
Snapshots et Détection de Propriétés Stables
dans les Systèmes Distribués Anonymes

Jérémie Chalopin1, Yves Métivier2, Thomas Morsellino2

1LIF, CNRS, Université Aix-Marseille, 39, rue Joliot Curie 13453 Marseille Cedex 13, France
2LaBRI UMR 5800, CNRS, Université de Bordeaux, 351, cours de la Libération 33405 Talence, France

Nous étudions les problèmes du calcul d’état global (ou snapshot) et, plus généralement, de la détection de propriétés
stables dans les systèmes totalement distribués et anonymes. Nous considérons le modèle classique à passage de mes-
sages dans lequel, pour une étape de calcul, chaque élément du système peut changer son état, envoyer ou recevoir
un message à travers des liens de communication. La plupart des algorithmes existants pour résoudre le problème du
calcul d’état global supposent que les éléments du système ont des identifiants uniques ou qu’il existe un unique noeud
initiateur. Ce travail concerne le calcul d’état global dans les systèmes anonymes et plus généralement quelles sont les
propriétés stables d’un système distribué qui peuvent être détectées anonymement par l’utilisation de snapshots locaux
tout en autorisant des initiateurs multiples et en ne connaissant qu’une borne supérieure sur le diamètre du réseau.

Keywords: Calcul distribué, État global, Propriété stable.

1 Introduction
Many complex distributed systems require a large number of servers and machines interconnected on

either local or remote networks. Such distributed applications aim at making several processes collaborate to
the execution of a same task. Problems are raised concerning concurrent access to resources, critical failure
detection, or even process communication strategy. The design and the validation of distributed applications
depend on the analysis and understanding of underlying algorithms that must be proved, implemented and
debugged. The debugging of such algorithms is precisely addressed by the snapshot computation problem.

The Problem. Given a distributed system, the aim of a snapshot algorithm is the computation of a global
state, an instantaneous photography of the whole system. As is explained by Tel [Tel00] (p. 335-336), the
construction of snapshots is mainly motivated by the detection of stable properties of the distributed system
(properties which remain true as soon as they are verified) or if the system must be restarted (due to a
failure of a component) then it may be restarted from the last known snapshot (and not from the initial
configuration). Besides, it may be useful in debugging distributed algorithms. A consistent snapshot is a
global state of the distributed system or a global state that the system could have reached. Since the seminal
paper of Chandy and Lamport [CL85] which presents an algorithm to compute a consistent snapshot, many
papers gave snapshot algorithms for different models of distributed systems. They assume that processes
have unique identifiers and/or that there is exactly one initiator. Many papers [SS94, KS08] give also specific
algorithms to detect some specific properties like termination or deadlock.

Besides, Guerraoui and Ruppert in [GR05], considering that a vast majority of papers on distributed
computing assume that processes have unique identifiers, ask the following question : What if processes
do not have unique identifiers or do not wish to divulge them for reasons of privacy ? This work addresses
this question in the context of snapshots computations and by considering stable properties of a distributed
system that can be detected anonymously and admiting several initiators.

The Model. Our model is the usual asynchronous message passing model [Tel00]. A network is repre-
sented by a simple connected graph G = (V (G),E(G)) where vertices correspond to processes and edges
to direct communication links. The state of each process p is represented by a label λ(v) associated to the
corresponding vertex v ∈V (G) ; we denote by G = (G,λ) such a labelled graph. We assume the network to

Jérémie Chalopin, Yves Métivier, Thomas Morsellino

be anonymous : the identities of processors are not necessarily unique or, for privacy and security reasons,
processes do not share their identities during computation steps. We assume that each process knows from
which channel it receives or it sends a message, i.e., for each u ∈ V (G) there exists a bijection δu between
the neighbors of u in G and [1,degG(u)], called port-numbering. We will denote by δ the set of functions
{δu | u ∈V (G)}. Let p be a process. Let q be a neighbor of p, i.e., pq is a channel. The state associated to p
is denoted by state(p). The multiset of messages in transit associated to pq is denoted by Mpq (initially
Mpq is empty). The local snapshot, with respect to the process p, is defined by state(p) and the set of
{Mqp| q is a neighbor of p}. We consider asynchronous systems, i.e., no global time is available and each
computation may take an unpredictable (but finite) amount of time. Note that we consider only reliable
systems : there are no message loss or duplication. We also assume that the channels are FIFO.

Our Contribution. We consider anonymous networks in which several processes can be initiators of
computations. Thus, no process of the network can compute a snapshot (it is a direct consequence of Theo-
rem 5.5 in [Ang80]). Furthermore we assume that each process knows an upper bound of the diameter β of
the network. First we give a very simple algorithm based on the composition of an algorithm by Szymanski,
Shy, and Prywes [SSP85] with the Chandy-Lamport algorithm which enables each process to detect an
instant where all processes have obtained their local snapshot and to associate the same number to all local
snapshots. By this way we obtain an original application to checkpoint and rollback recovery.

Then we prove that stable properties can be anonymously detected by proving we can compute a snapshot
up to covering. Let (G,λ) be a labelled graph with the port-numbering δ. We will denote by (Dir(G),δ)
the symmetric labelled digraph (Dir(G),(λ,δ),sA, tA) constructed in the following way. The vertices of
Dir(G) are the vertices of G and they have the same labels in G and in Dir(G). Each edge {u,v} of G is
replaced in (Dir(G),δ) by two arcs a(u,v),a(v,u) ∈ A(Dir(G)) such that s(a(u,v)) = t(a(v,u)) = u, t(a(u,v)) =
s(a(v,u)) = v (where s and t are two maps that assign to each arc two elements of V (G) : a source and
a target), δ(a(u,v)) = (δu(v),δv(u)) and δ(a(v,u)) = (δv(u),δu(v)). A digraph D is a covering of another
digraph D′ if there is a surjective homomorphism ϕ from D to D′ which is locally bijective on arcs. We give
a fully distributed algorithm with termination detection which, given (G,λ) a labelled graph with the port-
numbering δ, enables each process to compute a labelled digraph D such that (Dir(G),δ) is a symmetric
covering of D. We show that stable properties such as termination, deadlock, garbage or loss of tokens
detected knowing (G,λ) can be detected knowing D, called a weak snapshot.

Related Works. Many notions and algorithms concerning snapshots, stable properties, checkpointing and
rollback recovery can be found in [KS08]. From a theoretical point of view, it is simple to know whether the
global state of a distributed system satisfies a stable property. A distinguished process starts the Chandy-
Lamport algorithm, then it collects states of processes and states of channels, it computes a map of the
network and finally it tests whether the labelled network satisfies the given property. To collect or to analyze
local snapshots, different assumptions may be done (see [KRS95]) : processes have unique identifiers, there
is exactly one initiator or one collector process. Some results have been obtained for the computation of
snapshots in asynchronous shared-memory systems that are anonymous (see Section 5 of [GR05] for a
survey). This paper also presents results concerning consensus and timestamping.

Many notions and algorithms concerning snapshots and global predicates In any case, it is assumed that
processes have identifiers and/or that there is exactly one initiator. No such possibilities exist under our
assumptions. As far as we know, our method is an emerging solution for global snapshots computation and
stable properties detection over anonymous networks where the only knowledge is an upper bound on the
diameter of the network.

2 Snapshot Algorithms for Anonymous Networks
The aim of the snapshot algorithm [CL85] is to construct a system configuration defined by the state

of each process and the state of each channel. Once the computation of local snapshots is completed, the
knowledge of the snapshot is fully distributed over the system. In this section we show how to exploit
this distributed knowledge in the context of anonymous networks with no distinguished process and no
particular topology.

Snapshots et Détection de Propriétés Stables dans les Systèmes Distribués Anonymes

2.1 Checkpoint Algorithm : Termination Detection of the Snapshot Algorithm
We use a combination of the Chandy-Lamport algorithm with an adaptation of the SSP algorithm. This

combination of algorithms enables each process to detect an instant where all processes have completed the
computation of their local snapshot.

Let G be a graph, to each process p is associated a predicate P(p) (initially P(p) is false). Once P(p)
becomes true, it remains true thereafter. Each process p knows when it has finished its local snapshot com-
putation. We consider the termination detection of a local snapshot computation as such a predicate P(p).
A process p is also endowed with two other variables : a(p) ∈ Z is a counter (initially a(p) =−1), a(p) re-
presents the distance up to which all processes have satisfied the predicate (P(p) = true) (i.e., the distance
up to which all processes have completed the computation of the local snapshot) ; A(p) ∈ Pfin(N×Z) †

encodes the information p has about the values of a(q) for each neighbor q (initially, A(p) = {(i,−1)|i ∈
[1,degG(p)]}). Transformations of the value of a(p) are defined by the following description.

Outline of the algorithm. First, if P(p) = f alse then a(p) = −1. Otherwise, if a process p has com-
pleted the computation of its local snapshot (P(p) = true) then it changes the value of a(p) to 0 and it
informs its neighbors. When a process p receives a value a(q) for some neighbor q via the port i then
it substitutes the new value (i,a(q)) to the old value (i,x) in A(p). Finally, p computes the new value
a(p) = 1+Min{x|(i,x) ∈ A(p)}. A process p knows that each process has completed the computation of
its local snapshot as soon as a(p)≥ β.

When the local snapshot is computed for each process p, it enables p to restart a system if there is a
failure. As explained in [KS08] p. 456, the saved state is called a checkpoint, and the procedure of restarting
from a previously checkpointed state is called rollback recovery.

2.2 Computing Anonymously a Weak Snapshot
The notion of coverings is fundamental in this work ; a labelled digraph D is a covering of a labelled

digraph D′ via ϕ if ϕ is a homomorphism from D to D′ such that for each arc a′ ∈ A(D′) and for each vertex
v ∈ ϕ−1(t(a′)) (resp. v ∈ ϕ−1(s(a′)), there exists a unique arc a ∈ A(D) such that t(a) = v (resp. s(a) = v)
and ϕ(a) = a′.

Given a simple connected labelled graph G = (G,λ) with a port-numbering δ which defines a snapshot
of a network G. Let D = (Dir(G),δ) be the corresponding labelled digraph (Dir(G),(λ,δ)). Let D′ be a
labelled digraph such that D = (Dir(G),δ) is a covering of D′. The labelled digraph D′ is called a weak
snapshot of G.

Proposition 1. Let G be a distributed system. From any weak snapshot D of G, one can detect deadlock
and termination and one can perform garbage collection. Furthermore, if the processes know the size of G
then loss of tokens can also be detected from a weak snapshot.

Hence, knowing an upper bound of the diameter β of an anonymous network D1, there exists a fully
distributed algorithm (it may admit several initiators) with termination detection, which computes D2 such
that D1 is a covering of D2. In anonymous networks and considering algorithms with multiple initiators, we
cannot compute a snapshot nevertheless from Proposition 1, we can solve stable properties detection. Our
algorithm is as follows :

1. at least one process initiates the Chandy-Lamport algorithm [CL85] ;
2. each process detects an instant where the computation of all local snapshots is completed (see Sec-

tion 2.1) ;
3. at least one process initiates the computation of a weak snapshot (Algorithm 1) ;
4. each process detects an instant where the computation of the weak snapshot is completed and decides

about the stable property.
Now, we present the outline of the fully distributed algorithm which computes anonymously a weak

snapshot with termination detection (Step 2). It is an adaptation of the work done by Mazurkiewicz [Maz97].

†. For any set S, Pfin(S) denotes the set of finite subsets of S.

Jérémie Chalopin, Yves Métivier, Thomas Morsellino

Outline of the algorithm. In Algorithm 1, for each vertex v ∈ V (G), λ(v) corresponds to the label of
v obtained after the termination of the Chandy-Lamport algorithm. During the execution, each vertex v
attempts to get an identity which is a number between 1 and |V (G)|. Once a vertex v has chosen a number
n(v), it sends it to each neighbor u with the port-number δv(u). When a vertex u receives a message from
one neighbor v, it stores the number n(v) with the port-numbers δu(v) and δv(u). From all information it
has gathered from its neighbors, each vertex can construct its local view (which is the set of numbers of its
neighbors associated with the corresponding port-numbers). Then, a vertex broadcasts its number, its label
and its mailbox (which contains a set of local views). If a vertex u discovers the existence of another vertex
v with the same number then it should decide if it changes its identity. To this end it compares its local view
with the local view of v. If the label of u or the local view of u is “weaker”, then u picks another number
— its new temporary identity — and broadcasts it again with its local view. At the end of the computation,
each vertex has computed a graph (D,δ′) such that (Dir(G),δ) is a symmetric covering of (D,δ′).

Algorithm 1: AlgorithmMW−S.
I : {n(v0) = 0 and no message has arrived at v0}
begin

n(v0) := 1 ;
M(v0) := {(n(v0),λ(v0), /0)} ;
for i := 1 to deg(v0) do
send < (n(v0),λ(v0),M(v0),a(v0)), i> through port i ;

R : {A message < (n1,!1,M1,a1), i1 > has arrived at v0 through port j1}
begin

Mold :=M(v0) ;
aold := a(v0) ;
M(v0) :=M(v0)∪M1 ;
if n(v0) = 0 or ∃(n(v0),!′,N′) ∈M(v0) such that (λ(v0),N(v0)) ≺ (!′,N′) then

n(v0) := 1+max{n′ | ∃(n′,!′,N′) ∈M(v0)} ;
N(v0) := N(v0)\ {(n′,!′, i1, j1) | ∃(n′,!′, i1, j1) ∈ N(v0)}∪{(n1,!1, i1, j1)} ;
M(v0) :=M(v0)∪{(n(v0),λ(v0),N(v0))} ;
ifM(v0) '=Mold then

a(v0) := −1 ;
A(v0) := {(i′,−1) | 1≤ i′ ≤ deg(v0)};

ifM(v0) =M1 then
A(v0) := A(v0)\ {(j1,a′) | ∃(j1,a′) ∈ A(v0)}∪{(j1,a1)} ;

if ∀(i′,a′) ∈ A(v0),a(v0) ≤ a′ and a(v0) ≤ β then a(v0) := a(v0)+ 1 ;
ifM(v0) '=Mold or a(v0) '= aold then
for i := k to deg(v0) do
send < (n(v0),λ(v0),M(v0),a(v0)),k > through port k ;

Conclusion. We adressed the problem of stable
properties which can be detected in a fully distri-
buted system assuming that processes are anony-
mous and only know an upper bound of the dia-
meter of the network. We proved that termina-
tion detection of the Chandy-Lamport algorithm
can be detected. Then, we applied this technique
and we proposed a checkpoint (and rollback re-
covery) algorithm. We can adapt this technique
to detect termination of the execution of a dis-
tributed algorithm. We defined a weak snapshot
as the maximal information a process can com-
pute anonymously on a network knowing an up-
per bound of its diameter. We proved that clas-
sical stable properties as termination, deadlock,
loss of tokens or garbage collection can be still
detetected with a weak snapshot. We gave an al-
gorithm which enables each process to compute
anonymously a weak snapshot. The next question concerns the efficiency of algorithms presented in this
paper to detect such properties.

Références
[Ang80] D. Angluin. Local and global properties in networks of processors. In Proceedings of the 12th

Symposium on Theory of Computing, pages 82–93, 1980.
[CL85] K. M. Chandy and L. Lamport. Distributed snapshots : Determining global states of distributed

systems. ACM Trans. Comput. Syst., 3(1) :63–75, 1985.
[GR05] R. Guerraoui and E. Ruppert. What can be implemented anonymously ? In DISC, pages 244–259,

2005.
[KRS95] A. D. Kshemkalyani, M. Raynal, and M. Singhal. An introduction to snapshot algorithms in

distributed computing. Distributed Systems Engineering, 2(4) :224–233, 1995.
[KS08] A. D. Kshemkalyani and M. Singhal. Distributed computing. Cambridge, 2008.
[Maz97] A. Mazurkiewicz. Distributed enumeration. Inf. Processing Letters, 61 :233–239, 1997.
[SS94] A. Schiper and A. Sandoz. Strong stable properties in distributed systems. Distributed Compu-

ting, 8(2) :93–103, 1994.
[SSP85] B. Szymanski, Y. Shy, and N. Prywes. Synchronized distributed termination. IEEE Transactions

on software engineering, SE-11(10) :1136–1140, 1985.
[Tel00] G. Tel. Introduction to distributed algorithms. Cambridge University Press, 2000.

