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Abstract

This document presents the architecture for StratusLab v1.0. The architecture con-

sists of a set of services, components and tools, integrated into a coherent whole

and a single distribution, providing a turnkey solution for creating a private cloud,

on which a grid site can be deployed. The constituents of the distribution are in-

tegrated and packaged such that they can easily be installed and configured, using

both manual and automated methods. A reference architecture is presented, ful-

filling the requirements and use cases identified by D2.1 and further analysed in

this document. The selection of the elements composing the distribution was made

following an updated analysis of the state-of-the-art in cloud and a gap analysis of

grid and cloud related technologies, services, libraries and tools. In order to enable

cloud interoperability, several interfaces have also been identified, such as contex-

tualisation, remote access to computing and networking, as well as image formats.

The result of this work will be StratusLab v1.0, a complete and robust solution

enabling the deployment of grid services on a solid cloud layer. The architecture

will be updated at project month 15 in Deliverable D4.4.
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1 Executive Summary

The StratusLab project aims to provide system administrators and resource providers

with the functionality that will enable the efficient exploitation of computing re-

sources for the provision of grid services. StratusLab will capitalise on the inherent

attributes of cloud computing and virtualisation in order to offer grid administra-

tors the ability to setup and manage flexible, scalable and fault tolerant grid sites.

This way we will enable the optimal utilisation of the resource provider’s physical

infrastructure and facilitate the day-to-day tasks of the grid site administrator.

This document presents the architecture of the StratusLab v1.0 distribution.

While this architecture is expected to evolve over the course of the project, it is

important to define and agree on the high-level principals and the foundations on

which StratusLab will be based. This document is therefore a starting point and the

architecture it describes will be followed and updated as the project progresses. The

document will be updated at PM15 with D4.4, which will add elements required

for StratusLab v2.0.

The document first summarises requirements and use-cases gathered by WP2

with surveys performed during the summer 2010. These surveys were designed and

conducted by WP2 and comprehensively analysed in deliverable D2.1 Review of

the Use of Cloud and Virtualization Technologies in Grid Infrastructures. The set

of requirements and use cases identified in D2.1 is then completed and consolidated

in this document with previous work leading to the submission of the StratusLab

proposal, and updated since, including quality, stability, constraint, performance,

security and standardisation requirements. We then briefly analyse these in the

context of StratusLab v1.0, to ensure that v1.0 meets the most urgent needs from

our user communities.

An important goal of StratusLab is to produce a high-quality software solution,

able to fulfil the requirements of our target user communities. Further, the project

is relatively short (2 years) and composed of distributed and highly skilled teams,

needing close and rapid co-operation. To better face this challenge, we have de-

cided to adopt an agile development methodology. While this is not usual for FP7

projects, the StratusLab team has worked closely together for a number of years,

leading to the submission of the project, with a resulting high level of trust among

the team. We also realise that in order to produce high-quality software, strong

engineering practices must be put in place, with a focus on process automation and

testing. This methodology is presented in Chapter 4, including our engineering
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process in terms of build, packaging, installation, configuration and test.

In Chapter 5, we then move on to present the reference component architecture

capable of implementing the requirements and use cases identified in 3. We list

the different elements needed to fulfil the requirements already identified, while

remaining neutral in terms of concrete implementation. To better manage com-

plexity in the installation and deployment of the StratusLab, but also to guide our

testing efforts, we also present the reference deployment model assumed by default

by our installation tools.

The actual realisation or implementation of the StratusLab architecture is pre-

sented in Chapter 6 where components are reviewed and selected to fulfil the iden-

tified functions. Where no existing solution is identified, fulfilling the StratusLab

requirements, custom development is then identified for the project to realise. The

core virtual machine management functionality is covered by OpenNebula, which

also provides an abstraction to the virtualisation layer required to handle virtual

machines. Other functions such as the Appliance Repository is implemented using

the Apache HTTP Server, connected to a credentials server: LDAP. Other services

and components are also selected. The glue required to bring these different entities

into a coherent and single distribution will be developed by StratusLab.

Significant background analysis effort went into the selection of several of the

components identified for implementing StratusLab, including strategies, technolo-

gies and standards. This background work is based on a thorough review of the

state-of-the-art in the cloud computing eco-system. While innovative and ground

breaking development has come from research projects, which are summarised in

Chapter 7, we also realise that cloud computing, contrary to grid computing, is still

dominated by the private sector. We therefore complete our updated state-of-the-art

review with a summary of a survey conducted on cloud trends from the commercial

world.

Before the summary, Chapter 8 brings together several gaps, but also opportu-

nities for synergy, between grid and cloud, which will trigger further work which

we hope will form part of the features for StratusLab v2.0. For example, monitor-

ing and accounting must be integrated between the cloud and grid layers to ensure

that the right level of reliable information is provided to system administrators and

end-users. Further, these services form the foundation for more advanced features,

such as auto-scaling, leveraging the power of cloud to provide a new scaling model

for grid and virtual organisation services.
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2 Introduction

The StratusLab project aims to provide system administrators and resource providers

with the functionality that will enable the efficient exploitation of computing re-

sources for the provision of grid services. StratusLab will capitalise on the inherent

attributes of cloud computing and virtualisation in order to offer grid administra-

tors the ability to setup and manage flexible, scalable and fault tolerant grid sites.

This way we will enable the optimal utilisation of the resource provider’s physical

infrastructure and facilitate the day-to-day tasks of the grid site administrator.

This document presents the architecture of the StratusLab v1.0 distribution.

While this architecture is expected to evolve over the course of the project, it is

important to define and agree on the high-level principals and the foundations on

which StratusLab will be based. This document is therefore a starting point and the

architecture it describes will be followed and updated as the project progresses. The

document will be updated at PM15 with D4.4, which will add elements required

for StratusLab v2.0.

Chapter 3 first summarises requirements and use-cases gathered by WP2 with

surveys performed during the summer 2010. This set of requirements is com-

pleted with previous work leading to the submission of the StratusLab proposal,

and updated since, including quality, stability, constraint, performance, security

and standardisation requirements. We then briefly analyse these in the context of

StratusLab v1.0.

An important goal of StratusLab is to produce a high-quality software solution,

able to fulfil the requirements of our target user communities. Further, the project

is relatively short (2 years) and composed of distributed and highly skilled teams,

needing close and rapid co-operation. To better face this challenge, we have de-

cided to adopt an agile development methodology. This methodology is presented

in Chapter 4, including our engineering process in terms of build, packaging, in-

stallation, configuration and test.

In Chapter 5, we then move on to present the reference component architecture

capable of implementing the requirements and use cases identified in 3. We also

present the reference deployment model assumed by default by our installation

tools.

The actual realisation or implementation of the StratusLab architecture is pre-

sented in Chapter 6 where components are reviewed and selected to fulfil the iden-

tified functions. Where no existing solution is identified, fulfilling the StratusLab
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requirements, custom development is then identified for the project to realise.

Significant background analysis effort went into the selection of several of

the components identified for implementing StratusLab, including strategies, tech-

nologies and standards. This background work is based on a thorough review of

the state-of-the-art in the cloud computing eco-system. Chapter 7 summarises our

findings, and also includes trends from the commercial world.

Chapter 8 identifies several gaps, but also opportunities for synergy, between

grid and cloud, which will trigger further work that will form part of the features

for StratusLab v2.0.
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3 Requirements

The StratusLab project and the respective cloud distribution aims to provide sys-

tem administrators and resource providers with the functionality that will enable

the efficient exploitation of computing resources for the provision of grid services.

StratusLab will capitalise on the inherent attributes of cloud computing and vir-

tualisation in order to offer grid administrators the ability to set up and manage

flexible, scalable and fault tolerant grid sites. This way we will enable the opti-

mal utilisation of the resource provider’s physical infrastructure and facilitate the

day-to-day tasks of the grid site administrator.

The development of the StratusLab distribution is driven by user requirements.

These requirements are of different natures - e.g. functional, constraints, perfor-

mance, security. The following sections describe our methodology for defining and

handling these requirements.

We start with grid site requirements gathered during the project preparation,

followed by an analysis of the requirements and use cases identified in D2.1. We

end this chapter with a summary of requirements coming from the need for stan-

dardisation.

3.1 Grid Site Requirements
Typically a computing grid provides four set of services:

• Workload Management

• Storage Management

• Information Management

• Security

These services are offered through a set of software components generally de-

noted as grid middleware. From the point of view of grid services support, the

requirements imposed on cloud layer are more functional than technical. Status-

Lab should offer a stable cloud middleware for hosting all types of grid computing

services as virtual machines. According to this requirement there should be no

performance penalties or functionality compromises because of the cloud. Never-

theless, for the optimal interaction between the two worlds, the grid middleware

should probably also adopt to the special characteristics of the cloud.
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StratusLab clouds should be able to sustain high workload demands imposed

by the provision of grid workload management services. The underlying cloud

layer should allow virtual machine instances to utilise most of the underlying physi-

cal system processing power by minimising the interference between the two actors

(virtual machine and physical machine) enabling optimal execution of application

workloads and as a result fast execution turnaround. In order to achieve this, Stra-

tusLab should be compatible with hypervisor solutions that offer the best approach

for accessing the raw computing power of a system.

One of the benefits offered by virtualisation is the ability to migrate a running

instance from one host to another thus increasing the availability of a system. For

example, in a case that system maintenance is required for a specific node which

typically means bringing the node off-line, the provision of services from this node

need not stop, but hosted VMs can be migrated elsewhere before proceeding with

the node shutdown. StratusLab should support such on-demand migration of vir-

tual machines.

Grid sites should exhibit a dynamic elasticity behaviour based on workload.

This requires interoperation with the underlying grid middleware. For example,

the addition or removal of a worker node from a grid site requires the update of the

node’s information in the cluster head node running the Local Resource Manage-

ment System (LRMS). In the case of gLite this node is referred as a Computing

Element (CE).

StatusLab should be able to satisfy the requirements for flexible management

of mass storage. In particular a system administrator should be able to manage the

virtual storage assigned for Storage Elements. In a typical use case a research group

shares the results of an experiment by offering data volumes (e.g. in the form of

Elastic Block Device) that other groups can replicate and attach to their VMs. This

capability should be interoperable with the way popular grid middleware manages

storage devices. For example, in gLite, DPM is used to access NFS, LVM and

GPFS volumes. StratusLab should be versatile enough to support the creation of

virtual data volumes that can be attached to VMs offering storage services (Storage

Elements in gLite).

Finally StatusLab should be transparent to the end user and the security proce-

dures engaged during the interaction of a user’s job with the grid site.

For the information system the node should appear as a regular node reporting

back all information about system load, memory usage, network bandwidth usage

etc. The changes taking place in the cloud (node migration, dynamic expansion or

reduction of available storage) should be reflected in the monitoring of the node

in reasonable time in order to allow the components depending on the information

system to have the most up-to-date information of the grid site status.
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3.2 End-User and System Administrator Requirements

3.2.1 High-Level Requirements

Below are the requirements identified in the Deliverable D2.1. For each require-

ment a comment is provided explaining the level of compliance expected from

StratusLab v1.0.

1. “The project should support installation of the cloud distribution on RedHat

and Debian systems, with RedHat systems having a much higher priority.”

Our development strategy already includes the support of these two operat-

ing system families.

2. “Integration of the cloud distribution with automated site configuration and

management tools should be demonstrated with Quattor and/or Puppet, with

Quattor being the more popular.” Quattor is already the default tool sup-

ported by StratusLab.

3. “Demonstrations of grid services over the cloud should initially target core

services of the gLite middleware.” The tests performed by WP5 of the Stra-

tusLab incremental deliveries focuses on using core gLite services.

4. “The cloud distribution must supply stock images for popular Red-Hat and

Debian-based systems.” Base/stock images form an important part of the

standardisation effort StratusLab is undertaking, especially with respect to

contextualisation.

5. “The cloud infrastructure must be as operating system neutral (with respect

to running virtual machines) as possible to maximise its utility.” This feature

is provided by standard virtualisation technologies, such as KVM, Xen or

VMware, which integrates with StratusLab (KVM and Xen for v1.0).

6. “The application benchmarks must cover all of these types of applications:

sequential, multi-threaded, shared memory, and parallel.” Benchmarks will

be integrated with the StratusLab distribution, such that they can provide

metrics covering these types of applications.

7. “The application benchmarks should include workflow and master/worker

applications.” Same as previous.

8. “The application benchmarks must be parameterised to allow a wide range

of input sizes, output sizes, and running times to be evaluated.” Same as

previous.

9. “The project must create application benchmarks (CPU-Intensive, Simula-

tion, Analysis, Filtering, Shared Memory, Parallel, and Workflow) to mea-

sure quantitatively the performance of the cloud implementation for realistic

applications.” Same as previous.
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10. “Performance benchmarks should also be created using packages like HEP-

SPEC, Iozone, and iperf for CPU, disk IO, and network performance, re-

spectively.” Same as previous.

11. “The StratusLab cloud implementation must include access control mech-

anisms for stored data and must permit the use of encrypted data.” Data

storage, as well as persistence is required as a basic feature. Rich access

control will also be investigated.

12. “The cloud must allow both file and block access to data, although file ac-

cess is by far more important.” It is unclear where the boundary for applica-

tion data access lies between grid and cloud services. This requires further

analysis with users.

13. “The cloud must allow access to data stored in object/relational databases.”

Same as previous.

14. “Short-term work (<12 months) should concentrate on developments for de-

ploying cloud infrastructures and longer-term work should concentrate on

their use.” This recommendation will drive the feature selection for Stratus-

Lab v1.0.

15. “The StratusLab distribution must be simple enough for users themselves

to configure their own resources as a cloud.” This is a strong motivation for

providing simple, script-based installation and configuration methods for the

StratusLab distribution.

16. “The StratusLab distribution must allow both full-virtualisation and para-

virtualisation to be used.” This is also a hypervisor issue, but the configura-

tion of these technologies must be such that it enables these choices.

17. “The cloud service must have a command line interface and a programmable

API.” Both access patterns will be provided, with when appropriate the same

implementation to reduce duplication and increase quality.

18. “The cloud distribution must allow a broad range of grid and standard ser-

vices to be run.” StratusLab v1.0 will focus on the core grid services, while

more dynamic services (e.g. requiring auto-scaling) will be investigated for

v2.0.

19. “Quantitative performance evaluations must be done to understand the penal-

ties in using virtualisation.” Benchmarks will be shipped with the StratusLab

distribution, such that system administrators can execute these on their own

resources. Further, StratusLab will conduct its own analysis.

20. “The project must determine the criteria by which administrators and users

can trust machine images.” This trust issue is paramount to the success of the
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project. Different communities involved are being engaged with to ensure a

solution is found which is acceptable to all. The architecture will support

basic signing of machine images.

21. “The project should consider all features listed in the surveys as valid re-

quirements.” All listed are certainly considered valid.

22. “Integration with site management tools is a critical short-term require-

ment.” The integration with Quattor and the ability to install and configure

StratusLab using manual tools provides the minimum implementation of this

requirement. Further integration in terms of monitoring and accounting will

follow.

23. “The cloud implementation must scale to O(10000) virtual machines.” This

requirement will be taken into account as part of the performance require-

ments.

24. “The implementation must sufficiently sandbox running machine images to

prevent unintended or malicious behavior from affecting other machines/-

tasks.” This security requirement is analysed in Section 3.3.4.

Further to these requirements gathered in the survey we can add:

25. StratusLab shall be built out of open source components. We have pledged,

and our users require, that StratusLab shall be an open source distribution.

While it should be possible to substitute open source components with com-

mercial ones, it is critical that the entire feature set provided by StratusLab

be available under an open source license. Whenever possible, every effort

should be taken to select harmonious licenses. If components only available

under commercial license are required, then all project members should be

given equal access to the license for the duration of the project.

26. The cloud layer exposed via the cloud API shall provide a fair share mech-

anism. An important issue left out here is how to throttle the requests, such

that each user gets a fair share of resources, and that the site remains elastic

as much as possible. This aspect of the cloud API will be further explored

later this year and reported in the next version of the architecture document.

27. Cloud physical and virtual resources shall integrate with existing grid mon-

itoring and accounting solutions.

Further analysis of these requirements is provided in the remainder of the doc-

ument.
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3.2.2 Use Cases

The following extract from D2.1 accurately set the scope for the StratusLab distri-

bution:

The primary vision of the StratusLab project is to create a private cloud

distribution that permits resource centre administrators to deploy grid

(and standard) services over the cloud’s virtualised resources and that

allows scientists to exploit e-infrastructures through a cloud-like in-

terface. This vision emerged from a set of use cases and scenarios

developed by the project’s partners and based on their experience with

existing e-infrastructures.

The primary use cases are described below.

Adding to the requirements already identified and listed in Section 3.2.1, D2.1

also expanded this vision statement in the form of use cases. They are reported

here, albeit slightly reformatted for ease of reading, with comments on the applica-

bility and feasibility for v1.0, which is what concerns the current architecture. We

also provide elements of solutions when possible, solutions that will be expanded

in the rest of the document.

Grid Services on the Cloud Grid services are numerous, complex, and often

fragile. Deploying these over virtualised resources would allow easy (re)deployment

or use of hot spares to minimise downtime. Efficiency of these services is important,

so having benchmarks to measure the “virtualisation penalty” for real services is

equally important.” Live migration of virtual machine will address the first part of

this use case, while the benchmarks component of StratusLab provide the measure

for the assessment of “virtualisation penalty”.

Customised Environments for Virtual Organisations The computing environ-

ment offered by the European Grid Infrastructure is homogeneous regarding the

operating system (Scientific Linux [18] is nearly universally used) but inhomoge-

neous in terms of which software packages are available on a particular site. The

first limits the appeal of the infrastructure to those people already using Scientific

Linux (or a close relative) and the second increases application failures from miss-

ing dependencies. Allowing grid Virtual Organisations (VOs) to develop their own

computing environments as Worker Node images would solve both of these issues.

Providing an API to grid users such that they can choose their runtime environ-

ment in terms of custom virtual machine will partly address this requirement. A

complete solution will require integration of this API with grid services, such that

both layers can support this use case. As a first step though, VO could specify the

virtual machine containing the Worker Node in which jobs from that VO will be

deployed.

Customised Environments for Users Although allowing VOs to provide vir-

tual machine images increases the utility and reliability of the grid infrastructure,

individual users are also likely to require customised environments containing,
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for example, their own proprietary software and/or data. Extending the abil-

ity to create virtual machines to individual users further enhances European e-

infrastructures. Already mentioned in the previous point, granting grid users with

a new cloud API for specifying is required. Further, support for machine image

creation is required. Also required is a standard solution integrating the cloud API

with the grid API. While this feature was originally planned for StratusLab v2.0,

the surveys have clearly shown that this matter is critical. For this reason, we are

considering adapting our work programme to support, at least in part, this use case

in v1.0.

Sharing of Dataset and Machine Images Preparing a virtual machine or a

dataset image requires significant effort, both in terms of creating it and validating

it. Providing a mechanism by which users can share these images avoids dupli-

cated effort and promotes the sharing of knowledge. Solid policy recommendations

allowing people to trust those images/dataset must come hand-in-hand with tech-

nical solutions to enable the sharing (repositories, access control, security, etc.).

This use case bundles several requirements together: 1- the ability to create dataset

and machine images, 2- validation/verification of these, 3- sharing (e.g. via an

appliance repository). This use case reinforces the need for users to be able to

conveniently and safely specify custom images.

Provision of Common Appliances New virtual machines images are often built

from existing ones. Providing simple, stock images of common operating systems

lowers the barrier to creating customised images as well as improves the utility of

the cloud infrastructure. In addition, appliances for grid services would facilitate

their deployment at smaller sites or sites with inexperienced system administrators.

This again reinforces the need to simplify and lower the barrier for end-users to

be able to create a custom runtime environment, in the form of custom machine

images. This use case applies this generic feature to a new deployment model for

grid services, which again should improve the ease of management of grid sites

using StratusLab, or any compatible cloud solution.

VO/User Services on the Cloud Because of security concerns and lack of tools

for controlling network access, VOs and users cannot currently deploy services on

the European Grid Infrastructure. VOs often have significant software infrastruc-

tures built on top of the grid middleware to provide specialised services to their

communities. Users often run calculations that involve workflows or task manage-

ment. Frameworks to execute those types of calculations usually require a central,

network-accessible controller (service) to manage the deployment of tasks and col-

lection of results. Deploying these types of services is possible with a cloud. This

use case can be implemented using the same feature proposed for the previous use

case, which provides a single set of resources, alleviating the need for VOs to main-

tain their own infrastructure (or having it specifically maintained for them), giving

them the opportunity to focus on their scientific work.
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Deployment of a Group of Machines Large calculations often involve the de-

ployment of a group of machines. Examples include the deployment of a batch

system, Hadoop [3], workflow engines with workers, and BOINC [8]. The cloud

should facilitate the deployment of groups of machines to make deployment and

configuration of these high-level systems as efficient as possible. In v1.0 it will be

possible to deploy several machines together, connected together via virtual net-

works. A high-level set of services, such as auto-scaling and load balancing, will

be analysed and implemented in v2.0.

Hybrid Infrastructures All resource centres have a finite amount of computing

resources available, although the cloud model aims for the appearance of infinite

resources (“elasticity”). To handle peaks and maintain the elasticity of a resource

centre, the system administrator may want to offer resources from other clouds

(e.g. a public cloud like Amazon Web Services [2]) via their cloud. This public/pri-

vate “hybrid” cloud allows a site to maintain a high-level of service to its users.

StratusLab v1.0 will put in place the foundations for sites to run as private clouds.

Meanwhile, the project will work on addressing the significant challenges in pro-

viding a workable, simple, controlled, affordable and secure solution for being able

to offload peak demands to other clouds, public and or private.

3.3 Requirements Analysis
From the requirements and use cases presented thus far, this section analyses these,

providing insights and trade-offs, when appropriate, from a technical perspective.

We also identify recommendations for a technical solutions, when possible.

3.3.1 Quality and Stability Requirements

It is important that StratusLab is a high quality distribution, since it will form the

foundation layer for grid services to run on. Building credibility is an important

driver for our dissemination activities. It is also important to realise that StratusLab

will largely be composed of existing tools, libraries and implementations, which

have to be carefully selected. It is therefore important that each constituent of the

distribution be well supported and mature. Ideally members of StratusLab will be

part of or in contact with the developer communities behind these components.

3.3.2 Constraint Requirements

The initial system administrator community will come from the grid world. This

community largely uses Scientific Linux [18] as the base operating system. While

this is likely to remain the case initially, it is important that the StratusLab distribu-

tion be a multi-operating system. Therefore, right from the start, StratusLab shall

support more than one operating system. The logical candidates are: CentOS [10]

(close cousin of Scientific Linux [18] and also Red-Hat [38] based) and Ubuntu [9]

(a Debian [43] based operating system). Supporting these two different camps in

the Linux world of distribution should enable us to extend our support to other

operating systems, for example SUSE, without too much effort.
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Ease of installation and configuration is an important tenet of StratusLab. This

probably means that StratusLab will have to be opinionated, which means that

while customisation and extension shall be possible, assumptions will be made to

facilitate the installation and configuration of the system. An important balance

is required between flexibility and usability, which our user communities will be

instrumental in reaching. It shall therefore be possible to install and configure

StratusLab using manual tools and automated fabric management tools (e.g. Quat-

tor [37]).

3.3.3 Performance Requirements

The survey conducted earlier and reported in D2.1 illustrates clearly that system

administrators are expecting to be able to handle on the order of tens of thousands

of virtual machines over thousands of physical hosts. These numbers are therefore

defining clearly what is the expectation in terms of performance of the system.

Another important performance parameter is the need for the system on which

StratusLab is deployed to remain elastic, from a user perspective. While there

are physical limitations that limit the elasticity of any system, it is important that

the system behaves elastically, which means a reasonable latency for all requests,

without exposing a queue semantic to the user.

Cloud computing is based on virtualisation and virtualisation means virtual

images, which can be large files. We are therefore faced with manipulating large

files, over potentially wide area networks. Since these images are largely ‘write

once and read many’, a caching strategy is appropriate to avoid having to transfer

the same files several times over the network.

3.3.4 Security Requirements

While the grid does not have as stringent security requirements as some commer-

cial and military applications, it is important that the system provide a reasonable

level of security.

It is important that the system administrators trust that running virtual machines

on their infrastructure is not a threat to that infrastructure. Similarly, end-users

deploying virtual machines on a remote infrastructure via the StratusLab cloud

API must also feel certain that the execution of their machine will not be tampered

with and that data used in that context can also remain secure.

Virtualisation technologies by their very nature already provide a powerful

level of separation between the physical hosts, under the control of the system

administrators, and the running of virtual machine instances, managed by the end-

users. However, virtualisation technologies are complex and it is therefore impor-

tant that their installation and configuration is performed such that it does not leave

back doors open to malicious exploitation.

An important aspect of security is establishing a trust relationship between the

system administrators and the end-users, such that a foreign virtual machine can

be deployed on a remote infrastructure. For the cloud model to work in supporting

the grid, it is fundamental that this trust relationship be established and negotiated
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without requiring constant intervention of humans. It is therefore required that

virtual machines be signed in some way such that the pedigree of the machine, its

provenance and composition be tracked back to a trusted user.

Another important aspect to security that requires our attention is regarding cre-

dential management. All the services integrated in StratusLab shall integrate with

a centralised and shared secure credential server, for example LDAP and/or OAuth.

This means that the same credentials can be used to authenticate and authorise ac-

cess to the different StratusLab integrated services. Furthermore, the StratusLab

security model must integrate and/or be compatible with the grid security model,

such that traversing from the grid to cloud layers and back does not open a security

hole.

3.3.5 Standardisation Requirements

StratusLab sites will expose elastic behaviour exploiting the underlying capabili-

ties of the StratusLab cloud in order to adapt to peak loads observed from various

grid applications. The infrastructure will also be able to utilise external resources

residing outside the borders of the participating institutes. Such resources will be

for instance large public cloud providers, like Amazon’s EC2 service, therefore

demonstrating that the EGI infrastructure can operate in a hybrid public–private

cloud platform, able to take advantage of external cloud resources when peak de-

mand requires.

A hybrid cloud is an extension of a private cloud to combine local resources

with resources from remote cloud providers. The remote provider could be a com-

mercial cloud service, such as Amazon EC2 or ElasticHosts, or a partner infras-

tructure running the StratusLab cloud distribution. Such support for cloudbursting

enables highly scalable hosting environments.

The site infrastructure running StratusLab will be fully transparent to grid and

cloud users. Users continue using the same private and public cloud interfaces,

so the federation is not performed at service or application level, but at infrastruc-

ture level. It is the infrastructure’s system administrators who will take decisions

regarding scale out of the infrastructure according to infrastructure or business poli-

cies.

However, the simultaneous use of different providers to deploy a virtualised

service spanning different clouds involves several challenges, related to the lack of

a cloud interface standard; the distribution and management of the service master

images; the inter-connections between the service components, and finally contex-

tualisation.

The following subsections describe several aspects related to interoperability

which we plan to further explore in order to improve the level of interoperability

of StratusLab with other cloud providers.

3.3.5.1 Cloud interfaces

Currently, there is no standard way to interface with a cloud, and each provider

exposes its own APIs. Moreover the semantics of these interfaces are adapted
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Figure 3.1: Hybrid cloud.

to the particular services that each provider offers to its costumer (e.g. firewall

services, additional storage or specific binding to a custom IP).

A traditional technique to achieve interoperation in this scenario is the use of

adapters [23]. StratusLab requires a pluggable and modular architecture, such that

it can integrate with specialised adapters to interoperate with different hypervisor

technologies (Xen, KVM, etc.), or different cloud providers, like Amazon EC2 and

Elastic Hosts (EH) (see Figure 3.2).

Several standardisation bodies, such as the Open Grid Forum (OGF) and the

Distributed Management Task Force (DMTF), have active working groups to pro-

duce standard cloud interfaces. For example, the Open Cloud Computing Interface

(OCCI) specification is being developed by the OCCI Working Group inside the

OGF community. The OCCI effort was initiated to provide a global, open, non-

propietary standard to define the infrastructure management interfaces in the con-

text of cloud computing. OpenNebula, one of our selected components, supports

this standard.

The OCCI specification defines a simple (about 15 commands) and extensible

RESTful API. It defines three types of resources: compute, storage and network.

Each resource is identified by a URI, has a set of attributes and is linked with other

resources. Resources can be represented in many formats such as OCCI descriptor

format, Open Virtualisation Format (OVF) or Open Virtualisation Archive (OVA).

Create, Read, Update and Delete (CRUD) methods are available for each resource,

which are mapped to the typical REST methods over the HTTP protocol: POST,

GET, PUT and DELETE. Other HTTP methods are also included by OCCI, like

COPY, HEAD, MOVE and OPTIONS. Requests are used to trigger state changes
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Figure 3.2: Cloud brokering.

and other operations (create backup, reconfigure, etc). A request is sent by a POST

command to the resource URI, of which body contains the request and its parame-

ters.

3.3.5.2 Image management

In general, a virtualised service consists of one or more components each one sup-

ported by one or more VMs. Instances of the same component are usually obtained

by cloning a master image for that component, that contains a basic OS installation

and the specific software required by the service.

Cloud providers use different formats and bundling methods to store and up-

load these images. We could assume that suitable service component images have

been previously packed and registered in each cloud provider storage service. So

when a VM is to be deployed in a given cloud the image adapters skip any image

transfer operation. This approach minimises the service deployment time as no

additional transfers are needed to instantiate a new service component. However,

there are drawbacks with storing images in each cloud provider: higher service

development cycles as images have to be prepared and debugged for each cloud;

higher costs as clouds usually charge for the storage used; and higher maintenance

costs as new images have to be distributed to each cloud.

Therefore, the project will investigate different options to resolve this important

issue. Possible solutions could include the feasibility of offering a repository of

reference images for cloud users, with demonstrated interoperability among the

supported public cloud infrastructures, and following the existing standards in the

areas of VM images and virtual appliances. Another idea would be to provide
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an image creation engine, based on SlipStream for example, which can generate

images from a higher-level recipe.

3.3.5.3 Network management

Resources running on different cloud providers are located in different networks,

and may use different addressing schemes (public addresses, private addresses with

NAT, etc.). However, some services require all their components to follow a uni-

form IP address scheme (for example, to be located on the same local network), so

it could be necessary to build an overlay network on top of the physical network to

allow the different service components to communicate. In this context, there are

interesting research proposals (e.g. ViNe [48], CLON [31]) and some commercial

tools (e.g. VPN-Cubed [12]), which provide different overlay network solutions

for grid and cloud computing environments.

Virtual Private Network (VPN) technology could interconnect the different

cloud resources with the in-house data centre infrastructure in a secure way. In

particular, OpenVPN [36] software allows implementing Ethernet tunnels between

each individual cloud resource and the data centre LAN, as shown in Figure 3.3.

In this setup, which follows a client-server approach, the remote cloud resources,

configured as VPN clients, establish an encrypted VPN tunnel with in-house VPN

server, so that each client enables a new network interface which is directly con-

nected to the data centre LAN. In this way, resources located on different clouds

can communicate, as they are located in the same logical network, as well as ac-

cessing common LAN services (NFS, NIS, etc.) in a transparent way, as local

resources do.
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Figure 3.3: VPN-based network configuration for a multi-cloud infrastruc-

ture
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4 Development Process and Strategy

This chapter describes our development process and strategy, including engineer-

ing practices and the mechanisms we have put in place to control and track the

execution of our programme of work.

4.1 Agile Development Process
Faced with a challenging and fast moving eco-system around web and distributed

technologies, we need to be able to quickly react to changes without losing focus

nor impacting our performance with constant disturbances to our programme of

work. We also need to remain closely focused on listening to our user communities,

without losing focus on our obligation to deliver. We also need to avoid at all costs

the tunnel vision side effect that over-engineering can cause when disconnected

from reality.

Agile development processes are gaining in popularity in industry and govern-

ment development. Most project members have also a long history of collabora-

tion. We therefore have decided to apply an Agile methodology called Scrum to

drive the development, integration and release efforts of the project. This allows

us to define small units of work, able to add value to our users, on a quick turn-

around time scale. Users can then provide valuable feedback which we can use

to improve the project output, improve dissemination and ultimately the impact

the project will have. This process includes the entire chain from collecting user

requirements, architecture, design, implementation and testing, but also dissemina-

tion of our releases, and active pursuit of new user communities and management

of feedback.

Figure 4.1 illustrates the Scrum process. For StratusLab, we have chosen to

adopt a three week sprint duration. This means that every three weeks, the results

of the sprint are demonstrated to all available project members (and any guests the

project deems relevant). The two main objectives of the demonstration meeting are

first to force the integration of the work performed in terms of releasable increment,

and second to gather feedback from all stake-holders. Not required by Scrum but

appropriate for a distributed project like StratusLab, and in accordance with the

proposed management structure, the demo meeting is followed, normally the day

after, by a session of the TCSG. This session is an opportunity to (re)assess the ar-

chitecture of the system, review important feedback gathered during the demo and
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Figure 4.1: Scrum process

any other feedback received, and redefine the priorities of the project. Following on

from this event, a planning meeting is held, reviewing the user stories proposed for

the next sprint. During the planning meeting, the different technical teams estimate

and commit to realising the user stories. This ends the Scrum cycle.

4.2 Users
We have identified several categories of users (or actors) that will interact with

the system. While real users might fulfil several roles at once, it is important to

separate and identify the concerns that these different types of users will have in

the context of StratusLab. The user stories (see Section 4.3) refer explicitly to a

user identified in this section.

• Scientists: End-users that take advantage of existing machine images to run

their scientific analyses.

• Software Scientists and Engineers: Scientists and engineers that write and

maintain core scientific community software and associated machine images.

• Community Service Administrators: Scientists and engineers that are re-

sponsible for running community-specific data management and analysis

services.

• System Administrators: Engineers or technicians that are responsible for

running grid and non-grid services in a particular resource centre.

• Hardware Technicians: Technicians that are responsible for maintaining

the hardware and infrastructure at a resource centre.
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Adding to this list of external users, we add ‘StratusLab Team Members’, since

we are our first users. This allows us to target project member in user stories, which

is useful when building our own support infrastructure and tools.

4.3 User Stories
Chapter 3 provided the requirements and use cases driving the technical work of

the project. While these are critical in making sure that the project fulfils the need

of our target communities, they are not in a format that can easily be translated into

technical tasks that can be scheduled for sprints. For example they can be purpose-

fully vague, leaving the technical decision to the project members responsible for

their implementation, they can also be complex.

In order to decompose these into smaller elements, agile methodologies in gen-

eral, and Scrum in particular, propose to create user stories. User stories are a high-

level description of a need by a specific user or actor from the system, expressed

in the form of an action and a resulting benefit. Most user stories are captured

according to the following template: “As a actor/user I can action in order to ben-

efit”. The scope and complexity of each story is such that it can be implemented

within a single development iteration (or sprint in the Scrum agile methodology we

are using). This guarantees that entire stories can be implemented and delivered in

a short time scale, such that it can be demonstrated and evaluated by project team

members and/or target users. Here is an example taken from our JIRA tool:

As a Sys Admin I can deploy a virtualised Worker Node (WN) that

register to a Grid Computing Service

We do not list all user stories in this document since it would represent a sig-

nificant effort and would cause duplication. StratusLab uses a collaboration tool

called JIRA [6], augmented by the GreenHopper [5] plugin which provides JIRA

with the added features for agile and Scrum support, including management of

user stories. As already mentioned, user stories are assigned to sprints at the start

of every sprint. At the end of every sprint, completed and accepted user stories

are declared ’Done’ and closed. Others are either rejected as not complete, and

eventually rescheduled in a future sprint if still relevant .

While the detail of every user story is outside the scope of this document, it

is important the the reader understand the process by which we are executing the

StratusLab programme of work.

4.4 Build and Packaging
As mentioned before, all the StratusLab software, including its dependencies, are

available via packages. These are constructed using Maven [4] and integrated in

our continuous integration server Hudson. This means that the StratusLab software

is continuously built, packaged and tested, which provides rapid feedback to the

project members as the distribution progresses.
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StratusLab will support RPM and DEB packages, popular with Red-Hat, De-

bian and SuSE-like operating system distribution.

4.5 Installation
All required dependencies for StratusLab will be expressed as dependencies in

the StratusLab packages. Further, all dependencies will be on packages, either

pointing to official and supported package repositories (preferred option), or in the

case were these dependencies are not available in package format, or if the wrong

versions are available, we will package and maintain these packages ourselves. All

the StratusLab packages will be available in our dedicated YUM and APT package

repositories.

The installation itself will be available via two mechanisms:

• Automated: Using the Quattor fabric management system, already the de-

fact standard for several grid sites

• Manual: Using dedicated stratus-* system administrator commands

The source of metadata for both systems will be shared and maintained together

with each release of StratusLab.

4.6 Configuration
Virtualisation technologies support a wide range and rich set of options and param-

eters. In order to facilitate instantiating virtual machines that will work with con-

textualisation and provide interoperability between the different StratusLab sites,

we need to reduce the scope of options and better guide the user.

The configuration of the StratusLab system will be performed via a single con-

figuration file, including parameters grouped in sections. No duplication will exist

in the configuration file, reducing the chances of conflicts, which could result in

a faulty system. Further, since certain parameters, for example the choice of the

hypervisor or mechanism to transfer images from the OpenNebula front-end to the

nodes (e.g. NFS, SSH), could result in installing different packages, some instal-

lation techniques could decide to make those choices up-front. This would have

the consequence for system administrators of reducing complexity in installing the

system, at the price of reduced flexibility.

4.7 Testing
Testing the StratusLab distribution is required to ensure that the advertised func-

tionality works, and as we release new features and fix bugs, that we do not in-

troduce regressions. The best way to ensure that each release of StratusLab is of

the expected quality and that no regression is introduced is to ensure adequate en-

gineering practices and a good test suite, built over each sprint, which covers the

main features. In order to detect a mistake introduced by a commit quickly after

the commit, the test suite must be able to run often. The test suite must therefore
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be able to be executed unattended and automatically. However, a challenge in test-

ing distributed systems, something made even more challenging in a cloud system

designed to deploy distributed systems, is the setup required for the test suite to

perform on a meaningful deployment of the system.

StratusLab already has a series of tasks automated using a continuous integra-

tion server called Hudson [22]. This server fires build, deployment and test tasks

(called jobs in Hudson) soon after new or updated files are committed in our ver-

sion control system.

Further, as more complex deployment scenarios are required, SlipStream (from

SixSq) will be used to deploy complex multi-node systems automatically, without

having to write special code for this. The execution of the SlipStream deployment

scenario will also be integrated in Hudson jobs, which in turn will be triggered by

commits in our version control system.
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5 Component Architecture

Following from the analysis reported in Chapter 3, in this chapter we first establish

the generic reference architecture required to implement the system, and then move

on to choose components which will allow us to realise StratusLab v1.0.

5.1 Anatomy of a Cloud
The anatomy of an IaaS (Infrastructure as a Service) cloud consists of several main

components. These components are illustrated in Figure 5.1 and described in Ta-

ble 5.1.

These elements are required for building a complete cloud distribution able to

fulfil the requirements and use cases identified in Chapter 3.

5.2 Reference Deployment Model
Figure 5.1 also presents a deployment of the components required to build an IaaS

cloud. This proposed deployment, or assignment of components to sites and hosts,

enables us to ensure that we can deploy the StratusLab software onto a functioning

system. This reference model will be implied by our installation and configuration

tools. This makes it possible for StratusLab to be easily installed and configured,

with little up-front knowledge of its internal details, while giving the opportunity

for advanced users to explore different deployment models.

All of the cloud components in Table 5.1 will be deployed as part of a standard

site running StratusLab, except the appliance repository, credentials manager, and

user tools. The user tools will be deployed on the user’s work station. The other

two are centralised services shared by several or all sites.
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Table 5.1: IaaS Cloud Components

Hypervisors running on top of the physical resources,

virtualisation is provided by hypervisors

in which virtual machines execute,

including network, storage and compute

Virtual machine manager core of the system, the manager

orchestrates requests and manages the

allocation of resources, as well as the

life-cycle of running virtual images

Appliance repository is the persistent source of virtual images,

both machine and datasets

Cloud interface that provides the users with a simple

abstraction to manage VMs.

Administration tools tools providing system administrator the

means to install, configure and manage

the cloud

User tools tools for interacting with the different

cloud services

Credentials manager provides authentication and

authorisation services to the StratusLab

integrated services and users

Monitoring system provides real-time visibility and

information on resources on the cloud

Accounting system provides historical and aggregated

information on the utilisation of cloud

resources

Cache provides caching of large datasets, such

as machine and dataset images, at

different points in the infrastructure.
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Figure 5.1: High-level architecture.
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6 Selected Components

Chapter 5 identified several components that need to be part of the StratusLab dis-

tribution. This section reviews, analyses and selects candidates for these compo-

nents. The result of this selection process is summarised hereafter, and illustrated

in Figure 6.1 and described in Table 6.1.

As shown on Figure 6.1 OpenNebula is at the heart of the system and provides

VM management. In order to grant remote access to the cloud, a set of client and

web applications are deployed, such that only standard web protocols are used to

monitor and control the cloud. The Appliance Repository is also shown, running

from a remote site and shared by several sites. Storage and cache is also required

at the site to provide image caching and storage.

These choices are explained in the following sections.

6.1 Virtualisation
Over recent years, a constellation of virtualisation products have emerged. So, a

variety of hypervisors have been developed and greatly improved, most notably

KVM, Xen and VMware. The current open source standards are KVM and Xen.

It is too early to tell which of these two technologies will dominate, therefore, we

have chosen to support both. The libvirt library provides a convenient front-end to

these virtualisation, making it easier to integrate with both. Amazon standardises

on Xen, while several other developments support KVM.

A feature important when using cloud systems to build, deploy and test cloud

systems, is the ability to run virtual machines inside an already virtualised machine.

This is possible using para-virtualised Xen machines inside KVM. Hence, adding

to the need to support both types.

In order to support both virtualisation technologies, we need to be able to en-

sure that virtual machine images uploaded into the appliance repository are com-

patible with both.

As mentioned above, VMware is also taking an important role in the virtuali-

sation market. While support for VMware is less important to our targeted com-

munities, it should remain on our radar for future support.
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Figure 6.1: High-level architecture with components assignment

Table 6.1: IaaS Cloud Components

Hypervisors KVM and Xen. Eventually VMware.

Virtual machine manager OpenNebula

Appliance repository Apache HTTP Server

Cloud interface Custom interface to start with, inspired

from Amazon EC2. Standard interfaces

will follow

Administration tools StratusLab specific development

User tools StratusLab specific development

Credentials manager LDAP

Monitoring system StratusLab specific development,

building on OpenNebula’s XMLRPC

feature

Accounting system StratusLab specific development,

building on an extended OpenNebula’s

XMLRPC feature

Cache Squid
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6.2 Virtual Machine Manager
Several ‘Virtual Machine Manager’ technologies that cover the functionality out-

lined in Chapter 5 above have appeared, like Platform VM Orchestrator, VMware

DRS, or Ovirt. On the other hand, projects like Globus Nimbus [50], Eucalyp-

tus [49] or OpenNebula [30] (developed by UCM in the context of the RESER-

VOIR project), or products like VMware vSphere, that can be termed cloud toolk-

its, can be used to transform existing infrastructure into an IaaS cloud with cloud-

like interfaces.

Several of the above mentioned solutions are commercial, closed or focusing

on a subset of the functionality required from SlipStream.

Key differentiating factors of OpenNebula with other commercial virtual in-

frastructure managers are its open and flexible architecture and interfaces, which

enable its integration with any existing product and service in the Cloud and vir-

tualisation ecosystem, and its support for building any type of Cloud deployment.

Further, compared to other open source alternatives, OpenNebula provides superior

functionality on a wider range of virtualisation technologies for building private

and hybrid clouds. It has been designed to be integrated with any networking and

storage solution and so to fit into any existing data centre. For these reasons, Open-

Nebula has been chosen as the VM manager for the StratusLab cloud distribution.

OpenNebula manages VMs and performs life-cycle actions by orchestrating

three different management areas, namely: networking by dynamically creating

local area networks (LAN) to interconnect the VMs and tracking the MAC ad-

dresses leased in each network; image management by transferring the VM im-

ages from an image repository to the selected resource and by creating on-the-fly

temporary images; and virtualisation by interfacing with physical resource hyper-

visor, such as Xen or KVM, to control (e.g. boot, stop or shutdown) the VMs.

Moreover, it is able to contact cloud providers to combine local and remote re-

sources according to allocation policies.

In order to provide the virtual management solution we require, we need an

open source and open architecture toolkit, scalable and available, backed-up by an

active developer community, with which we can engage. Our choice is therefore

OpenNebula.

In the following subsections, you will find further details on the capability of

OpenNebula that StratusLab will leverage in order to provide the comprehensive

cloud solution required by our user communities.

6.2.1 Computing

A VM within the OpenNebula system consists of:

• Capacity in terms memory and CPU.

• A set of NICs attached to one or more virtual networks (see Section 6.2.2).

• A set of disk images. In general, it could be necessary to transfer some of
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these image files to/from the execution host (see Section 6.3).

• A state file (optional) or recovery file, that contains the memory image of a

running VM plus some hypervisor specific information.

The above items, plus some additional VM attributes like the OS kernel and

context information to be used inside the VM, are specified in a VM template file.

OpenNebula manages VMs by interfacing with the physical resource virtualisation

technology (e.g. Xen or KVM).

The scheduler module is in charge of the assignment between pending VMs

and known hosts. The OpenNebula scheduling framework is designed in a generic

way, so it is highly modifiable and can be easily replaced by third-party develop-

ments. This way, it can be used to develop virtual resource placement heuristics

to optimise different infrastructure metrics (e.g. utilisation or energy consumption)

and to fulfil grid service constraints (e.g. affinity of related virtual resources or

SLA).

OpenNebula uses a set of managers to orchestrate the management of VMs. In

turn, these managers are helped by a set of pluggable modules that decouple the

managing process from the underlying technology, such as virtualisation hypervi-

sors, operating systems, file transfer mechanisms or information services. These

modules are called drivers in OpenNebula, and they communicate with the Open-

Nebula core using a simple ASCII protocol; thus simplifying the development of

new drivers.

OpenNebula, virtualisation libraries and tools provide a very wide range and

rich set of parameter settings. In order to reduce the range of parameters exposed

to the system administrator in StratusLab, we are proposing to expose only a subset

of parameters, taking into account reasonable assumptions on the setup.

6.2.2 Networking

VMs are the basic building blocks used to deliver IT services of any nature, from

a computing cluster to the classic three-tier business application. In general, these

services consists of several inter-related VMs, with a Virtual Application Network

(VAN) being the primary link between them. OpenNebula dynamically creates

these VANs and tracks the MAC addresses leased in the network to the service

VMs. Other TCP/IP services such as DNS, NIS or NFS, are the responsibility of

the service (i.e. the service VMs have to be configured to provide such services).

The physical hosts that will conform the fabric of the virtual infrastructures

will need to have some constraints in order to effectively deliver virtual networks

to the VMs. Therefore, from the point of view of networking, we can define our

physical cluster as a set of hosts with one or more network interfaces, each of them

connected to a different physical network.

Figure 6.2 shows two physical hosts with two network interfaces each, thus

there are two different physical networks. There is one physical network that con-

nects the two hosts using a switch, and another one that gives the hosts access to

the public internet. This is one possible configuration for the physical cluster, and
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Figure 6.2: Networking model.
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it is the recommended one since it can be used to make both private and public

VANs for the VMs. Moving up to the virtualisation layer, we can distinguish three

different VANs. One is mapped on top of the public internet network, and a couple

of VMs take advantage of it. Therefore, these two VMs will have access to the

internet. The other two (red and blue) are mapped on top of the private physical

network. VMs connected to the same private VAN will be able to communicate

with each other, otherwise they will be isolated and will not be able to communi-

cate.

6.2.2.1 Virtual Network

OpenNebula allows for the creation of Virtual Networks by mapping them on top

of the physical ones. All Virtual Networks are going to share a default value for

the MAC prefix, set in the oned.conf file.

There are two types of Virtual Networks in OpenNebula:

• Fixed, which consists of a set of IP addresses and associated MACs, defined

in a text file.

• Ranged, which allows for a definition supported by a base network address

and a size, either as a number or as a network class (B or C).

Other approaches, like configuring a DHCP server for the datacentre, are also pos-

sible.

6.2.2.2 IP Address Assignment

Using OpenNebula, we have great flexibility in terms of network configuration. By

default, during the installation of StratusLab, two virtual networks are created: a

private and a public network. Also by default, all virtual machines started on the

site will be visible on these networks. Further, we can request a specific IP address

to be associated to a virtual machine, a feature similar to the Amazon EC2 Elastic

IP. Furthermore, custom networks can be created, such that new VM instances can

be configured and attached to these.

6.2.3 Extensibility

Demonstrating our growing experience with OpenNebula, several members of the

StratusLab project are now contributors to the OpenNebula project. The latest de-

velopment on the Web Monitor, which adds the monitoring capability of an Open-

Nebula installation over the web, showed the power of the XMLRPC API exposed

by OpenNebula. Being able to extend more easily the data available via that inter-

face will improve the rate at which we can extend and better integrate OpenNebula

with existing and new services. The availability of the XMLRPX API is very

important, since most cloud interfaces (like OGF OCCI, AWS EC2 or VMware

vCloud APIs) provide basic monitoring of virtualised resources, while this API

provides extended monitoring of virtualised and physical resources.

Other extensibility mechanisms are likely to be identified over the course of the

project, which we hope we will be able to exploit in collaboration with the main
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developers of these systems.

6.2.4 Image Management

VMs are supported by a set of virtual disks or images, which contain the OS and

any other additional software needed by the service. The image repository (see

Section 6.4) holds the base image of the VMs. Also, the images can be shared

through NFS between all the hosts, or transferred through SSH between them.

OpenNebula uses the following concepts for its image management model:

• Image Repository, refers to any storage medium, local or remote, that holds

the base images of the VMs. An image repository can be a dedicated file

server or a remote URL from an appliance provider, but they need to be

accessible from the OpenNebula front-end. See Section 6.4 for more details

about the image repository to be used in StratusLab.

• Virtual Machine Directory, is a directory on the cluster node where a VM

is running. This directory holds all deployment files for the hypervisor to

boot the machine, checkpoints, and images being used or saved, all of them

specific to that VM. This directory should be shared for most hypervisors to

be able to perform live migrations.

6.3 Storage
Transient and persistent storage are required in a cloud. This section focuses on

the need for persistent storage and caching to improve performance in managing

transient data, like images.

6.3.1 Persistent Storage

It is important to be able to persist data independently from running virtual images.

Amazon has a feature called Elastic Block Store, which allows a cloud user to

define a persistent volume, attach it to a running instance via a device, which can

be mounted on the local file system. Even if the instance stops or crashes, the

data behind this volume is persisted and can be re-attached to a different running

instance.

This feature also allows cloud users to be able to create complex data-sets and

manage them independently from the machine images. For example, a data-set

might be maintained for testing, which can be applied to different versions of a

system and composed at runtime, without being ‘baked’ into each image needing

this data-set.

This feature can be achieved in StratusLab using the current contextualisation

feature of OpenNebula, where this disk image is saved and made available to the

user via the Appliance Repository (Section 6.4). If true persistence is required

(data surviving beyond a physical node crash) the disk image could be associated

with a distributed or replicated file system. Performance and network consideration

have to be take into account for this advanced feature. Further, other options also
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exist, which we will explore for StratusLab v2.0 in collaboration with our user

communities.

6.3.2 Caching

In order to save network bandwidth when transferring large image files (even com-

pressed) a caching mechanism can be used. Technologies such a Squid [44] can

provide a caching feature in a controlled manner. For example, each site could

setup a caching system, where the front-end and nodes have a configured cache,

thus saving bandwidth inside the site and between the site and the Appliance

Repository.

6.4 Appliance Repository
The StratusLab Appliance Repository requires to provide remote access via the

web. This can simply be implemented using the Apache Web Server, configured

to authenticate with the project LDAP server. While this is a convenient and well

supported solution, any web server, capable of handling large files could be used

instead.

The repository needs to be organised and structured. Here we propose to adopt

the convention provided by the Maven repository structure. Here is an example

of this convention: https://appliances.stratuslab.org/images/base/ubuntu-10.

04-i686-base/1.0/.

To seed the foundation of trust between authors of virtual images and system

administrators running sites, metadata must be available describing the content and

origin of the virtual image. This metadata is provided in the form of a manifest

file (ubuntu-10.04-i686-base-1.0.img.manifest.xml), describing

an image (ubuntu-10.04-i686-base-1.0.img.gz), and placed in the same

‘folder’ in the repository. To reduce the file size and bandwidth when accessing im-

ages, the image file should be compressed as a single file (i.e. not archived).

The currently proposed manifest format is an XML document. Here is an ex-

ample of a manifest file:

<manifest>

<created>2010-08-18 20:34:28.334763</created>

<type>base</type>

<version>1.0</version>

<arch>i686</arch>

<user>A. Joseph</user>

<os>ubuntu</os>

<osversion>10.04</osversion>

<compression>gz</compression>

</manifest>

As we explore features like the Persistent Storage (see Section 6.3.1), we might

then extend the definition of ‘Appliance’, which could mean to also add data images
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to the appliance repository.

6.5 Virtual Machine Contextualisation
In general, a VM consists of one or more disk images, which contain the operating

system and any additional software or data required. When a new node is needed,

the images are transferred (cloned) to a suitable physical resource and a new VM

is booted. During the boot process the VM is contextualised, i.e. the base image is

specialised to work in a given environment by, for example, setting up the network

or the machine hostname. Different techniques are available to contextualise a VM,

for example a context server [20], or accessing a disk image with the context data

for the VM (Open Virtual Format, OVF [14], recommendation).

It is important for StratusLab to support standard image formats. We chose

ISO images (OVF recommendation), also supported by OpenNebula, with config-

uration parameters to a newly started VM. This method is network agnostic so it

can also be used to configure network interfaces. In the VM description file, the

user can specify the contents of the ISO file (files and directories), tell the device

the ISO image will be accessible and specify the configuration parameters that will

be written to a file for later use inside the VM.

With this in place, each VM in the Appliance Repository are guaranteed to

work correctly in all StratusLab sites, and will work with the StratusLab command-

line tools, such as stratus-run-instance and stratus-create-image.

6.6 Tools
In order to access, monitor and control the cloud, both from an end-user and a

system administrator point of view, a set of tools must be available. While web

solutions will be discussed in the Section 6.8 for monitoring and Section 6.9 for

accounting, this subsection focuses on remote command-line tools. The tools sup-

porting installation and configuration of the cloud itself are briefly described in

Sections 4.5 and 4.6.

Several of the tools presented in this section have already been developed as

part of the first sprints of the project, in order to validate several assumptions made

for the StratusLab architecture. This explains why some of the descriptions de-

scribe future work, while others describe existing results.

6.6.1 Virtual Machine Execution

Chapter 3 clearly illustrated the need by the users to be able to remotely manage

virtual machines, as is standard in public clouds such as Amazon EC2. To comply

with this requirement, a set of command-line tools are required. Already, early ver-

sions of the StratusLab distribution include, for example, the stratus-create-instance

command (the name is likely to change in the near future), which allows the user

to remotely request the instantiation of new virtual machines by a given site.

These types of commands can easily be built using the OpenNebula XML-

RPC mechanism. This is another strong point in favour of OpenNebula in terms of
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openness. The command provides all the necessary information for OpenNebula

to download the image from the Appliance Repository, allocate a node for run-

ning the instance, create the new instance and contextualise it. The monitoring

commands, also provided in the form of stratus-describe-instance and

stratus-describe-node allow the user to monitor his or her virtual ma-

chines. This means that no SSH access to the OpenNebula front-end is required in

order to let users start new virtual machines.

6.6.2 Virtual Image Creation

In clouds, the fundamental building block for users is the virtual machine. We

therefore need to facilitate the creation of virtual machine images, which will work

with our contextualisation (see Section 6.5). This section describes several aspects

of this creation and how StratusLab can provide support to users for image creation.

6.6.2.1 Base Images

To facilitate the creation of new virtual machine images, StratusLab is develop-

ing and maintaining a set of base images. These images are meant as a starting

point for building more specialised images. These images typically only contain a

clean standard operating system installation, as well as the required configuration

to support the StratusLab contextualisation strategy. For example, IP addressing

will work according to the StratusLab convention, a user defined public key will

be installed in the VM during contextualisation such that users can ssh into their

instances.

StratusLab maintains this set of base images in the StratusLab public Appliance

Repository (https://appliances.stratuslab.org/images/base).

6.6.2.2 Custom Image Creation

While StratusLab provides online documentation for users to create their own im-

ages from scratch (see Subsection 6.6.2.1), StratusLab also provide a simpler way

to customise images. The command-line tool stratus-create-image offers

a convenient way to augment an existing image (i.e. a base image or another image

fulfilling the contextualisation requirements). Following the SlipStream [42] pro-

posed convention, this command takes a list of packages to be installed as well as

a script to further configure the machine. Once the machine is successfully config-

ured, the command saves the image and uploads it, alongside the image manifest,

to the appliance repository. From this point on, the image can be used as any

standard StratusLab image.

The advantage of this technique is that the image creation process is standard-

ised and will eventually be reproducible for other clouds, thus taking an important

step towards cloud interoperability.

6.7 User Management
All services used by StratusLab must be integrated with a single identity system.

OpenNebula is already being extended to support LDAP. It is important to ensure
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that all StratusLab services use such strategies to limit the propagation of specific

credential mechanism across the distribution. Further, the grid uses a digital cer-

tificate mechanism to ensure proper integration of authentication and authorisation

across its services and sites. StratusLab will need to integrate with this certificate-

based mechanism in order to properly support the grid.

Another interesting solution with which we need to engage is provided by the

ARGUS [13] project, which develops a solution used in the grid world to provide

authorisation decisions over distributed services.

6.8 Monitoring
In order to track and monitor the state of the cloud, we need monitoring tools.

OpenNebula already provides local monitoring command-line tools, such as onehost

and onevm. While useful, these tools only work locally on the front-end machine.

Meanwhile, OpenNebula also provides an XMLRPC API. StratusLab builds on top

of this API to provide both a set of command-line tools (stratus-describe-node

and stratus-describe-instance), as well as a web application.

The command-line tools are packaged together, while the web monitor is pack-

aged individually.

These tools are useful in their own right, however, as cloud sites are inter-

connected via the grid, we will also need more powerful tools able to bridge the

boundaries of single cloud sites, both for monitoring and accounting (see Section

6.9 for details). Grid monitoring tools already provides cross-site monitoring with

which StratusLab monitoring of the cloud layer will have to integrate.

6.9 Accounting
Both cloud and grid services require adequate tracking of resource usage, per user,

and in the grid context per VO. While OpenNebula maintains several key ac-

counting metrics, they are not readily available (see Section 6.2.3) to accounting

services. In a grid context, it is important to be able to extract these values and

aggregate them. It is therefore important to make the raw accounting parameters

available via a convenient API, such that they can be securely queried and retrieved.

These metrics, as for accounting values, must be integrated with existing grid

accounting services.

43 of 59



7 State of the Art

This chapter is an updated version of the state-of-the-art section we wrote for the

StratusLab proposal.

The potential benefits that cloud and virtualisation technologies can bring to

current e-Infrastructures require a common framework that bridge grid and cloud

computing models. Various solutions have been proposed to take advantage of

these new technologies in a grid environment, from its direct application to encap-

sulate the execution of each job, to the advance provisioning of Virtual Organisa-

tion clusters. In Section 7.1 below, we summarise the current state of the art in

these areas and then in Section 7.2 we detail the status of the ecosystem of cloud

technologies. Finally, Section 7.3 shows a commercial perspective.

7.1 Application of Virtualisation and Cloud to Grid

Computing
In the last decade we have witnessed the consolidation of several transcontinental

grid infrastructures that have achieved unseen levels of resource sharing. In spite of

this success, current grids face several obstacles that limit their efficiency, namely:

• An increase in the cost and length of the application development and porting

cycle. New applications have to be tested in a great variety of environments

where the developers have limited configuration capabilities.

• A limitation on the effective number of resources available to each applica-

tion. Usually different VOs require different software configurations, so an

application can be only executed on those sites that support the associated

VO. Moreover, the resources devoted to each VO within a site are usually

static and cannot be adapted to the VO’s workload.

• An increase in the operational cost of the infrastructure. The deployment,

maintenance and distribution of different configurations involves specialised,

time consuming and error prone procedures. Even worse, new organisations

joining a grid infrastructure needs to install and configure an ever-growing

middleware stack.

This situation often leads to a struggle between the users, who need more

control over their execution environments, and grid operators, who want to limit
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the heterogeneity of the infrastructure. As a result, several alternatives to rec-

oncile both positions have been explored in the past. For example, the SoftEnv

project [45] is a software environment configuration system that allows the users

to define the applications and libraries they need. Another common solution is the

use of a custom software stack on top of the existing middleware layer, usually

referred as pilot-jobs. For example, MyCluster [51] creates a Condor or Sun Grid

Engine cluster on top of TeraGrid services; and similarly over other middleware

we may cite DIRAC [47], glideinWMS [41] or PanDa [46].

Additionally, several projects have investigated the partitioning of a distributed

infrastructure to dynamically provide customised independent clusters. For ex-

ample, COD (Cluster On Demand) [11] is a cluster management software which

dynamically allocates servers from a common pool to multiple virtual clusters.

Similarly, the VIOcluster [40] project supports the dynamically adjustment of the

capacity of a computing cluster by sharing resources between peer domains.

However the most promising technology to provide virtual organisations (VO)

with custom execution environments is virtualisation. The dramatic performance

improvements in hypervisor technologies has made it possible to experiment with

virtual machines (VM) as basic building blocks for computational platforms. Sev-

eral studies (see for example [53] and [52]), reveal that the virtualisation layer has

no significant impact on the performance of memory and CPU-intensive applica-

tions for HPC clusters.

The first works in this area integrated resource management systems with VMs

to provide custom execution environments on a per-job basis. For example Dy-

namic Virtual Clustering [15] and XGE [17] for MOAB and SGE job managers

respectively. These approaches only overcome the configuration limitation of phys-

ical resources since VMs are bound to a given resource and only exist during job

execution. A similar approach has been implemented by UCM at Grid level using

the Globus GridWay Metascheduler [39].

More general approaches involve the use of virtual machines as workload units,

which implies the change in paradigm from building grids out of physical resources

to virtualised ones. For example, the VIOLIN project proposes a novel alterna-

tive to application-level overlays based on virtual and isolated networks created

on top of an overlay infrastructure. Also I. Krsul et al. [29] propose the use of

a service (VMPlant) to provide the automated configuration and creation of VMs

that can subsequently be cloned and instantiated to provide homogeneous execu-

tion environments across distributed grid resources. On the other hand, the In-

VIGO [1] project adds some virtualisation layers to the classical grid model, to

enable the creation of dynamic pools of virtual resources for application-specific

grid-computing. Also in this line, several studies have explored the use of virtual

machines to provide custom (VO-specific) cluster environments for grid comput-

ing. In this case, the clusters are usually completely built up of virtualised re-

sources, as in the Globus Nimbus project [19], or the Virtual Organisation Clusters

(VOC) proposed in [32]. UCM has explored a hybrid model, so the cluster com-

bines physical, virtualised and cloud resources [30].
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It is important to note that the previous works also highlight that the use of

virtualisation in grid environments can greatly improve the efficiency, flexibility

and sustainability of current production grids. Not only by extending the classical

benefits of VMs for constructing cluster, e.g. consolidation or rapid provisioning of

resources [33], [16]; but also grid-specific benefits, e.g. support to multiple VOs,

isolation of workloads and the encapsulation of services, as has been published by

SixSq [7].

Finally, some initiatives, like the collaboration between the RESERVOIR and

EGEE projects, with StratusLab initiative participation, are studying a cloud-like

provisioning model for grid-sites. In this way, a grid site exposes a typical cloud

interface to instantiate and control virtual machines. This would allow to access

grid Computing resources as cloud providers.

7.2 State of Cloud Computing Technologies and Ser-

vices
Cloud Computing was arguably first popularised in 2006 by Amazon’s Elastic

Compute Cloud, which started offering virtual machines (VMs) for $0.10/hour

using both a simple web interface and a programmer-friendly API. Although not

the first to propose a utility computing model, Amazon EC2 contributed to popu-

larising the Infrastructure as a Service (IaaS) paradigm, which became closely tied

to the notion of Cloud Computing. An IaaS cloud enables on-demand provision-

ing of computational resources, in the form of VMs deployed in a cloud provider’s

datacenter (such as Amazon’s), minimising or even eliminating associated capital

costs for cloud consumers, allowing capacity to be added or removed from their

IT infrastructure in order to meet peak or fluctuating service demands, while only

paying for the actual capacity used.

Over time, an ecosystem of providers, users, and technologies has coalesced

around this IaaS cloud model. More IaaS cloud providers, such as GoGrid, FlexiS-

cale, and ElasticHosts have emerged. A growing number of companies base their

IT strategy on cloud-based resources, spending little or no capital on machines

to manage their own IT infrastructure (see http://aws.amazon.com/solutions/

case-studies/ for several examples). Other providers offer products that facilitate

working with IaaS clouds, such as rPath’s rBuilder, which allows dynamic creation

of software environments to run on a cloud.

In general, an IaaS cloud consists of three main components, namely: a virtual-

isation layer on top of the physical resources including network, storage and com-

pute; the virtual infrastructure manager (VIM) that controls and monitors the VMs

over the distributed set of physical resources; and a cloud interface that provides

the users with a simple abstraction to manage VMs. In recent years a constellation

of technologies that provide one or more of these components have emerged. So,

a variety of hypervisors have been developed and greatly improved, most notably

KVM, Xen and VMware. Also several VIM technologies that cover the function-
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ality outlined above have appeared, like Platform VM Orchestrator, VMware DRS,

or Ovirt.

On the other hand, projects like Globus Nimbus [27], Eucalyptus [34] or OpenNebula[30]

(developed by UCM in the context of the RESERVOIR project), or products like

VMware vSphere, that can be termed cloud toolkits, can be used to transform ex-

isting infrastructure into an IaaS cloud with cloud-like interfaces. Key differentiat-

ing factors of OpenNebula compared with other commercial virtual infrastructure

managers are its open and flexible architecture and interfaces, which enable its

integration with any existing product and service in the Cloud and virtualisation

ecosystem, and its support for building any type of Cloud deployment. Further,

compared to other open-source alternatives, OpenNebula provides superior func-

tionality on a wider range of virtualisation technologies for building private and

hybrid clouds. These technologies include a cloud interface like Amazon EC2 or

the vCloud API; and the functionality needed to orchestrate the virtual infrastruc-

ture. Finally we would like to note that there are some initiatives to standardise the

Cloud Interface component (see the work of the OCCI WG, co-founded by UCM,

in OGF); or to provide interoperability between different interfaces like Red Hat’s

Delta-cloud project.

On top of this IaaS layer some providers, such as Elastra and Rightscale, fo-

cus on deploying and managing services, including web and database servers that

benefit from the elastic capacity of IaaS clouds, allowing their clients to provision

services directly, instead of having to provision and setup the infrastructure them-

selves. In this case, the users may need to configure their services based on specific

parameters that are only known at deployment time. Thus, advanced service con-

textualisation tools are required to ease the automatic deployment of services that

are to be deployed on top of virtualised infrastructures in a shared security context.

Automatic service deployment requires a configuration phase performed si-

multaneously to the deployment of the service, or to deploy fully configured im-

ages and adjust the configuration of context-sensitive applications after deploy-

ment. These options may result in a long deployment time for nontrivial systems,

which hinders the responsiveness and the scaling potential of the deployed ser-

vices [28]. Also, the deployment time configuration of a service presents the same

challenges that VMs customisation [21].

In order to start these automatic management features, an appropriate descrip-

tion language is needed. Nephele (developed by TID), is an open-source imple-

mentation of a service manager tool located on top of the virtual infrastructure

management solutions. Nephele has been developed and continues to be enhanced

as part of the European Union’s RESERVOIR Project. However, Nephele needs

extensions to fully cover the requirements above and provide an integral scalability

to the deployed grid services.

Earlier this year, NASA and Rackspace launched a new project, called Open-

Stack [35]. This new project created significant buzz on the web. Part of it was

caused by one of the reasons why NASA decided to create OpenStack: a rift with

Eucalyptus. Following scalability issues, which have also been observed by Stra-
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tusLab partners, NASA was unable to contribute improvements to the Eucalyptus

software stack, uncovering that not all of Eucalyptus is open source [26]. Open-

Stack is interesting for StratusLab since both projects share similar goals. Stratus-

Lab will therefore engage with OpenStack in order to share, and eventually collab-

orate, since both projects could to be the only truly open source cloud distribution

to date. However, the architecture of the OpenStack, and its open source nature, is

not yet clear. Further, according to Foran, OpenStack has very challenging scala-

bility goals, with millions of physical hosts, and tens of million of managed virtual

machines. These goals exceed the ones from StratusLab.

7.3 Commercial Perspective
Despite the fact that cloud computing has become a standard resident of the distri-

bution computing world, with the launch of EC2 by Amazon in 2006, commercial

offerings have dominated the scene. It is only recently that projects such as Open-

Nebula, and to a certain extent Eucalyptus, have made progress in providing open

source software for delivering cloud capabilities.

This dominance by the commercial market is clearly illustrated by a couple

of articles published by Jeff Vance [24] [25]. While the accuracy of the report

in terms of ranking and the presence of some companies can be challenged, the

overall message makes it clear that, at least in North-America, cloud computing is

mainly a private sector affair, with largely proprietary software stacks. Large scale

deployment of these solutions have not been reported in this survey, which again

would probably impact the results. Here are some of the names reported in these

two articles as the main players:

• IBM

• AT&T

• Elastra

• OpSource

• Cisco

• Enomaly

• Amazon

• Salesforce.com

• Google

• Microsoft

• CA

• Rackspace

48 of 59



• Eucalyptus Systems

• Terremark

• GoGrid

• RightScale

It is important to note that this study is not limited to IaaS type clouds. It will

be interesting to better understand, in the future, what these players plan to use in

terms of underlying software and the standards they require.
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8 Grid / Cloud Technology Gap

Although the virtualisation eco-system is now rich and reasonably mature, a gap

still exists in order to integrate a single IaaS cloud distribution, accessible from

outside the infrastructure, over a well-defined service API. This is critical since,

for example, in a grid context users cannot be granted direct remote access to the

machines running the virtualisation management engine.

Further, in order to expose a cloud-like API to grid users, an integration of

this API is required between the grid and cloud layer, as well as an adaptation of

the grid API such this new functionality is available to the users. StratusLab will

explore, in partnership with user communities and grid middleware providers, how

can this be best realised.

The creation and contextualisation of virtual machine images is also an impor-

tant aspect where we need to fill a gap. This is important in order to be able to

reuse virtual images between sites running StratusLab. Contextualisation currently

lacks standardisation. While this is an aspect where StratusLab will engage the

standardisation organisations over the project lifetime, we currently need to de-

fine conventions that will guarantee virtual machine interoperability between sites

running the StratusLab distribution in the first place, and eventually develop solu-

tions for letting users and sites utilise other cloud services beyond the StratusLab

frontier, including public and commercial clouds.

Another missing functionality that requires our attention is that existing grid

sites are not able to express the required scaling actions and reconfigurations. Stra-

tusLab will develop a new framework for service elasticity, also referred to as auto-

scaled services, which will be exploitable by grid and VO services. Further, SLA-

powered services will also be explored, such that service developers can include

new semantics when deploying their services in the cloud. Also, placement heuris-

tics to optimise different infrastructure metrics and to fulfil grid service constraints

will be evaluated.

The project will also evaluate the applicability of existing grid monitoring and

accounting tools in the context of grid-over-cloud infrastructures and will identify

their shortcomings (e.g. not being able to monitor the physical resources, since

running on the cloud layer). We will also explore provisioning models (e.g. pay

per use) when, for example, a site uses a hybrid cloud strategy to offload peak

requests to another cloud in order to honour an elastic SLA.

Finally, StratusLab will extend the resource sharing capabilities of a grid site
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by adding new grid-aware cloud interfaces to provide a Grid as a Service; and these

interfaces will be integrated with existing Grid services. Scheduling policies and

heuristics will be extended to work on a multi-cloud environment.

‘Advanced’ cloud features as described here (e.g. auto-scaling, SLA-powered

provisioning, elastic response due to hybrid model) could lead, in turn, to a new

breed of grid and VO services, such that a simpler, more reliable and resilient

infrastructure can be offered to European researchers.
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9 Summary

This document presents the architecture of the StratusLab v1.0 distribution. As

explained throughout the document, including in the analysis of the requirements,

the choices of components for the implementation of StratusLab, the review of the

state-of-the-art and the gap analysis between grid and cloud, cloud computing is a

very dynamic topic. This document aims at laying the foundation for the architec-

ture of StratusLab v1.0 distribution. Building on the knowledge of implementing

StratusLab, we will undoubtedly learn and gather feedback from our user commu-

nities using early versions of the distribution. This document will be updated at

PM15 with D4.4, which will add elements required for StratusLab v2.0.

We summarised the requirements and use-cases gathered by WP2 with surveys

performed during the summer 2010. Adding our collective knowledge, we then

analysed these requirements to formulate a reference component architecture of

the StratusLab v1.0 distribution.

We also described our agile development process and engineering practices

needed to face the challenge of delivering StratusLab in a changing and distributed

world. While unusual in FP7 projects, this agile method has already proven to be

effective and will be improved throughout the execution of the project.

The choices of components for the implementation of the StratusLab architec-

ture was presented in Chapter 5 where components were reviewed and selected

following analysis. Where no existing solution were identified, fulfilling the Stra-

tusLab requirements, custom development was then identified for the project to

realise.

Chapter 7 presented an updated version of the state-of-the-art that we produced

in the project proposal, which also fed into the component analysis and selection

that was presented in Chapter 6.

Gaps, but also opportunities for synergy, between grid and cloud were dis-

cussed in Chapter 8, identifying work to be done to better integrate grid and cloud,

with a short and long term perspective.

This architecture, we believe forms solid foundations on which the StratusLab

project can base its incremental releases in order to provide system administrators

and resource providers the functionality that will enable the efficient exploitation

of computing resources for the provision of grid services. Reusing best-of-breeds

in modern software and technology, StratusLab will capitalise on the inherent at-

tributes of cloud computing and virtualisation in order to offer grid administrators
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the ability to setup and manage flexible, scalable and fault tolerant grid sites. This

way we will enable the optimal utilisation of the resource provider’s physical in-

frastructure and facilitate the day-by-day tasks of the grid site administrator.
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Glossary

Appliance Virtual machine containing preconfigured software or services

Appliance Repository Repository of existing appliances

DCI Distributed Computing Infrastructure

EGEE Enabling Grids for E-sciencE

EGI European Grid Infrastructure

EGI-TF EGI Technical Forum

Front-End OpenNebula server machine, which hosts the VM manager

GPFS General Parallel File System by IBM

Hybrid Cloud Cloud infrastructure that federates resources between

organizations

IaaS Infrastructure as a Service

Instance see Virtual Machine / VM

iSGTW International Science Grid This Week

Machine Image Virtual machine file and metadata providing the source for Virtual

Images or Instances

NFS Network File System

NGI National Grid Initiative

Node Physical host on which VMs are instantiated

Public Cloud Cloud infrastructure accessible to people outside of the provider’s

organization

Private Cloud Cloud infrastructure accessible only to the provider’s users

Regression Features previously working which breaks in a new release of the

software containing this feature

Virtual Machine / VM Running and virtualized operating system

VM Virtual Machine

VO Virtual Organization

VOBOX Grid element that permits VO-specific service to run at a resource

center

Web Monitor Web application providing basic monitoring of a single

StratusLab installation

Worker Node Grid node on which jobs are executed
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