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Solution regions in the parameter space of a
3-RRR decoupled robot for a prescribed

workspace

D. Chablat, G. Moroz, V. Arakelian, S. Briot, and P. Wenger

Abstract This paper proposes a new design method to determine the feasible set

of parameters of translational or position/orientation decoupled parallel robots for a

prescribed singularity-free workspace of regular shape. The suggested method uses

Groebner bases to define the singularities and the cylindrical algebraic decompo-

sition to characterize the set of parameters. It makes it possible to generate all the

robot designs. A 3-RRR decoupled robot is used to validate the proposed design

method.

Key words: Parallel robot, Design, Singularities, Groebner basis, Discriminant va-

rieties, Cylindrical algebraic decomposition.

1 Introduction

Parallel robots are attractive for various reasons but one has to cope with their sin-

gularities. There exists three main ways of coping with singularities, which have

their own merits. A first approach consists in eliminating the singularities at the

design stage by properly determining the kinematic architecture, the geometric pa-

rameters and the joint limits [1, 8]. This approach is difficult to apply in general and

restricts the design possibilities but it is safe. A second approach is the determina-

tion of the singularity-free regions in the workspace [2, 3]. This solution does not

involve a priori design restrictions but it may be difficult to determine safe regions

that are sufficiently large. Finally, a third way consists in planning singularity-free

trajectories in the manipulator workspace [4]. In this paper, the first approach is

used. Designing a parallel robot that will operate in a singularity-free workspace is

a first requirement but the designer often needs to optimize the robot as function
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of various criteria [5]. Our goal is to generate the set of geometric parameters for

a given singularity-free workspace. The resulting solution regions in the parameter

space are of primary interest for the designer. Accordingly, this paper proposes a

new design method to determine these solution regions. This method holds for par-

allel translational robots and for parallel robots with position/orientation decoupled

architecture. Groebner bases are used to define the singularities and Cylindrical al-

gebraic decomposition is applied to characterize the set of design parameters. The

paper is organized as follows. Section 2 introduces the design method to generate

the solution regions in the parameter space for a prescribed workspace of regular

shape. Then, Section 3 applies this method to a 3-RRR planar parallel robot with

position/orientation decoupled architecture.

2 Design method

2.1 Definition of the prescribed regular workspace

A robot should have sufficiently large, regular workspace with no singularity inside

[9]. For planar (resp. spatial) translational robots, a regular workspace can be defined

by a circle, a square or a rectangle (resp. a cylinder, a cube or parallelepiped). A

circle, a cylinder or a sphere can be modeled with one single algebraic equation.

A rectangle or a parallelepiped can be defined with a set of linear equations. It can

be approximated using a Lam curve (resp. surface). This approximation makes it

possible to handle only one equation, thus simplifying the problem resolution as

will be shown further. In the rest of the paper, the problem is formulated in the plane

for practical reasons. A Lamé curve based workspace WL can be defined by the

following boundary algebraic equation:

WL :
(

x−xc

lx/2

)n
+
(

y−yc

ly/2

)n
= 1 (1)

lx and ly being the edge lengths of the desired rectangle, n being a strictly positive

integer. For the purpose of this paper, n = 4 and lx = ly = 4. A rectangle based

workspace can be modeled by four parametric lines, noted W Ci

W Ci :

{

x = P(i)xt +P(i+1)x(1− t)
y = P(i)yt +P(i+1)y(1− t)

with t ∈ [0 1], i = 1,2,3,4 (2)

P(i)x = xc ± lx/2 P(i)y = yc ± ly/2 where Pi denote the rectangle vertices. For po-

sition/orientation decoupled robot architectures, the regular workspace is defined

using the same approach for the translational module and the orientation module is

considered separately, as it will be shown in the next section.



Solution regions in the parameter space of a 3-RRR decoupled robot. . . 3

2.2 Method to generate the solution regions in the parameter space

The problem can be stated as follows: find the regions in the parameter space where

the boundaries W of the workspace W have no intersection with the serial and

parallel singularities loci δi, namely:

P : [a1 . . .an]/δi ∩W = /0,a j > 0, j = 1, . . . ,n (3)

where [a1 . . .an] are the set of design parameters. This approach stands if and only

the singularity curves or points are never fully included in the prescribed region. In

order to find the design parameters for which the intersection is empty, the design

parameters will be sorted according to the number of intersections between the sin-

gularities and W . It is then necessary to decompose the design parameter space into

cells C1, . . . ,Ck, such that: (a) Ci is an open connected subset of the design parame-

ter space; (b) for all design parameter values in Ci, the design parameter space has a

constant number of solutions. This analysis is done in 3 steps [6]:

(a) computation of a subset of the joint space (workspace, resp.) where the number

of solutions changes: the Discriminant Variety;

(b) description of the complementary of the discriminant variety in connected cells:

the Generic Cylindrical Algebraic Decomposition;

(c) connecting the cells that belong to the same connected component of the com-

plementary of the discriminant variety: interval comparisons.

The results are sets of regions with the same number
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Fig. 1 The 3-RRR decoupled

parallel robot under study

of intersections between δi and W . These three steps

were integrated in a single function in the Siropa Li-

brary implemented in Maple (Moroz, 2010). For the

purpose of this study, only the solutions with zero in-

tersections are considered. When a decoupled robot is

analyzed, problem P is first treated for a prescribed

workspace and a slightly modified problem P ′ is then

treated, in which the set of design parameters include

the orientation parameters. This approach is illustrated

in the next section.

3 Application to a 3-RRR decoupled parallel robot

The robot under study is a planar 3-RRR robot with a modified mobile platform

design [10] (Fig. 1), thus decoupling the position and the orientation of the platform

[11]. It is assumed to have three identical legs. The loop (A1,B1,P,B2,A2) corre-

sponds to a five-bar robot that defines the position of point P and the leg (A3,B3,C3)
adjusts the orientation according to the position. If position of point P is given, this

third leg is equivalent to a four-bar linkage. For this 3-RRR robot, thus, the problem
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can be split into two parts: (i) design of the five-bar robot (the translational module)

so that the end-effector can move in a prescribed singularity-free workspace and (ii)

design of the third leg (the four-bar linkages (A3,B3,C3,P)) so that the platform can

be oriented within desired bounds throughout the prescribed workspace.

3.1 Translational module: five-bar robot

The constraint equations of the five-bar robot are defined as:

Ci :

{

x− l cos(θ1)− l cos(θ2)+ e/2 = 0 y− l sin(θ1)− l sin(θ2) = 0

x− l cos(θ3)− l cos(θ4)− e/2 = 0 y− l sin(θ3)− l sin(θ4) = 0
(4)

where ‖A1B1‖ = ‖A2B2‖ = ‖B1P‖ = ‖B2P‖ = and ‖A1A2‖ = e. The differentia-

tion of the relation between the input variables q and the output variables X with

respect to time leads to the velocity model At+Bq̇ = 0 where A and B are n×n Ja-

cobian matrices, t is the platform twist and q̇ is the vector of joint rates. The roots of

the determinant of A and B define the parallel and serial singularities, respectively.

The first ones are directly characterized in the workspace and the second ones have

to be projected from the joint space onto the workspace. The singularities are calcu-

lated using Groebner bases [6] as in [7].

The parallel singularities can be factored into a sextic, denoted δp1, and two

quadratic polynomial equations, denoted δp2 and δp3

δp1 : 16(y6 + x6)+ 8(e2y4 − e2x4)+ 48(y4x2 + y2x4)+ e4y2 + e4x2 − 16l2e2y2 = 0

δp2 : x2 +

(

y−
1

2

√

4l2 − e2

)2

− l2 = 0 δp3 : x2 +

(

y+
1

2

√

4l2 − e2

)2

− l2 = 0

The serial singularities are two quadratic equations

δs1 : (2x+ e)2+ 4y2 − 16l2 = 0 δs2 : (2x− e)2 + 4y2 − 16l2 = 0

Due to the symmetry of the robot with respect to y-axis, the design parameters

are restricted to (l f ) i.e. the size of the legs and the distance from axis x to the

geometric center of the robot’s workspace W , respectively. Parameter e is set to 1 to

have a two dimensional representation of the solution regions. For robots with two

degrees of freedom, the intersection of the boundaries of W and the singularities is

generically a finite set of points. Thus, as mentioned in 2.2, the singularity curves or

points are never fully included in the prescribed region.

Lam curve based workspace: the problem to be solved is:

PL : [ f l]/Sp1 ∩Sp2 ∩Sp3 ∩Ss1 ∩Ss2 ∩W = /0, f > 0, l > 0
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Only the solutions with zero intersections are kept. Fig. 2 depicts the three solution

regions obtained RL1, RL2 and RL3, i.e. the parameter sets for which the prescribed

workspace is singularity-free.

It turns out that in RL1, WL is inside the workspace (Fig. 2b). Conversely, in

RL2 and RL3, WL is outside the workspace (Fig. 2c). Thus the only feasible region

is RL1. A feasible solution should not be taken on the boundary of RL1 since any

solution on the boundary could touch a singularity curve. Fig. 2b shows a solution

near the boundary of RL1.

l

f

RL1

RL2
R

3L

(a) (b) (c)

Fig. 2 (a) Solution regions RL1, RL2 and RL3 of problem PL and five-bar robot design when (b)

f = 3.7, l = 3 (c) f = 3.7, l = 0.9

Square based workspace: in this case, four separate problems need to be solved:

PCi : [ f l]/Sp1∩Sp2∩Sp3∩Ss1∩Ss2∩W Ci = /0, f > 0, l > 0, t ∈ [0,1], i= 1, . . . ,4

where are the parametric equations defining the boundaries of the square. Only the

solutions with zero intersections are kept. Due to the symmetry of the square with

respect to the y-axis, PC3 and PC4 yield the same regions in the design parameters

space. Fig. 3 depicts (a) four connected solution regions for problem PC1, (b) two

solution regions for PC2 and (c) three solution regions for PC3. As compared to the

Lamé curve based workspace, there is an additional step here: the final regions must

be obtained by intersecting all these regions, thus yielding the three regions RC f 13,

RC f 2 and RC f 3 as shown in Fig. 4. As expected, the solution regions obtained are

similar to those associated with a Lamé curve (Fig.2) and only RC f 1 is solution to

the problem for the same reasons. Fig. 5a shows a solution near the boundary of

RC f 3.

3.2 Orientation module: four-bar linkages

One of the two base points of the four-bar linkages is the reference point P(x,y) of

the moving platform. Accordingly, the constraint equation of the four-bar linkage

is:
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Fig. 3 Solution regions for problems (a) PC1, (b) PC2, (c) PC3 and (d) intersection regions RC f 1,
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Fig. 5 A five-bar solution robot when f = 3.8, l = 3.3 from

RC f 1 (a) and when f = 3.8, l = 0.9 from RC f 2(b)

C2 : (x+ d cos(α)− l cos(θ5))
2 +(y+ d sin(α)− g− l sin(θ5))

2 = l2 (5)

where θ5 and α are the input and output angles, respectively, ‖A3B3‖= ‖B3P‖= l,

‖C3P‖= d and ‖A3O‖= g. A serial (resp. parallel) singularity is reached whenever

(A3B3) is aligned with (B3C3) (resp. when (B3C3) is aligned with (C3P)). These

singularities are defined as follows:

δs3 : (2gsin(α)− 2xcos(α)− 2ysin(α))d − d2 − x2 − g2 − y2 + 4l2 + 2yg = 0

δp4 :
g2 + 2(l sin(α)− d sin(α)− y)g+ x2

(d cos(α))− 2l cos(α))x+ y2 +(2d sin(α)− 2l sin(α))y+ d2 − 2ld = 0

δp5 :
g2 − 2(l sin(α)+ d sin(α)+ y)g+ x2+
(d cos(α))+ 2l cos(α))x+ y2 +(2d sin(α)+ 2l sin(α))y+ d2 + 2ld = 0

It is proposed to find those designs for which the platform can be oriented within

desired bounds throughout the prescribed workspace. Accordingly, the parameters

considered here are the orientation angle α of the moving platform plus only one

geometric parameter to handle a two-dimensional parameter space. For the purpose

of this study, we choose the distance between the fixed base point C3 and the geo-

metric center of the prescribed workspace: h = g− f and parameter d is set to 1 to

have a two dimensional representation of the solution regions.

Lamé curve prescribed workspace: From Fig. 2, the smallest value of parameter

l is equal to 3. This value is chosen for the four-bar linkage design. The following

problem has then to be solved:
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PL′ : [h α]/δp4 ∩δp5 ∩δs3 ∩W L = /0,h > 0 (6)

There exist two solution regions, RL′1 and RL′2 (Fig. 6), each one being as-

sociated with a single working mode and a single assembly mode. These regions

describe the orientation ranges as function of parameter h, for which the robot can

reach the full prescribed workspace without crossing singularities. It is then possi-

ble to choose h such that the range of the angular displacement α is greater than a

prescribed value.

Square prescribed workspace: From Fig. 3, the smallest value of parameter l is

equal to 3.3. This value is chosen for the 4-bar linkage design. The following prob-

lems have to be solved:

PC′i : [h α]/δp4 ∩δp5 ∩δs3 ∩W i = /0,h > 0, t ∈ [0 1], i = 1, . . . ,4 (7)

The solutions regions of these problems h
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Fig. 6 Solution regions of problem PL′

for a four-bar linkage when l = 3

and the intersection regions are shown in

Fig. 7 and Fig. 8, respectively. Figure 9 de-

picts two 3-RRR parallel robots obtained for

a square regular workspace. The solution ob-

tained in Fig. 9b is more compact than in

Fig. 9a and its angular range interval is greater

but the design should take into account the

self collisions.
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4 Conclusions

This paper presented a new design method to determine the feasible set of param-

eters of parallel manipulators for a prescribed singularity-free regular workspace.

Rather than giving a single feasible or optimal solution, this method provides the

solution regions in the parameter space. Groebner bases, discriminant varieties and

cylindrical algebraic decomposition were used to generate the solution regions. As a

result, their boundaries have an exact formulation. Solutions close to the boundaries

of these regions correspond to robots for which the prescribed workspace is close to

a singularity curve. The prescribed workspace can be defined in a more restrictive

way to ensure that the robot will remain far enough from singularities. A solution

would be to add a condition relying on some kinetostatic index [9]. The method

was applied to a 3-RRR parallel planar robot with position/orientation decoupled

architecture. It can handle other types of translational or decoupled robots but there

are some limits that are due to the algebraic tools used. In particular, the number of

parameters involved in the elimination process should not be too high.
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