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A theoretical framework for biological control of soil-borne1

plant pathogens: identifying effective strategies2

Nik J. Cunniffea,∗, Christopher A. Gilligana3

aDepartment of Plant Sciences, University of Cambridge, Downing Street, Cambridge, United Kingdom,4
CB2 3EA. Tel: +44 (0)1223-333900, Fax: +44 (0)1223-333953.5

Abstract6

We develop and analyse a flexible compartmental model of the interaction between a
plant host, a soil-borne pathogen and a microbial antagonist, for use in optimising bi-
ological control. By extracting invasion and persistence thresholds of host, pathogen
and biological control agent, performing an equilibrium analysis, and numerical in-
vestigation of sensitivity to parameters and initial conditions, we determine criteria for
successful biological control. We identify conditions for biological control (i) to pre-
vent a pathogen entering a system, (ii) to eradicate a pathogen that is already present
and, if that is not possible, (iii) to reduce the density of the pathogen. Control depends
upon the epidemiology of the pathogen and how efficiently the antagonist can colonise
particular habitats (i.e. healthy tissue, infected tissue and/or soil-borne inoculum). A
sharp transition between totally effective control (i.e. eradication of the pathogen) and
totally ineffective control can follow slight changes in biologically-interpretable pa-
rameters or to the initial amounts of pathogen and biological control agent present.
Effective biological control requires careful matching of antagonists to pathosystems.
For preventative/eradicative control, antagonists must colonise susceptible hosts. How-
ever for reduction in disease prevalence, the range of habitat is less important than the
antagonist’s bulking-up efficiency.

Keywords: Epidemiological model, invasion, persistence, basic reproductive number7
R0, biocontrol8
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1. Introduction9

Biological control uses a natural enemy (or antagonist) of a pathogen to effect a10

reduction in the level or prevalence of disease [15, 6]. There are obvious attractions.11

However, biological control has all too often either failed to work or proved too un-12

reliable to be a realistic proposition [71, 66, 64, 33], despite successes in the con-13

trolled conditions of glasshouses and propagation systems [58]. With chemical control14

ever more unattractive because of increasingly stringent legislative constraints [34, 63]15

and the economic and operational challenges posed by rapid evolution of resistant16

pathogens [57, 7], attention naturally reverts to explaining the hitherto disappointing17

failure of biological control in the field.18

The physiological basis of biological control has attracted significant attention, and19

there is good understanding of a number of small-scale antagonistic mechanisms, in-20

cluding mycoparasitism [19, 67], antibiosis [62], induced resistance [74] and hypovir-21

ulence [53]. However little is known at the population level, even though it is the22

coupled dynamics of the host, pathogen and antagonist at this larger scale that ulti-23

mately determine success. Disregarding purely statistical infection-dose responses that24

predict rather than explain [22, 42, 61, 55, 65, 68, 48, 13], mathematical models and25

simulations have often concentrated on low-level mechanistic representations of the26

physiological responses detailed above [46, 70, 43, 47].27

Arguably a more illuminating approach, however, is to map these physiological28

responses to changes in one or more of a small set of epidemiologically-meaningful29

parameters, such as rates of infection and/or infectious periods, in a population-level30

model of disease [24, 26]. Extensive theoretical work of this broad type has examined31

interactions between parasitoids and their insect hosts [54], and the ecology of these32

systems is now well-understood. However with certain exceptions [76, 41, 77], few33

generic studies have focussed on biological control of plant disease, and instead models34

have typically concentrated on specific host-pathogen-antagonist combinations. Partic-35
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ularly well-studied are the interactions between Rhizoctonia solani and Trichoderma36

viride on radish [44, 1, 20, 2, 21, 45], and between Sclerotina minor and Sporidesmium37

sclerotivorum on lettuce [28, 29, 30, 31]. Unfortunately, this narrow focus means that38

relatively few general messages have emerged. Here we have a broader ambition, and39

consider how microbial antagonists affect the spread of pathogens through host popu-40

lations of plants in general.41

We concentrate on soil-borne plant pathogens, which exemplify economically-42

important systems for which biological control is considered to be a viable proposition43

[14, 37, 39]. Our underlying methodology of analysing the likely efficacy of control by44

investigating its effect on epidemiologically-meaningful parameters has typically been45

cast in terms of effects on pathogen invasion and persistence [25]. It has also been46

used to determine suitable controls for broad groups of pathogens, classified according47

to their epidemiology [35, 36, 16], an arguably more challenging objective. However48

previous work has not specifically targetted biological control. In particular the ef-49

fect(s) of control either remained fixed, or pulsed and decayed according to a simple50

schedule of treatments [36], and the more complex temporal variation corresponding51

to the three species interaction in biological control has not been considered, except52

with reference to the S. minor and S. sclerotivorum interaction [28, 29, 30, 31].53

Here we extend an existing compartmental model of the interaction between a plant54

host and a soil-borne fungal pathogen [16] to include a bacterial or fungal antagonist.55

The effect(s) of each species upon the other is controlled by tunable parameters. In56

particular the antagonist can bulk-up and increase in density on three distinct habitats57

(healthy plant tissue and/or infected plant tissue and/or soil-borne inoculum), and can58

deleteriously affect any or all of the pathogen’s epidemiological rates (e.g. rates of59

primary and secondary infection, rates of decay of infectious material). Any alteration60

to these rates depends on the density of the biological control agent, and so varies61

over time. As the interactions between host, pathogen and antagonist are controlled by62
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parameters of the model, it retains sufficient flexibility to represent a range of systems.63

We use the model to investigate how biological control is affected by (i) the proper-64

ties of the host-pathogen interaction; (ii) the set of epidemiological rates the antagonist65

is capable of affecting; and (iii) the habitats the antagonist is capable of colonising. We66

examine:67

1. preventative control, in which the antagonist prevents the pathogen from invad-68

ing the system;69

2. eradicative control, in which the antagonist eradicates the pathogen if it is already70

present;71

3. reductive control, in which the antagonist reduces the density of the pathogen.72

In the case of reductive control, we also characterise how the effectiveness of con-73

trol (in terms of reduction in long-term pathogen density) depends on the antagonist’s74

mode of action and population dynamics, and how suitable antagonists for particu-75

lar pathogens are conditioned upon the pathogen’s epidemiology. Finally we examine76

variations in the efficacy of control depending on the initial density of each species:77

host, pathogen and antagonist, and how under certain circumstances extreme changes78

in the efficacy of control can follow from only slight changes to either initial densities79

or to the parameters of the model.80

2. Methods81

2.1. Modelling82

2.1.1. Host-pathogen interaction83

The population of hosts is divided into two classes, susceptible (S) and infected

(I). These variables may be defined in terms of the number or density of plants, or

may be relative to smaller units such as roots, dependent upon the natural scale of the

epidemic [24]. Additionally we track the density of primary inoculum (X ), which for
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fungal pathogens includes free-living infective stages such as spores and resting bodies

including sclerotia and/or fragments of previously colonised host tissue:

dS
dt

= η(κ− (S+ I))− (βPX + βSI)S, (1)

dI
dt

= (βPX + βSI)S−μI, (2)

dX
dt

= νI− γX . (3)

The model is a particular variant of a class of models introduced and analysed by84

Gubbins et al. [32]. It represents (at distinct rates βP and βS) the dual pathways of85

primary and secondary infection characteristic of soil-borne plant pathogens [10, 27,86

49, 3]. Infected hosts decay at per capita rate μ, corresponding to disease-induced87

mortality (this parameter could also represent a combination of natural and disease-88

induced mortality, or a rate of loss of infectiousness of infected host tissue). External89

inoculum loses infectiousness at rate γ, and is replenished by release from infectious90

hosts with efficiency ν, corresponding to infected hosts either producing or becoming91

sources of inoculum [29, 25]. Replenishment of susceptible hosts is also included;92

without this the pathogen cannot persist in this class of model. Additionally for soil-93

borne plant pathogens, growth/creation of host tissue typically occurs over timescales94

comparable to the epidemiological dynamics [2, 5, 16], and so in contrast to models of95

aerial systems for which host demography is arguably less important [41, 77], a sub-96

model for host growth is required. Host growth is linear, where both susceptible and97

infected hosts contribute to the carrying capacity (κ), and in which the dynamics are98

governed by rate parameter η [23]. The particular host growth function we have taken99

has been used in a number of previous investigations of soil-borne plant pathogens [40,100

23, 27, 73, 69], and additionally (when modelling at the scale with an individual plant101

as a single host) is applicable to the wide range of agricultural systems with continuous102

harvesting and replanting [51, 8]. As our preliminary investigations indicated that other103
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choices of the function, including logistic growth, appeared to have no effect on the104

qualitative results, we concentrated here on a relatively simple linear form in order to105

simplify both our analysis and the consequent presentation of our results.106

2.1.2. Antagonist107

Our extension to the model introduces the density of an antagonist species (A):

dS
dt

= η(κ− (S+ I))−
(

βPX
1 + αPA

+
βSI

1 + αSA

)
S, (4)

dI
dt

=
(

βPX
1 + αPA

+
βSI

1 + αSA

)
S−μ(1 + ωμA) I, (5)

dX
dt

= νI− γ
(
1 + ωγA

)
X , (6)

dA
dt

= (ρSS+ ρII+ ρXX−σ− ξA)A. (7)

The antagonist affects the pathogen and acts as an agent of biological control by (po-108

tentially) decreasing the rate(s) of infection and/or by increasing the rate(s) of de-109

cay of infectious material. The per capita parameters αP,αS,ωμ,ωγ characterise the110

pathogen-antagonist interaction. The antagonist is able to bulk-up upon susceptible111

hosts, infected hosts and/or soil-borne inoculum: we define each of these as a habitat.112

Antagonist bulking-up depends upon the habitat-specific parameters ρS,ρI and ρX , pro-113

viding a mechanism to represent habitat-generalists (ρS = ρI = ρX ), habitat-specialists114

(only one of ρS,ρI ,ρX non-zero), or anywhere between these extremes. The antagonist115

density decays at per capita rate σ, corresponding to inter-specific competition from116

other soil-borne organisms and the natural death of the antagonist. There is density-117

dependence acting upon the antagonist population, controlled by the parameter ξ, and118

which prevents unbounded increase of antagonist density.119
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2.2. Non-dimensionalisation120

To simplify the analysis we introduce the dimensionless variables

Ŝ = Sκ−1, Î = Iκ−1, X̂ = ηXν−1κ−1, Â = ξAη−1, t̂ = ηt, (8)

and parameters

β̂P = βPνκη−2, β̂S = βSκη−1, μ̂ = μη−1, γ̂ = γη−1,

α̂P = αPηξ−1, α̂S = αSηξ−1, ω̂μ = ωPηξ−1, ω̂γ = ωSηξ−1,

ρ̂S = ρSκη−1, ρ̂I = ρIκη−1, ρ̂X = ρXνκη−2, σ̂ = ση−1.

(9)

The model is transformed to (Table 1)

dŜ
dt̂

= 1− (
Ŝ+ Î

)−
(

β̂PX̂

1 + α̂PÂ
+

β̂SÎ

1 + α̂SÂ

)
Ŝ, (10)

dÎ
dt̂

=

(
β̂PX̂

1 + α̂PÂ
+

β̂SÎ

1 + α̂SÂ

)
Ŝ− μ̂

(
1 + ω̂μÂ

)
Î, (11)

dX̂
dt̂

= Î− γ̂
(
1 + ω̂γÂ

)
X̂ , (12)

dÂ
dt̂

=
(
ρ̂SŜ+ ρ̂I Î+ ρ̂XX̂− σ̂− Â

)
Â. (13)

Scaling according to Equations (8) and (9) leads to a dimensionless system parame-121

terised in terms of the three key interactions which we focus upon: the effect of the122

pathogen on its plant host; the effect of the antagonist on the pathogen; and the re-123

sponse of the antagonist to its habitat.124

*** INSERT TABLE ONE NEAR HERE ***125
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2.3. Numerical methods126

Our analysis of Equations (10)-(13) is supplemented by numerical solution. We

take as an example the control of a particular pathogen, with (unless otherwise stated)

β̂P = 0.5, β̂S = 0.375, μ̂= 0.25, γ̂ = 0.8, (14)

and

Ŝ0 = 1.0, Î0 = 0, X̂0 = 0.1, Â0 = 0.1, (15)

corresponding to the simultaneous introduction of a small density of inoculum and127

antagonist to a host population at its carrying capacity. We focus upon three key nu-128

merical scenarios (Table 2).129

*** INSERT TABLE TWO NEAR HERE ***130

3. Results131

3.1. Equilibrium analysis132

3.1.1. Without antagonism133

The basic reproductive number of the pathogen in the absence of the antagonist

(Appendix A.1) is

R0 = RP
0 +RS

0 =
1
μ̂

(
β̂P

γ̂
+ β̂S

)
, (16)

where this key threshold may be partitioned into distinct components RP
0 and RS

0 cor-

responding to primary and secondary infection. If R0 < 1 then the pathogen cannot

invade, and the host density stabilises at its carrying capacity, with

(
Ŝ∞, Î∞, X̂∞

)
= (1,0,0). (17)
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However if R0 > 1 then the pathogen invades the host population, and

(
Ŝ∞, Î∞, X̂∞

)
=

(
1
R0

,
1

1 + μ̂

(
1− 1

R0

)
,

1
γ̂ (1 + μ̂)

(
1− 1

R0

))
. (18)

Furthermore it can be shown that the pathogen always persists at this level if R0 > 1134

(Appendix A.2).135

3.1.2. Including antagonism136

The full model with Â �= 0 introduces two equilibria in addition to analogues of

Equations (17) and (18) with Â∞ = 0. The first corresponds to host and antagonist

coexisting, with the pathogen absent:

(
Ŝ∞, Î∞, X̂∞, Â∞

)
= (1,0,0, ρ̂S− σ̂) . (19)

For Equation (19) to predict biologically plausible densities, the rate at which the an-137

tagonist bulks-up on susceptible hosts (ρ̂S) must be greater than its per capita rate of138

decay (σ̂).139

If we define

R(Â) =
1

μ̂
(
1 + ω̂μÂ

)
(

β̂P

γ̂
(
1 + α̂PÂ

)(
1 + ω̂γÂ

) +
β̂S(

1 + α̂SÂ
)
)

, (20)

where R(Â) is a criterion for invasion, and R(Â = 0) = R(0) = R0 of the underlying

model, the other additional equilibrium is given implicitly by

Ŝ∞ =
1

R(Â∞)
, (21)

Î∞ =
1

1 + μ̂
(
1 + ω̂μÂ∞

) (1− 1

R(Â∞)

)
, (22)

X̂∞ =
1

γ̂
(
1 + ω̂γÂ∞

)(
1 + μ̂

(
1 + ω̂μÂ∞

)) (
1− 1

R(Â∞)

)
, (23)

Â∞ = ρ̂SŜ∞ + ρ̂I Î∞ + ρ̂XX̂∞− σ̂. (24)
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The equilibrium specified by Equations (20)-(24) corresponds to all three species co-140

existing. For the densities of infected hosts and inoculum to be biologically plausible,141

R(Â∞) > 1 is required, and since R(·) is a decreasing function and Â∞ must be greater142

than zero, a precondition is that the pathogen can invade the antagonist-free system143

(i.e. R(0) = R0 > 1). In principle the expressions in Equations (20)-(23) could be sub-144

stituted into Equation (24) to give a sixth order polynomial fixing Â∞, but the complex145

expression that results adds little insight. The four equilibria of the full model, together146

with existence criteria, are summarised in Table 3.147

*** INSERT TABLE THREE NEAR HERE ***148

3.1.3. Invasion criteria149

We examine invasion criteria for all three species: host, pathogen and antagonist.150

In particular we determine whether or not these species can invade, increasing in den-151

sity when introduced to a system otherwise at equilibrium, and characterise how this152

depends upon the rates controlling infection and/or reproduction. The host can always153

invade (and in fact persist at non-zero density), as its birth rate at low densities is in-154

dependent of its own population size, and so there is a constant influx of hosts into155

the system whenever the host density is small. We therefore focus upon invasion of156

pathogen and antagonist, firstly in the absence of the other, but thereafter when the157

other species is present (Table 4).158

*** INSERT TABLE FOUR NEAR HERE ***159

If the antagonist is absent (and so only the host is present), the pathogen can invade

only if

R(0) = R0 > 1, (25)
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using the results for the underlying model. When the pathogen is absent, the antagonist

can invade the host population if

ρ̂S

σ̂
> 1, (26)

i.e. if it is able to bulk-up more quickly on susceptible hosts than it decays.160

Invasion of each species in the presence of the other is more complex. If the antag-

onist is present at equilibrium with the host, then the pathogen can only invade if (cf.

Equation (20))

R(ρ̂S− σ̂) > 1. (27)

Note that since R(·) is decreasing, and because ρ̂S− σ̂ must be greater than zero for

the antagonist to be present in the absence of the pathogen (Equation (26)), R0 > 1 is

a necessary precondition for invasion of the pathogen when the antagonist is present

(this is a consequence of the antagonist’s deleterious effect on the pathogen). However,

if the pathogen is present, the antagonist can only invade if

ρ̂S

σ̂
Ŝ∞ +

ρ̂I

σ̂
Î∞ +

ρ̂X

σ̂
X̂∞ > 1, (28)

where the values of Ŝ∞, Î∞ and X̂∞ follow from the antagonist-free equilibrium in Equa-

tion (18), i.e. when

ρ̂S

σ̂R0
+

ρ̂I

σ̂ (1 + μ̂)

(
1− 1

R0

)
+

ρ̂X

σ̂γ̂ (1 + μ̂)

(
1− 1

R0

)
> 1. (29)

Depending on the preferred habitat of the antagonist (i.e. to what extent it can bulk-161

up on susceptible hosts, infected hosts and pathogen inoculum), invasion can become162

more or less likely. For example a habitat-specialist antagonist which can only bulk-up163

on susceptible hosts (i.e. ρ̂S > 0, ρ̂I = ρ̂X = 0) is less likely to invade in the presence of164
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the pathogen, whereas a similarly-specialised antagonist with a preference for infected165

hosts (i.e. ρ̂I > 0, ρ̂S = ρ̂X = 0) requires the pathogen to be present to have any chance166

of invading.167

3.2. Control without antagonism168

Biologically-plausible control strategies lead to reductions in the dimensionless169

rates of transmission (β̂P and/or β̂S), and/or increases in the dimensionless rates of170

decay of infected hosts and inoculum (μ̂ and/or ω̂). Changes to these dimensionless171

parameters depend upon the intensity of control and the host-pathogen system in ques-172

tion. The efficacy of control may be conveniently characterised according to its effect173

on R0, and in particular we distinguish: (i) eradication, in which the pathogen is ex-174

cluded in the long term (R0 < 1); and (ii) reduction, in which the pathogen persists at175

a smaller density (R0 > 1). Certain control strategies can never lead to eradication in176

systems which have RP
0 > 1 or RS

0 > 1 in the absence of control, no matter how inten-177

sively applied (Table 5). This emphasises the need to match any control strategy with178

the host-pathogen interaction in question.179

*** INSERT TABLE FIVE NEAR HERE ***180

3.3. Control including antagonism181

We initially assume that the antagonist is able to bulk-up very quickly, and so that it182

is able to persist in the system at a very large density, thereby identifying lower bounds183

for the endemic equilibrium pathogen density (Î∞) when the antagonist is present.184

Thereafter we extend this by numerical examination of several scenarios (Table 2),185

progressively investigating the effects upon Î∞ of smaller rates of antagonist bulking-186

up (and so lower antagonist density); the habitats that the antagonist is able to colonise;187

and the initial densities of antagonist, pathogen and host.188
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3.3.1. Maximum reductive control (i.e. minimum Î∞)189

If the population dynamics of the antagonist allow it to persist in the system, the190

best that it can achieve in reducing Î∞ may be inferred directly from the antagonist-free191

behaviour. The maximum effect of a particular class of antagonist depends upon RP
0192

and RS
0 for the host-pathogen system, and on the rate(s) that the antagonist is capable of193

affecting (Table 5). These lower bounds on Î∞ ignore the antagonist’s per capita effect194

and/or its density, and therefore may not be attained in practice (however, see below).195

We note, however, that according to this analysis only single-mode antagonists able to196

affect the rate at which infected hosts decay (i.e. to shorten the infectious period of197

infected hosts, ω̂μ > 0) are capable of eradicating all classes of pathogen.198

3.3.2. Antagonist density (Scenario A)199

We first assume a habitat-generalist antagonist which bulks-up at equal rate λ̂ on all200

habitats. Numerical analysis of the endemic level of infection (Figure 1), then shows201

the effect on Î∞ of any decrease in a per capita rate of antagonism may be compensated202

for by a suitably-sized increase in the antagonist’s ability to bulk-up (as this leads to a203

larger equilibrium antagonist density and so an equal force of antagonism overall). Ad-204

ditionally whenever the antagonist has a large enough per capita effect on the pathogen205

and/or is able to bulk-up sufficiently, the limiting lower bounds upon the minimum206

infected density from Section 3.3.1 are attained.207

*** INSERT FIGURE ONE NEAR HERE ***208

3.3.3. Habitat-specificity (Scenario B)209

We examine habitat-specificity by fixing the per capita effect of the antagonist while

allowing a pair of habitat-specific bulking-up parameters (i.e. two of ρ̂S, ρ̂I , ρ̂X ) to vary

simultaneously (Figure 2). The contours of infected density are linear; this is because

Â∞ = ρ̂SŜ∞ + ρ̂I Î∞ + ρ̂XX̂∞− σ̂, (30)
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and so, all other things being equal, any increase in (say) ρ̂S can be exactly offset by a210

suitably-sized decrease in (say) ρ̂I to give an equally-sized antagonist population. We211

note there is no requirement for the antagonist to be able to bulk-up on all classes of212

habitat in order to attain the maximal control outlined in Section 3.3.1 (Figure 2b).213

However, if the antagonist is theoretically able to eradicate the pathogen, this is only214

actually possible when ρ̂S > 0, i.e. when the antagonist can bulk-up on susceptible215

hosts. Any antagonist that was not able to bulk-up upon healthy tissue but that eradi-216

cated the pathogen would destroy its own only habitat by exerting its antagonistic effect217

to the maximum possible extent.218

*** INSERT FIGURE TWO NEAR HERE ***219

3.3.4. Bistability, eradication and feedback (Scenario C)220

It is possible that neither the pathogen nor the antagonist can invade when the other221

is present at equilibrium, when neither invasion criterion according to Equations (27)222

and (29) is satisfied. Accordingly the model is bistable for certain sets of parameters,223

with eradication of either pathogen or antagonist dependent on initial conditions. If the224

initial conditions are held fixed, bistability manifests itself with a sharp transition in the225

endemic infected density, as a small change in a parameter such as ρ̂S leads to a sudden226

switch from no control to eradication (Figure 3b).227

*** INSERT FIGURE THREE NEAR HERE ***228

** INSERT FIGURE FOUR NEAR HERE ***229

Examining the dynamics on either side of this transition illustrates the mechanism230

by which alternate equilibria are attained (Figure 4). For values of ρ̂S (ability of the an-231

tagonist to bulk-up on healthy host tissue) either side of the transition point marked by232

a green dot in Figure 3b, the antagonist is able to invade initially and to bulk-up quickly233

to an intermediate plateau. Nevertheless for the smaller value of ρ̂S, the effective repro-234

ductive number of the pathogen remains above one, and the antagonist is eradicated as235
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the pathogen establishes itself and the antagonist’s habitat is removed. For the slightly236

larger value of ρ̂S, however, the effective reproductive number drops below one at the237

intermediate plateau, and so the pathogen density begins to fall. Since any decrease in238

pathogen density leads to a corresponding increase in antagonist density as the latter239

has more habitat, and because this leads to a larger force of antagonism and so a further240

decrease in pathogen density, the pathogen is eradicated via a feedback mechanism.241

The exact value of the per capita rate of antagonist bulking-up on susceptible habi-242

tat, ρ̂S, (with all other parameters fixed) at which there is a sharp transition depends on243

the initial conditions (Figures 3c and 3d). We note that, although this value depends244

upon the density of antagonist and pathogen at the initial plateau, the critical value of245

ρ̂S is relatively irresponsive to Â0 and Ŝ0 (since the dynamics of antagonist and host are246

fast, and the initial condition is soon “washed out” of the system). However the initial247

pathogen density (shown in Figures 3c and 3d via the proxy of initial inoculum density)248

has a large effect on the value of ρ̂S. This counter-intuitive result can be attributed to249

the following dynamics (Figure 4): the initial pathogen density exerts a large influence250

on the density of susceptible hosts that corresponds to the primary infection plateau,251

via the Ŝ+ Î term in the host population’s carrying capacity. This, in turn, leads to252

changes in the value of the bulk-up parameter required for the sharp transition, via the253

feedback described above.254

4. Discussion255

We have extended a well-studied and generic model of soil-borne plant pathogens256

to encompass biological control, by including the dynamics of an antagonist popula-257

tion. The antagonist can increase in density on a range of habitats, including susceptible258

hosts, infected hosts and soil-borne inoculum. The rate of increase on each habitat de-259

pends on a parameter, and so is configurable depending on the antagonist in question.260

The antagonist acts as an agent of biological control by affecting the epidemiologi-261
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cal processes that underpin the host-pathogen interaction; these effects are translated262

via effects on selected epidemiological parameters including rates of primary and sec-263

ondary infection, and infectious periods of infected hosts and inoculum. Reduction(s)264

in these rates/periods depend(s) jointly on the antagonist’s density and on a per capita265

parameter for the effectiveness of the antagonist. By allowing the control effect to de-266

pend on antagonist density, the complex temporal variation corresponding to the three267

species interaction in biological control is reflected. By decoupling the range of habi-268

tat(s) the antagonist is capable of colonising from its action(s) on the epidemiology of269

the pathogen, and by allowing both these aspects of its biology to be be controlled by270

tunable parameters, the model can target diverse pathogen-antagonist interactions. As271

the underlying epidemiological model is equally flexible, and can in principle represent272

any host-pathogen combination, the full model is therefore applicable to a wide range273

of host-pathogen-antagonist triplets.274

It is instructive to show this flexibility in practice. Using take-all on wheat, caused275

by the fungus Gaeumannomyces graminis var. tritici, as an illustrative example, a276

number of studies have used a variant of our underlying model to investigate the host-277

pathogen dynamics [2, 4, 3, 5]. Both primary and secondary infection and host growth278

were shown to have an important role, and in particular it is necessary to take βP,βS > 0279

in the epidemiological model. Turning to the biological control agent, a range of mech-280

anisms for the antagonistic effect of Pseudomonas spp. bacteria have been proposed.281

However the current consensus [75] emphasises the role of antibiotic production (either282

2,4-diacetylphloroglucinol [59] or phenazine-1-carboxylic acid [72, 60]). Antibiotics283

reduce the rates of both initial primary infection [12] and of the growth of lesions and284

secondary spread of the pathogen [14, 52]. This would correspond to the bacterium285

reducing the effective rates of primary (βP), and secondary (βS) infection, respectively,286

and so to αP,αS > 0 in the model. Finally, although the bacteria are acknowledged287

to colonise healthy roots [72], populations are much larger on diseased roots [52], and288
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so we would take ρI > ρS > 0. In principle a similar characterisation of a plausible289

set of non-zero parameters could easily be outlined for any host-pathogen-antagonist290

interaction.291

Biological control can conveniently be divided into (i) preventative, in which pre-292

emptive application aims to stop the pathogen from entering the system; and (ii) re-293

active, with control applied after the pathogen has already invaded the population of294

plant hosts. Reactive control can be further subdivided into (a) eradicative, where the295

pathogen is driven out of the system by the antagonist; and (b) reductive, with the more296

modest aim of reducing the density of the pathogen. The model allows us to understand297

each of these types of control.298

For preventative control, the pathogen’s invasion criterion in the presence of the299

antagonist (Equations (20) and (27)) illustrates the importance of both the antago-300

nist’s density when the pathogen is absent, and its effect(s) on the epidemiology of301

the pathogen. Clearly to be able to prevent pathogen invasion, the antagonist must be302

able to bulk-up on susceptible host tissue (i.e. has ρ̂S > 0). However, depending on303

the division of the pathogen’s basic reproductive number into distinct components cor-304

responding to primary and secondary infection, R0 = RP
0 +RS

0, even a high density of305

antagonist may not be sufficient to stop invasion. In particular, a pathogen with RP
0 > 1306

can only be prevented from invading by an antagonist that is able to alter at least one307

of the rates associated with primary infection (i.e. that affects the effective rate of308

primary infection, β̂P; of decay of inoculum, γ̂; or of infected hosts, μ̂; and so has at309

least one of α̂P, ω̂γ or ω̂μ greater than zero). There is an analogous result for secondary310

infection. Note that an antagonist which affects the rate of decay of infectious hosts311

(i.e. has ω̂μ > 0) is, in principle at least, theoretically capable of preventing invasion312

irrespective of the pathogen’s balance between primary and secondary infection. This313

is because the infectious period of infected hosts is implicated in both infection path-314

ways. However, whether or not such an antagonist does indeed prevent the pathogen315
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from entering the system depends not only on the antagonist’s value of ω̂μ, but also on316

its density in the absence of the pathogen (i.e. on the balance between its bulk-up rate317

on susceptible hosts, ρ̂S, and its natural decay rate, σ̂).318

The partitioning of R0 is equally critical for eradicative reactive control. The max-319

imum possible effect of any control which independently affects a single epidemio-320

logical mechanism is shown in Table 5. Again the result is driven by the partitioning321

R0 = RP
0 +RS

0. For example, if both RP
0 ,RS

0 > 1, an antagonist is only able to eradicate322

the pathogen (i.e. drive Î∞ to zero) if it is able to interfere with both infection pathways323

simultaneously. This can either be because the antagonist is capable of affecting both324

primary and secondary infection (eg. α̂P, α̂S > 0, although other combinations are pos-325

sible), or because it can reduce the infectious period of infected hosts (i.e. ω̂μ > 0).326

Even if the antagonist is able to bulk up to a large extent on the available habitat, it will327

not be able to eradicate the pathogen unless a correct combination of epidemiological328

mechanism(s) are targetted.329

The significance of the antagonist’s population dynamics for reactive control, how-330

ever, is twofold. Firstly the antagonist must be able to invade when the pathogen is331

present (cf. Equation (29)). This depends on a complex balance of the available den-332

sity of susceptible and infected hosts and soil-borne inoculum, and which of these333

habitats the antagonist is capable of colonising. Secondly, and arguably more impor-334

tantly, useful reductive control is possible even if the pathogen is not eradicated. As335

shown in Figure 1, broadly-speaking, the better the antagonist is at bulking-up on avail-336

able habitat, the more effective it will be at controlling the pathogen, given a fixed per337

capita efficiency of antagonism. This is unsurprising. However less obvious (Figure 2)338

is that any increase in (say) the rate of increase on susceptible hosts, ρ̂S, can be exactly339

offset by a suitably-sized decrease in (say) the rate of increase on infected hosts, ρ̂I .340

This indicates that, if the antagonist is able to persist in the system, the range of habi-341

tats that it is capable of colonising is less important than the rate at which it is able to342
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bulk-up on those habitats that it can use. In particular there is no requirement for the343

antagonist to be able to bulk-up on all classes of habitat in order to exert the maximal344

reductive control it is capable of as per Table 5, so long as it is sufficiently able to utilise345

those habitats it can colonise. Of course there is the important proviso in the limiting346

case of eradication that the antagonist must be able to bulk up on susceptible hosts347

(as otherwise it destroys its own habitat in exerting its antagonist effect). Finally we348

note that the maximum effect of reductive control again follows from a combination of349

RP
0 and RS

0 for the underlying host-pathogen interaction and the set of epidemiological350

mechanisms that the antagonist can affect.351

We used the equilibrium density of infected hosts, Î∞, to assess the quality of bi-

ological control. This approach is fairly standard for models of this type [24, 16] and

certainly has the dual advantages of simplicity and lack of ambiguity. However in

certain circumstances it is possible that either (i) the equilibrium may not be reached

within the timescale of interest for a particular application of the model (eg. within

a single growing season); or (ii) the approach to equilibrium is oscillatory, and so the

final density of infected hosts understates the impact of the pathogen on the quantity of

practical interest (eg. the yield of a crop plant). Other approaches are possible, often

based on some variant of the area under the disease progress curve (AUDPC) [50]. A

particularly useful metric which concentrates on the yield within a single growing sea-

son of length Tmax and which addresses both of these potential problems was proposed

by Hall et al. [35]

y =
∫ Tmax

t=0
w(t)S(t)dt, (31)

where w(t) gives an appropriate weighting to any growth stages that have a dispropor-352

tionate effect on yield. However this approach (i) targets the particular case of within-353

season growth of a crop, and so is inappropriate for a generic framework such as that354

we present here; (ii) can only be calculated for any particular set of parameters using355
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simulation; and (iii) requires the weighting function w(t) to be defined. Additionally,356

we note that this type of metric would be most useful if the approach to equilibrium357

were strongly oscillatory; this does not appear to be the case for our model, at least358

for the parameter sets we have examined. This is perhaps in part a consequence of the359

linear function we used to model host growth, which has recently been shown to be360

associated with a smooth approach to equilibrium in the underlying epidemiological361

model (in contrast to non-linear host growth functions such as logistic, which promote362

cycling of the state variables [16]). Finally we note that a rise then fall in the number of363

infected roots appears to be rare for the soil-borne systems we are most focussed upon364

[44, 20, 21, 2, 4, 3, 45, 5].365

The above analyses of invasion have depended on either the antagonist or pathogen366

being well-established, and so one species or the other being initially present in the367

system at its equilibrium density. However this is not necessarily the case. While the368

above analyses remain broadly correct, it is possible that both the pathogen-free and369

antagonist-free equilibria are locally stable. In this bistable case, either pathogen or370

antagonist can eventually be eradicated. The final outcome of attempted control then371

depends critically on the initial conditions at the time of deployment. Interestingly372

for a fixed initial condition there is a sharp jump from totally effective eradicative373

control (i.e. eradication of the pathogen) to totally ineffective control (i.e. the pathogen374

persists at its antagonist-free equilibrium) as the parameters of the model are slightly375

altered. As changes in parameters can be driven by changes in environmental or other376

conditions [44], this mechanism arguably offers a plausible explanation for the wide-377

ranging outcomes of biological control in practice, and for spatial differences in the378

effectiveness of biological control in response to small-scale environmental changes.379

We have chosen not to explicitly model responses to environmental variables such as380

temperature and moisture levels, in the interests of parsimony and to avoid obscuring381

the messages of this introduction to the model framework. However we note that a382
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flexible technique based on rewriting the model as a stochastic differential equation383

and coupling it to a simple Markov-chain weather-generating model was presented384

by Truscott and Gilligan [73], and our result illustrating very large effects of small385

parameter changes indicates that this may be a fruitful area for our future work.386

The generic nature of our work distinguishes it from previous models of biologi-387

cal control of soil-borne pathogens [28, 44, 1, 20, 29, 30, 31, 2, 21, 45]. However a388

flexible model of the biological control of airborne pathogens was recently introduced389

by Jeger et al. [41], and further investigated by Xu et al. [77]. Our model is more390

closely targetted to the soil-borne systems we consider, and in particular includes the391

distinct pathways of primary and secondary infection that have been shown to control392

epidemics of soil-borne disease [10, 27, 49, 3]. Furthermore our model includes the393

growth of the host, which is now well-acknowledged to be a crucial driver of the dy-394

namics of soil-borne pathogens [2, 5]. Host growth was excluded from the models of395

Jeger et al. [41] and Xu et al. [77] on the grounds of expediency in simplifying analytic396

solution. Instead those authors allowed a proportion of tissue colonised by the biolog-397

ical control agent (their class Hb) to continuously become removed (R) or to revert to398

susceptible (Hs). The latter transition allows the pathogen to persist in the system. The399

former transition (i.e. Hb → R) was removed in the updated version of the model due400

to Jeger et al. [77] to ameliorate the unrealistic immediate removal of a large propor-401

tion of host tissue following a large one-time application of biological control. As a402

consequence of our focus on soil-borne pathogens, it is the more extensive treatment403

of host growth and primary and secondary infection that distinguishes our work from404

the models of Jeger et al. [41] and Xu et al. [77].405

In summary our results highlight the importance of both population dynamics and406

the mechanism(s) of antagonism for effective biological control of soil-borne plant407

pathogens. We illustrate how successful biological control depends crucially on the epi-408

demiology of the host-pathogen interaction and the habitats that the antagonist is able409
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to colonise. While we acknowledge our underlying modelling framework is rather sim-410

ple, by restricting ourselves to a non-spatial, autonomous, deterministic variant of the411

SIRX framework, we have avoided the proliferation of state variables and parameters412

which would have been associated with more complex models. Additionally models413

of this ostensibly simple type have been extensively and successfully confronted with414

data [27, 29, 30, 31, 2, 4, 3, 5]. However, our future work will concentrate on extending415

the framework to include stochasticity [21, 26]; spatial effects [56, 69]; environmental416

variation [73] and the periodic removal of hosts associated with commercial cropping417

in agricultural systems [30, 49].418
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substrate colonization by Botrytis cinerea and Ulocladium atrum in relation to539

biological control of Botrytis cinerea in cyclamen. Mycological Research 106,540

716–728.541

[44] Kleczkowski, A., Bailey, D.J., Gilligan, C.A., 1996. Dynamically generated vari-542

27



ability in plant-pathogen systems with biological control. Proceedings of the543

Royal Society of London, B 263, 777–783.544

[45] Kleczkowski, A., Gilligan, C.A., 2007. Parameter estimation and prediction for545

the course of a single epidemic outbreak of a plant disease. Journal of the Royal546

Society, Interface 4, 865–877.547

[46] Knudsen, G.R., Hudler, G.W., 1987. Use of a computer simulation model to548

evaluate a plant disease biocontrol agent. Ecological Modelling 35, 45–62.549

[47] Knudsen, G.R., Stack, J.P., Schuhmann, S.O., Orr, K., LaPaglia, C., 2006.550

Individual-based approach to modeling hyphal growth of a biocontrol fungus in551

soil. Phytopathology 96, 1108–1115.552

[48] Larkin, R.P., Fravel, D.R., 1999. Mechanisms of action and dose response553

relationships governing biological control of fusarium wilt of tomato by non-554

pathogenic Fusarium spp. Phytopathology 89, 1152–1161.555

[49] Madden, L.V., van den Bosch, F., 2002. A population-dynamic approach to as-556

sess the threat of plant pathogens as biological weapons against annual crops.557

BioScience 52, 65–74.558

[50] Madden, L.V., Hughes, G., van den Bosch, F., 2007. The Study of Plant Disease559

Epidemics. American Phytopathological Society.560

[51] Madden, L.V., Jeger, M.J., van den Bosch, F., 2000. A theoretical assessment561

of the effects of vector-virus transmission mechanism on plant virus disease epi-562

demics. Phytopathology 90, 576–594.563

[52] McSpadden Gardner, B.B., Weller, D.M., 2001. Changes in populations of rhizo-564

sphere bacteria associated with take-all disease of wheat. Applied Environmental565

Microbiology 67, 4414–4425.566

28



[53] Milgroom, M.G., Cortesi, P., 2004. Biological control of chestnut blight with567

hypovirulence: a critical analysis. Annual Review of Phytopathology 42, 311–568

338.569

[54] Mills, N.J., Getz, W.M., 1996. Modelling the biological control of insect pests: a570

review of host-parasitoid models. Ecological Modelling 92, 121–143.571

[55] Montesinos, E., Bonaterra, A., 1996. Dose-response models in biological control572

of plant pathogens: an empirical verification. Phytopathology 86, 464–472.573

[56] Park, A.W., Gubbins, S., Gilligan, C.A., 2001. Invasion and persistence of disease574

in a spatially structured metapopulation. Oikos 94, 162–174.575

[57] Parnell, S., Gilligan, C.A., Lucas, J.A., Bock, C., van den Bosch, F., 2008.576

Changes in fungicide sensitivity and relative species abundance: Oculimacula577

yallundae and O. acuformis populations (eyespot disease of cereals) in western578

Europe. Plant Pathology 57, 509–517.579

[58] Paulitz, T.C., 2001. Biological control in greenhouse systems. Annual Review of580

Phytopathology 39, 103–133.581

[59] Pierson, E.A., Weller, D.M., 1994. Use of mixtures of fluorescent pseudomonads582

to suppress take-all and improve the growth of wheat. Phytopathology 84, 940–583

947.584

[60] Raaijmakers, J.M., Bonsall, R.F., Weller, D.M., 1999. Changes in populations of585

rhizosphere bacteria associated with take-all disease of wheat. Phytopathology586

89, 470–475.587

[61] Raaijmakers, J.M., Leeman, M., van Oorscot, M.M.P., van der Sluis, I., Schip-588

pers, B., Bakker, P.A.H.M., 1995. Dose-response relationships in biological con-589

trol of fusarium wilt of radish by Pseudomonas spp. Phytopathology 85, 1075–590

1081.591

29



[62] Raaijmakers, J.M., Vlami, M., de Souza, J.T., 2002. Antibiotic production by592

bacterial biocontrol agents. Antonie van Leeuwenhoek 81, 537–547.593

[63] Ragsdale, N.N., Sisler, H.D., 1994. Social and political implications of manag-594

ing plant diseases with decreased availability of fungicides in the United States.595

Annual Review of Phytopathology 32, 545–557.596

[64] Rosskopf, E.N., Charudattan, R., DeValerio, J.T., Stall, W.M., 2000. Field evalu-597

ation of Phomopsis amaranthicola, a biological control agent of Amaranthus spp.598

Plant Disease 84, 1225–1230.599

[65] Schisler, D.A., Slininger, P.J., Bothast, R.J., 1997. Effects of antagonist cell con-600

centration and two-strain mixtures on biological control of fusarium dry rot of601

potatoes. Phytopathology 87, 177–183.602

[66] Shtienberg, D., Elad, Y., 1997. Incorporation of weather forecasting in integrated,603

biological-chemical management of Botrytis cinerea. Phytopathology 87, 332–604

340.605

[67] Siwek, K., Harris, A.R., Scott, E.S., 1997. Mycoparasitism of Pythium ultimum606

by antagonistic binucleate Rhizoctonia isolates in agar media and on capsicum607

seeds. Journal of Phytopathology 145, 417–423.608

[68] Smith, K.P., Handelsman, J., Goodman, R.M., 1997. Modeling dose response609

relationships in biological control: Partitioning host responses to the pathogen610

and biocontrol agent. Phytopathology 87, 720–729.611

[69] Stacey, A.J., Truscott, J.E., Asher, M.J.C., Gilligan, C.A., 2004. A model for612

invasion and spread of rhizomania in the UK: implications for disease control613

strategies. Phytopathology 94, 209–215.614

[70] Stack, J.P., Knudsen, G.R., Koch, D.O., 1987. A computer simulation model to615

predict the dispersal of biocontrol fungi in soil. Phytopathology 77, 1771.616

30



[71] Thomashow, L.S., 1996. Biological control of plant root pathogens. Current617

Opinion in Biotechnology 7, 343–347.618

[72] Thomashow, L.S., Weller, D.M., 1988. Role of a phenazine antibiotic from Pseu-619

domonas fluorescens in biological control of Gaeumannomyces graminis var. trit-620

ici. Journal of Bacteriology 170, 3499–3508.621

[73] Truscott, J.E., Gilligan, C.A., 2003. Response of a deterministic epidemiologi-622

cal system to a stochastically varying environment. Proceedings of the National623

Academy of Science 100, 9067–9072.624

[74] Vallad, G.E., Goodman, R.M., 2005. Systemic acquired resistance and induced625

systemic resistance in conventional agriculture. Crop Science 44, 1920–1934.626

[75] Weller, D.M., Raaijmakers, J.M., McSpadden Gardner, B.B., Thomashow, L.S.,627

2002. Microbial populations responsible for specific soil suppressiveness to plant628

pathogens. Annual Review of Phytopathology 40, 309–348.629

[76] White, K.A.J., Gilligan, C.A., 1998. Spatial heterogeneity in three-species, plant-630

parasite-hyperparasite, systems. Philosophical Transactions of the Royal Society,631

B 353, 543–557.632

[77] Xu, X.M., Salama, N., Jeffries, P., Jeger, M.J., Schoeny, A., Lucas, P., 2010.633

Numerical studies of biocontrol efficacies of foliar plant pathogens in relation to634

the characteristics of a biocontrol agent. Phytopathology 100, 814–821.635

31



Variable or Definition Description Default

parameter value

Ŝ Sκ−1 Density of susceptible hosts -

Î Iκ−1 Density of infected hosts -

X̂ ηXν−1κ−1 Density of soil-borne inoculum -

Â ξAη−1 Density of antagonist -

t̂ ηt Time -

Ŝ0 S0κ−1 Initial density of susceptible hosts 1.0

Î0 I0κ−1 Initial density of infected hosts 0

X̂0 ηX0ν−1κ−1 Initial density of soil-borne inoculum 0.1

Â0 ξA0η−1 Initial density of antagonist 0.1

β̂P βPνκη−2 Rate of primary infection 0.5

β̂S βSκη−1 Rate of secondary infection 0.375

μ̂ μη−1 Death rate of infected hosts 0.25

γ̂ γη−1 Decay rate of soil-borne inoculum 0.8

R0

(
β̂Pĉ−1 + β̂S

)
μ̂−1 Pathogen’s basic reproductive number (no Â) 4.0

RP
0 β̂Pĉ−1μ̂−1 Component of R0 due to primary infection 2.5

RS
0 β̂Sμ̂−1 Component of R0 due to secondary infection 1.5

α̂P αPηξ−1 Controls reduction in β̂P by antagonist 0-5

α̂S αSηξ−1 Controls reduction in β̂S by antagonist 0-5

ω̂μ ωPηξ−1 Controls increase in μ̂ by antagonist 0-5

ω̂γ ωSηξ−1 Controls increase in γ̂ by antagonist 0-5

ρ̂S ρSκη−1 Bulk-up rate upon susceptible hosts 0-10

ρ̂I ρIκη−1 Bulk-up rate upon infected hosts 0-10

ρ̂X ρXνκη−2 Bulk-up rate upon soil-borne inoculum 0-10

σ̂ ση−1 Rate of decay of antagonist 1 or 5

Table 1: Dimensionless variables and parameters (with illustrative parameter values and initial conditions,
where appropriate).
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Equilibrium Interpretation Existence criterion(
Ŝ∞, Î∞, X̂∞, Â∞

)
(�, ✗, ✗, ✗) Only host persists None

(�, �, �, ✗) Host and pathogen persist R(0) = R0 > 1

(�, ✗, ✗, �) Host and antagonist persist ρ̂S− σ̂ > 0

(�, �, �, �) Coexistence of all three species ∃Â∞ > 0 in Equation (24)

with R0 = R(Â∞) > 1

Table 3: Equilibria and existence criteria.
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Invasion of Already present Precondition Invasion condition

Â Ŝ None ρ̂S
σ̂ > 1

Ŝ, Î, X̂ R(0) = R0 > 1 ρ̂S
σ Ŝ∞ + ρ̂I

σ Î∞ + ρ̂X
σ X̂∞ > 1

Î Ŝ None R(0) = R0 > 1

Ŝ, Â ρ̂S− σ̂ > 0 R(ρ̂S− σ̂) > 1

Table 4: Invasion criteria.
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Figure 1: Habitat-generalist antagonism. Figure (a) shows the dependence of the endemic density of infected
hosts upon the per capita antagonistic effect on the rate of primary infection (α̂P) and the rate at which the
antagonist can bulk-up (λ̂ = ρ̂S = ρ̂I = ρ̂X ). Figure (b) shows the dependence on antagonist bulking-up and
the rate of decay of infected hosts (ω̂μ). The lower bounds in Table 5 are attained in practice, as λ̂ and α̂P

or ω̂μ→ ∞, but the actual density of infected hosts for particular parameters depends upon a combination of
the bulk-up behaviour and the per capita effect of antagonism.

Figure 2: Habitat-specialist antagonism. All figures show the endemic density of infected hosts as individual
components of bulking-up behaviour are altered. Figures (a) and (b) demonstrate the variation in (ρ̂S, ρ̂I)
space (with ρ̂X = 0), whereas Figures (c) and (d) demonstrate the variation in (ρ̂I , ρ̂X ) space (with ρ̂S = 0).
The antagonist is able to affect only the rate of primary infection in Figures (a) and (c) (α̂P = 1.0, α̂S = ω̂μ =
ω̂γ = 0), whereas it affects only the rate of decay of infected hosts in Figures (b) and (d) (ω̂μ = 1.0, α̂P =
α̂S = ω̂γ = 0). Note the maximum reduction in infected density is achievable for antagonists that do not
bulk-up on all classes of host, the linear contours of infected density, and the necessity for ρ̂S > 0 for the
pathogen to be eradicated (i.e. the varying gradient of the contours in Figure (b)).

Figure 3: Sharp transitions: response to antagonist habitat, antagonist mode of action and the initial density
of host, pathogen and antagonist. Bistability (here promoted by large antagonist death rate) leads to large
changes in behaviour with small changes to the parameters. Figures 2(a) and 2(b) are replicated for an
antagonist with large death rate (σ̂ = 5.0). When the antagonist is capable of eradicating the pathogen
(i.e. Figure (b)) there can be a sharp transition on the ρ̂S axis near the value ρ̂S = 8.3 (marked by a green
dot), where the density of infected hosts abruptly decreases from its maximum value to zero (with initial
conditions Ŝ0 = 1.0, Î0 = 0, X̂0 = 0.1, Â0 = 0.1). Figures (c) and (d) show the response of the location of the
sharp transition in parameter space to the initial conditions. The value of ρ̂S (the rate at which antagonist
bulks-up on susceptible hosts) at which there is a phase transition between eradication and totally ineffective
control is shown for different values of (Ŝ0, X̂0) (c) and (Â0, X̂0) (d). Here ρ̂I = ρ̂S = 0, and so there is no
bulking-up on infected hosts, although the qualitative behaviour generalises to antagonists that are also able
to bulk-up on these habitats.
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Figure 4: Sharp transitions: mechanism by which alternate equilibria are attained. The density of (a) suscep-
tible hosts, (b) infected hosts, (c) inoculum and (d) antagonists for ρS = 8.3 (blue solid line) and ρ̂S = 8.4
(red dotted line). The extreme difference in behaviour for slightly different values of ρ̂S is due to bistability
in the model and the feedback described in the main text.
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Appendix A. Stability analysis636

Stability of the underlying epidemiological model (i.e. Equations (10)-(12) with Â

fixed at zero) is determined by the Eigenvalues of its Jacobian, which at a general point

(Ŝ, Î, X̂) is

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1− β̂PX̂ − β̂SÎ −1− β̂SŜ −β̂PŜ

β̂PX̂ + β̂SÎ β̂SŜ− μ̂ β̂PŜ

0 1 −ĉ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.1)

Appendix A.1. Pathogen-free equilibrium637

At the pathogen-free equilibrium (Equation (17))

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1− β̂S −β̂P

0 β̂S− μ̂ β̂P

0 1 −ĉ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.2)

The Eigenvalues λ satisfy

(1 + λ)
(

λ2 +
(
μ̂− β̂S+ ĉ

)
λ +

(
μ̂− β̂S

)
ĉ− β̂P

)
= 0. (A.3)

Clearly one Eigenvalue is always −1, and so the Routh-Hurwitz (R-H) criteria [11]

applied to the inner quadratic factor indicates that all three Eigenvalues have negative

real parts if and only if

μ̂− β̂S + ĉ > 0, (A.4)(
μ̂− β̂S

)
ĉ− β̂P > 0, (A.5)
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which in combination form a condition for the pathogen-free equilibrium to be stable

μ̂− β̂S > max

(
−ĉ, β̂P

ĉ

)
. (A.6)

Since all parameters are positive this may be reduced to

1
μ̂

(
β̂P

ĉ
+ β̂S

)
< 1, (A.7)

which forms a final stability condition for the pathogen-free equilibrium of the under-

lying model. As the R-H criterion is a two-way implication, whenever Equation (A.7)

is not satisfied the pathogen-free equilibrium is unstable, and the pathogen can invade

a population of hosts at its carrying capacity in the absence of antagonism, allowing us

to identify the basic reproductive number as

R0 =
1
μ̂

(
β̂P

ĉ
+ β̂S

)
. (A.8)

That the particular expression given in Equation (A.8) is the basic reproductive num-638

ber of the pathogen (rather than for example a related quantity with similar threshold639

behaviour, such as its square root [38]) may be confirmed by either a retrospective bi-640

ological interpretation of its components [9] or more formally by the Next Generation641

method [17, 18]. Full details for a similar model are given in [16].642

Appendix A.2. Pathogen-present equilibrium643

At the pathogen-present equilibrium of Equation (18), noting that

β̂PX̂ + β̂SÎ =
μ̂

μ̂+ 1
(R0−1) , (A.9)
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the Jacobian reduces to

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1− μ̂
μ̂+1 (R0−1) −1− β̂S

R0
− β̂P

R0

μ̂
μ̂+1 (R0−1) β̂S

R0
− μ̂ β̂P

R0

0 1 −ĉ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.10)

The characteristic equation is given by

λ3 +a1λ2 +a2λ +a3 = 0, (A.11)

where

a1 = 1 + μ̂− β̂S

R0
+

μ̂
μ̂+ 1

(R0−1)+ ĉ, (A.12)

a2 = μ̂− β̂S

R0
+ ĉ+

ĉμ̂
μ̂+ 1

(R0−1)+ μ̂(R0−1) , (A.13)

a3 = μ̂ĉ(R0−1) . (A.14)

The R-H criteria for cubic equations indicate that all three Eigenvalues have negative

real part if and only if

a3 > 0, (A.15)

a1 > 0, (A.16)

a1a2−a3 > 0. (A.17)

Clearly (A.15) is satisfied only if R0 > 1, and so the biological existence criterion

R0 > 1 is also necessary for the equilibrium to be stable. Rewriting

μ̂ =
1
R0

(
β̂P

ĉ
+ β̂S

)
(A.18)
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indicates that

a1 = 1 +
β̂P

ĉR0
+

μ̂
μ̂+ 1

(R0−1)+ ĉ, (A.19)

and hence that (A.16) is true whenever R0 > 1 (note that this is a sufficient rather than

necessary condition for (A.16) to hold). The product in (A.17) can then be rearranged

a1a2−a3 =

(
1 +

β̂P

ĉR0
+

μ̂
μ̂+ 1

(R0−1)

)(
μ̂(R0−1)

(
ĉ

μ̂+ 1
+ 1

)
+

β̂P

ĉR0
+ ĉ

)

+ĉ

(
cμ̂

μ̂+ 1
(R0−1)+

β̂P

ĉR0
+ ĉ

)
, (A.20)

which is definitely positive if R0 > 1 (again this is a sufficient rather than necessary644

condition). Overall a necessary and sufficient condition for all three R-H criteria to be645

satisfied, and therefore for the pathogen-present equilibrium of the underlying model to646

be stable, and for the pathogen to be able to persist at its non-zero equilibrium density647

in the host population in the absence of antagonism, is just R0 > 1.648
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