 of 26

Figure 4.1: Packaging Publishing

While the details of every step listed above goes beyond the scope of the current

report, here are a few important aspects worth mentioning regarding these steps.

The packages are currently only created in the RPM format. While we have partial

support for Debian packages (compatible with Ubuntu), we are not currently able

to release a full distribution in .deb package format.

Having said that, we also release the end-user command-line client in tarball

format, which is tested on CentOS, Fedora 14, Ubuntu and Windows.

Maven2 generates the packages and deploys them to a Maven2 server-side

component called Nexus. The Nexus server provides a convenient way to pro-

vide dependencies. This is important so that developers can very quickly create

a development environment using Maven without having to install software from

different sources.

Maven is also used to generate binary packages (e.g. RPM) which are pub-

lished and uploaded by the deploy target to Nexus. From there, RPMs are then

registered to package repositories, such as YUM for RPM. This process is illus-

trated in Figure 4.1. The packages generated by Maven are also configured to

include any runtime dependencies, such that the packaging system can pull all re-

quired dependencies during installation.

Further, the same process is used to handle snapshot and release packages. This

means that we can have a clear separation between the packages that are produced

with every build (i.e. snapshots), and the packages that are released and therefore

visible by our users.

For release packaging, the Maven2 release plugin is used, which automatically

adjusts the version number of every package and incrementing the number, with

Git commits at every stage, such that the process is reversible and fully traceable.

19 of 26

4.4 Hudson
In order to guarantee that everything is working as we move forward with new

features, improvements and fixes, the project uses a continuous integration (CI)

infrastructure, composed of a main server and a number of dedicated ‘slave’ ma-

chines.

The project chose Hudson as the CI server2. Hudson is open source and the

de-facto standard CI solution at the moment. Hudson executes a number of ‘jobs’,

from triggers ranging from code commits in Git, on a schedule, or from the suc-

cessful completion of a parent job. The jobs created and pipelined comprise code

checkout, unit-testing, build, deployment, functional multi-service testing as well

as release of all the StratusLab services and components on the supported plat-

forms.

At the time of writing there are 61 registered jobs with 43 of them active. Cur-

rently, the majority of the disabled jobs are the ones that were created for CentOS

5.5 Linux distribution, support for which was dropped by the project in a favor of

Fedora 14. We have decided to keep the old CentOS jobs to ease the future support

of CentOS 6 by simple re-profiling of them, when CentOS 6 is released.

For example, every day, we test a complete installation of the latest snapshot

version of StratusLab. At 2:00 in the morning (Paris time), two machines are

re-imaged with a pristine operating system installation. This re-imaging process

is managed by Quattor at LAL. At 3:00, a Hudson scheduled job triggers and

executes the job workflow illustrated in Figure 4.2. After the re-image, the machine

is upgraded such that it contains the right dependencies, as specified in the online

documentation. Then the StratusLab front-end (including OpenNebula) is installed

and configured. From that point, several jobs are executed, testing features and/or

adding supplementary software before testing it. For this process to work, two

Quattor controlled machines are used, one for the front-end, the other for the node.

Another important workflow is the building of each package. This process is

illustrated in Figure 4.3, in this case for releasing the packages. From a single Hud-

son job trigger, we are now able to preform a release of the complete StratusLab

distribution. Each package can also be released individually, by directly triggering

the corresponding job.

We currently have a significant Hudson infrastructure, comprising of six phys-

ical servers and two virtual machines. We try to use as many virtual machines as

possible, instead of physical servers. However, since several of the Hudson jobs

use and test virtualisation, we require a physical server, since for example it is

not possible to run a virtual machine inside another virtual machine (unless para-

virtualisation is used inside full-virtualisation, which adds its own complexity and

biases).

We did not construct our build and test infrastructure overnight. On the con-

trary, we have built it over successive sprints, growing it as needs were identified,

2Deployed at http://hudson.stratuslab.eu:8080/

20 of 26

http://hudson.stratuslab.eu:8080/

such that we could release software very early after project kickoff, carefully trad-

ing off effort invested in the build and test infrastructure and tools from integration

and development tasks.

The Hudson server will be polling the Git repository regularly, checking for

recent commits. Then, the build job will be triggered, generating snapshot pack-

ages, following by triggering the job labelled ‘cloud Install NFS’ in Figure 4.2.

This means that developers receive feedback a few minutes after each commit, if

their change has introduced a regression. This near immediate feedback gives the

developer an opportunity to fix the problem while the problem domain is fresh in

his/her mind, as opposed to being told that a problem occurred following a change

committed days or even weeks before. Finally, assuming that all tests were green

(passed) before the commit, the sources of errors are much narrower, compared

with integration activities trying to integrate several changes at once.

4.5 Installation Strategies
StratusLab support two installation strategies:

Manual Installation This method supports Fedora14 and similar systems. It con-

sists of a set of commands that perform the necessary installation steps based

on information in a single configuration file.

Quattor Installation This method supports an automated installation of Fedora14

machines, which can scale to very large deployments. This method is sup-

ported by Quattor, for which StratusLab maintains specific profiles available

in the standard StratusLab distribution.

Both methods are used in our automated build and test procedures, such that

they are both tested regularly in order to identify any discrepancies that could oc-

cur between the two systems. This ensures that whichever the method chosen by

system administrator, the resulting StratusLab deployment will be nearly identical.

21 of 26

Figure 4.2: Hudson Jobs for Daily Smoke Tests on Full Installation

Figure 4.3: Hudson Release Jobs

22 of 26

5 Lessons Learned

Having reviewed the agile process the project uses to manage requirements and

development, followed by the engineering practices used to develop, integrate and

test the StratusLab software, we will now summarise lessons learned, with which

we hope to improve during the second year of the project.

1. Earlier this year we lost the main Hudson server, due to a hardware failure.

We took advantage of this event to reshape the Hudson server and redefine

the job topology, making it more flexible and efficient. In the future however,

not only the server should be backed up (as it is now), we should also put

the Hudson configuration files (e.g. main configuration and job definitions)

under Git for version control. This would allow us to roll back to previous

configuration more easily if and when required.

2. Despite our best efforts, each production system upgrade was not completely

straightforward, with longer than expected down time. We believe that re-

leasing more often, closer to sprint cycles, would improve our ability to bet-

ter upgrade, with minimal disruption for users, while providing new features

more often. As more sites deploy StratusLab however, we have to be care-

ful not to alienate system administrators with too frequent releases. Further,

we need to ensure that upgrade paths are tested and solid, such that no loss

of data occurs when upgrading to a new release. Finally, we could consider

releasing different components are different rates, for example releasing end-

user client more often to provide them with new features more regularly.

3. Another aspect with which we must make a conscious effort is to ensure that

documentation is updated as we go along and that this update is added to the

definition of done when completing any relevant task. This is important for

all stakeholders of the project, such that documentation is available to sup-

port integration and test activities, but also for (pre-)production deployment

and user evaluation.

4. The introduction of Quattor controlled re-imaging of test machines had a

significant positive impact on stabilising and improving the code quality,

test coverage and reliability of our installation and configuration tools. As

we move forward and support more operating systems, it will be critical that

23 of 26

Quattor controlled machines are provided for all of these, such that we can

extend our current testing strategy to these.

5. Our quick patching mechanism works, but must be integrated on a regular

basis by the developers of the patched system to avoid escalation in patch

maintenance effort. This is now working very well for OpenNebula, and we

need to continue ensuring that patches found in the project are considered

for integration directly in the original code base, and removed as patches.

6. Another good decision was the creation of a dedicated OpenNebula Git

repository for StratusLab, with active merging back to the main OpenNeb-

ula release branch. This provides the right balance between being able to

provide StratusLab with custom OpenNebula features early, without having

to wait for an official OpenNebula release, while being able to benefit from

advancements from OpenNebula mainstream development.

7. Our policy of encouraging development on the master branch (or HEAD in

other version control system) is paying off. The classic alternative is for each

development to take place in separate branches and merging the branches

when ready for integration or certification. This can cause headaches and

conflicts which can be a significant source of risk and hidden delays. Since

our sprints are relatively short and user stories specifically designed to be

short and focused, it means that we can afford to develop directly on the

master branch, where each commit is automatically built and tested by our

Hudson system, including function, system and end-to-end tests.

8. A cousin to this technique of working on the master branch is to commit (and

push) often. This requires discipline, where simple and small steps are made

when developing, yet this is largely done by all teams, with few exceptions.

This technique also has the advantage of being able to back track quickly

when jobs turn red after committing faulty code and makes troubleshooting

simpler.

9. As more features were integrated and the number of services and compo-

nents grew in StratusLab, so did the number of jobs in Hudson, as well as

the number of resources required to run these. During the third quarter, sev-

eral jobs remained red (broken) for several days, or were not executed for

several days, while team members were busy working on their sprint tasks.

This meant that the work required to bring all jobs back to green was long,

difficult and often boring. To address this issue, during quarter four, we de-

cided to introduce a Lean technique called ‘stop the line’. This meant that

we agreed that as soon as a job failed, the person or team responsible for this

job would stop their current activity and fix the problem. Within a single

sprint, the Hudson server became a lot more stable, a red is now the excep-

tion instead of the rule, which was becoming too often the case. We need to

ensure that this reflex is maintained during the second year.

24 of 26

10. During sprint 12, we decided to switch our baseline operating system from

CentOS 5.5 to Fedora 14. This was a big move, requiring changes to both

software and infrastructure. Our ability to deliver this transition within a sin-

gle sprint is remarkable and probably shows good command of our code base

and its dependencies on runtime environment and operating systems. This

should make supporting more operating systems relatively straightforward,

assuming that our build and test tooling can follow.

11. Continue to support manual and automated installation capabilities is an im-

portant asset of the project, giving choices to system administrators willing

to deploy StratusLab on their resources. The effort put in to synchronise the

behaviour of the two system is also paying-off such that both systems use

the same assumptions resulting in almost identical setups.

25 of 26

6 Conclusion

The first year of the project was very productive with several releases and numerous

sprints delivering significant functionality towards the project goal of delivering a

fully functional high quality cloud distribution. The build and test activities sum-

marised in this report are also a great source of lessons learned, lessons we are

convinced will help the project improve further in its second year.

26 of 26

	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Agile Process: Scrum
	Agile Overview
	StratusLab First Year Scrum Measurements

	Engineering Practices
	Continuous Integration and Deployment
	Configuration Management and Version Control
	Building Software
	Hudson
	Installation Strategies

	Lessons Learned
	Conclusion

