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Abstract

We investigate the strength and failure properties of a model ce-
mented granular material under simple compressive deformation. The
particles are LECA beads coated by a controlled volume fraction of
silicone. The beads are mixed with a joint seal paste (the matrix)
and moulded to obtain dense cemented granular samples of cylindrical
shape. Several samples are prepared for different volume fractions of
the matrix, controlling the porosity, and silicone coating upon which
depends the effective particle-matrix adhesion. Interestingly, the com-
pressive strength is found to be an affine function of the product of the
matrix volume fraction and effective particle-matrix adhesion. On the
other hand, it is shown that particle damage occurs beyond a critical
value of the contact debonding energy. The experiments suggest three
regimes of crack propagation corresponding to no particle damage,
particle abrasion and particle fragmentation, respectively, depending
on the matrix volume fraction and effective particle-matrix adhesion.
We also use a sub-particle lattice discretization method to simulate
cemented granular materials in 2D. The numerical results for crack
regimes and the compressive strength are in excellent agreement with
the experiments.
keywords: Granular materials Cementation Adhesion Compressive strength
Toughness Lattice Element Method

1 Introduction

Cemented granular materials consist of densely packed particles and a solid
matrix filling partially the interstitial space and sticking to the particles.
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Well-known examples of this class of materials are mortars, concrete, as-
phalt, grouted soils and sedimentary rocks (sandstones, conglomerates and
breccia) [18, 27, 5, 1, 31]. Experiments and numerical simulations indicate
that the adherence between the particles and matrix controls to a large
extent the toughness and crack patterns of cemented granular materials
[27, 40, 18, 29, 30, 32]. However, due to the bulk action of the matrix, these
materials are more complex than cohesive granular media with surface ad-
hesion such as fine powders [16, 15, 23, 3, 8, 9]. In particular, the mechanical
behavior (stiffness, tensile strength and creep resistance) depends on load
transfer between the matrix and the particles [10, 28, 39].

The high volume fraction of the particles in cemented granular materials
leads to a microstructure dominated by a network of contacting particles
(jamming) as in cohesionless granular media [12, 22, 35, 23]. In this respect,
cemented granular materials differ from dilute particle-reinforced composites
where the particles are interposed by the matrix. The contact network
has profound effect on stress transmission and local failure modes involving
particle breakage, frictional slip and rolling [14, 10, 17, 7, 9, 8]. In particular,
the arching effect leads to weakly stressed zones in the bulk, and the onset
and propagation of fracture is mostly controlled by granular disorder [27].
For this reason, the models developed for dilute particle-reinforced materials
cannot be simply extended to cemented granular materials [29].

Another specificity of cemented granular materials is that, as a result of
steric effects, the interstitial space is generally only partially filled by the
cementing matrix. As a result, these materials generally involve unfilled
pores and micro-cleavages (particle-particle contacts not interposed by ma-
trix) between particles. For example, there is experimental evidence that
the interparticle contacts in grouted sand are not all cemented, leading to
frictional behavior as in cohesionless granular media [1].

In this paper, we report on original experiments which were designed
to investigate the influence of matrix volume fraction and particle-matrix-
adhesion on the compressive strength and particle damage of cemented gran-
ular materials. We use a model system in which the particles are LECA
(Lightweight Expanded Clay Aggregate) beads which can break under mod-
erate load, and the matrix is a joint seal paste. The particle-matrix adhesion
is controlled by coating the particles with the desired amount of silicone. We
analyze the experimental data by considering the peak stress and particle
damage under simple compression tests. The experimental results are com-
pared with 2D numerical simulations by means of a lattice-element method
in which the particles, matrix and their interface are discretized by linear
elastic lattice elements with a breaking threshold [25, 27, 37].

In the following, we first introduce the experimental procedures in sec-
tion 2. The experimental data will be analyzed and discussed in section 3.
The numerical model is briefly introduced in section 4, and followed by the
presentation of numerical results. Finally, in section 5, we conclude with a
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summary and remarks about potential perspectives of this work.

2 Sample preparation and experimental protocol

The main objective of these experiments is to investigate the compressive
strength of model granular materials in the presence of a cementing matrix.
The choice of the materials and methods employed in these experiments was
dictated by the following considerations: 1) The possibility of particle failure
during deformation, 2) The variation of the volume fraction of the cementing
matrix, and 3) The control of the adhesion at the particle-matrix interface.
The compressive strength and failure modes of a cemented granular material
depend on a combination of the above factors. Clearly, varying all these
parameters in a systematic manner is a difficult task from an experimental
viewpoint.

For the particles, we used the so-called “Lightweight expanded clay ag-
gregate” (LECA) beads (also known as “fired clay pebble”). The LECA
beads are porous and light with a rough surface and a weak variability in
sphericity. The compressive strength of the beads is around 3.3 MPa, so
that they can break under moderate compressive loads. The beads are first
visually sorted in order to remove the damaged particles. The particle di-
ameters dg range from 8.0 mm to 16.0 mm and almost normally distributed.
The mean diameter is 11.9± 0.3 mm.

As cementing matrix we used a commercial paste employed as joint seal
for floor tiles. The LECA beads are mixed with the desired amount of
paste in a box at ambient temperature and carefully stirred manually until
a homogeneous mixture is obtained. This mixture is placed in a cylindrical
mould (of height 190mm and diameter 94mm) whose internal wall is covered
by a polyester film which has a weak adhesion with the cementing paste.
The mixture is compacted layer by layer in order to obtain a dense packing,
which is then unmoulded with its protective film.

At this stage, the samples are particularly delicate to handle since their
cohesion is low. Hence, particular experimental precautions were necessary
in order to avoid damage to the samples. In particular, the drying of the
samples is performed in four steps: 1) Drying during one week at constant
ambient temperature of 22oC; 2) Removing the polyester film and drying
one more week at the same temperature; 3) Drying three more weeks in a
heat chamber at the temperature of 45oC; and 4) Thermalizing the sam-
ple for one day at the ambient temperature before the compression test.
This progressive process preserves the cohesive links both at the surface and
within the samples and allows for uniform drying of the whole sample.

The adhesion of the matrix (paste) to the LECA beads is normally higher
than the internal tensile strength of LECA beads. In order to reduce the
interface adherence, we coated the LECA beads by an acetic-silicone glue
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Figure 1: (a) LECA beads ; (b) LECA beads with silicone coating.

before mixing with the paste. The dried silicone has the property of sticking
strongly to the rough surface of LECA beads while bearing a negligible
adherence with the matrix. The effective adhesion between the matrix and
the beads depends on the thickness of silicone coating. The latter was
varied by mixing the beads with different volume fractions ρs of silicone.
The quality of coating was controlled by visual inspection. We stop stirring
when the beads show a slightly white-colored surface texture. The coated
particles are left to dry for two days. Fig. 1 shows pictures of LECA beads
without and with silicone coating before moulding.

Twenty cylindrical samples were prepared with five values of the matrix
volume fraction ρm = 0.10, 0.15, 0.20, 0.25 and 0.30, each for four different
values of the silicone volume fraction ρs =0.000, 0.008, 0.017, 0,033. The
volume fraction of LECA beads is ρp = 58±2% for all samples. This number
of samples is a necessary minimum to appreciate the qualitative behavior
as a function of matrix volume fraction and the particle-matrix adhesion
(controlled by the silicone volume fraction).

The uniaxial press used to perform compression tests on the samples is
shown in Fig. 2. The downward displacement is imposed on the top plate
with a rate of 0.05 mm s−1. To avoid bending effects due to the defects in
parallelism between the top and bottom surfaces of the sample, we used a
pin joint. The loading force is recorded via a 25 kN load sensor. In each
test, the compression is continued till full failure of the sample occurs.

In the following, we present and discuss our main experimental results
by focussing on the compressive yield strength as a function of matrix vol-
ume fraction and the particle-matrix adhesion, as well as the corresponding
failure modes.

3 Experimental results

Figure 3a shows the axial stress σ as a function of the axial deformation ε
for two different values of the matrix volume fraction ρm. Both the initial
axial stiffness E and peak stress σY increase with ρm. Fig 3b shows similar
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Figure 2: An experimental sample of cylindrical shape subjected to simple
compression test.

plots for two different values of the silicone volume fraction ρs. We see that
E and σY decrease considerably with ρs.

The parameters ρm and ρs play also an important role in failure modes
three examples of which are shown in Fig 3. Fig 3a is an example for a
high value of ρm and a low value of ρs (weak particle-matrix interface). We
observe a marked “barreling” failure occurring often in triaxial testing of soil
specimen. Fig 3b corresponds to low values of ρm and ρs (strong particle-
matrix interface). In this case, the rupture surface takes a conical shape.
Fig 3c corresponds to high values of both ρm and ρs. The failure is brittle
and localized on a plane.

Silicone deposit affects mainly the surface of the particles and thus the
particle-matrix adhesion. The weakening of the interface depends on the
thickness of silicone coating. Let σsm be the silicone-matrix interface ad-
hesion and η the surface fraction of LECA beads coated by the silicone.
The effective particle-matrix adhesion σpm∗ can be evaluated as a surface
weighted mean of σsm and σpm:

σpm∗ = ησsm + (1− η)σpm (1)

The coating fraction η depends on the roughness of the bead surface. The
silicone paste covers an increasing fraction of asperity peaks as a function of
the silicone volume V s. The flow of silicone from peaks to hollows during the
drying process can be neglected due to its high viscosity. The hollows are
fully covered (η = 1) for a volume V s

sat of silicone depending on the surface
roughness.

Let us assume that there are N spherical asperities of the same radius R
and different heights at the surface of each bead. Then, the total accessible
surface Ssat is given by

Ssat = 2πR2N (2)
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(a)

(b)

Figure 3: Examples of stress-strain plots: (a) Effect of the matrix volume
fraction ρm; (b) Effect of the silicone volume fraction ρs.

Figure 4: Failure modes for high matrix volume fraction and strong particle-
matrix adhesion (a), low matrix volume fraction and strong particle-matrix
adhesion (b) and high matrix volume fraction and weak particle-matrix ad-
hesion (c).
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Figure 5: A schematic representation of the local geometry.

If all asperities are coated with a mean thickness δ, we have

V s
sat = δSsat = 2πR2Nδ (3)

As a result, the mean coating fraction η is simply given by

η =
V s/δ

Ssat
=

V s

V s
sat

=
ρs

ρssat
(4)

and we have

σpm∗ =
ρs

ρssat
σsm + (1− ρs

ρssat
)σpm (5)

Equation 5 can be improved by taking into account the statistics of
roughness asperities. However, this information is not available for our
LECA beads, and thus we will rely on equation 5 to express the effective
particle-matrix adhesion in the presence of silicone coating from experimen-
tal values of the silicone volume fraction ρs. In this form, we need only the
value of ρssat which depends on the surface roughness but can be determined
from experiments. We have ρssat ' 0.04 and σsm � σpm, so that

σpm∗ '
(

1− ρs

0.04

)
σpm (6)

Figure 6 shows the compressive strength (peak stress) σY as a function
of the matrix volume fraction ρm for different values of σpm∗. The data are
well fit by straight lines passing through the origin with an increasing slope
as σpm∗ increases. The role of the matrix is two-fold. On one hand, the load
transfer between the particles and matrix leads to higher homogeneity of
stress transmission as ρm increases as a result of the reduction of porosity.
On the other hand, the area Spm of the matrix-particle interface, and thus
the particle-matrix tensile force threshold F pm = σpm∗ Spm, increases with
ρm. Let us assume that the matrix is distributed in the form of independent
solid bonds between neighboring particles of an average gap e (see Fig. 5).
With this assumption, and neglecting the effect of curvature at the interface,
we have Spm ∝ ρm, and thus

F pm ∝ σpm∗ ρm. (7)
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Figure 6: Compressive strength σY as a function of the matrix volume
fraction ρm for different values of particle-matrix adhesion σpm∗ normalized
by the particle tensile strength σp.

Figure 7: Compressive strength vs. the product σpm∗ ρm fitted by a solid
straight line passing through the origin.
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Figure 8: Grey-level map of the fraction of damaged particles as a function
of the matrix volume fraction and particle-matrix adhesion.

We expect the effective tensile strength σY to scale with the contact ten-
sile force threshold F pm and thus with the product σpm∗ ρm [9, 24]. In Fig.
7, σY is plotted versus σpm∗ρm for all our compression tests. Interestingly,
all data points collapse approximately on a straight line passing through the
origin. This is a surprising result as the nonlinear curvature effects related
to the spherical form of the particles can be neglected only at low values
of ρm. At larger values, the matrix-particle interface area does not increase
in proportion to matrix volume fraction. At very high values of ρm (above
' 20%) the matrix percolates throughout the packing and the assumption
of isolated solid bonds between the particles does not hold neither. The fact
that the linear scaling holds even at large values of ρm may be attributed to
the bulk effect of the matrix. Indeed, when the matrix percolates through-
out the system, the interface area does not evolve with ρm whereas the load
transfer between the particles and matrix is reinforced due to the possibility
of stress transmission through the matrix.

An important aspect of the rupture of cemented granular materials is the
amount of particle damage which reflects the composition of the material
and the relative strengths of the constituents [18, 36, 20, 34, 30]. In the
experiments, we are able to evaluate the number of damaged particles at the
end of each test. This is done visually by counting the damaged particles
in the fractured zones of the samples. Fig. 8 shows a gray-level map of the
fraction of damaged particles in the parameter space (ρm,σpm∗). A limit line
can be distinguished below which no particle damage occurs. This regime is
mainly controlled by σpm∗ for ρm > 0.2 whereas in the range ρm < 0.2 both
parameters are important. Beyond this particle-damage limit, the fraction
of damaged particles increases both with ρm and σpm∗.

The above particle-damage map suggests three distinct regimes of crack
propagation schematically represented in Fig. 9: 1) Below the particle-
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Figure 9: A schematic representation of cracking regimes as a function of
matrix volume fraction ρm and particle-matrix effective adhesion σpm∗ .

Figure 10: Examples of crack patterns corresponding to the regimes of no
particle damage (a), particle abrasion (b) and particle breaking (c).

damage limit, the cracks bypass the particles and propagate through the
matrix, the pores or along the particle-matrix interface; 2) Above this limit
and for ρm < 0.2, the cracks penetrate also partially into the particles
from solid bridges that strongly concentrate stresses and lead thus to sur-
face abrasion of the particles; 3) Above this limit and for ρm > 0.2, the
cracks propagate inside the matrix as well as across the particles, causing
the breaking of the particles. Fig. 10 shows three photographs that illus-
trate the three cracking regimes at the particle scale. These photographs
correspond to the three failure modes shown in Fig. 3.

Particle damage results from the penetration of cracks into the particles
if the particles are less tough than the particle-matrix interface [13, 2, 33].
The fracture toughness Kc = (EGc)

1/2 in traction (mode I) of a material
combines the stiffness E (controlling the amount of elastic energy stored per
unit volume) with the fracture energy Gc (energy required to create a crack
of unit area). This expression of Kc describes a continuous medium. It
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Figure 11: Number of damaged particles vs. the parameter κ (see text) for
all our experimental data. The dashed line represents a quadratic fit.

can, however, be extended to granular media by replacing Gc by the contact
debonding energy (energy to break a bond) and E by the elastic energy
stored in the contact network.

In our system, the elastic energy is mainly localized at the interface
zones between the particles due to the much higher stiffness of the particles
compared to the matrix and silicone. Assuming that this energy is fully dis-
sipated in debonding between two particles, and neglecting Poisson’s ratio,
the fracture energy is given by Gc = 2eSpm(σpm∗)2/(2E). With the approx-
imation Spm ∝ ρm, we thus expect Kc ∝ (ρm)1/2σpm∗. Normalizing the
latter by the tensile strength σp of the particles, we define the normalized
parameter

κ =
σpm∗

σp
(ρm)1/2. (8)

This parameter is expected to control crack propagation from the matrix to
the particles.

Figure 11 shows the number of damaged particles as a function of κ for
all our experimental data. It is remarkable that all data points from all tests
collapse on a single plot. Below κ ' 0.2, no particle damage occurs. Beyond
this point, the fraction of damaged particles increases nearly quadratically
with κ. In this way, the parameter κ, combining σpm∗ and ρm, appears to
be the control parameter both for the particle damage limit and for crack
propagation through the particles.

Despite the limited number of tests, our experiments provide clear trends
that highlight convincingly the respective roles of the cementing matrix
and particle-matrix adherence in the mechanical behavior and failure of our
model system. Further experimental work is under way in order to extend
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the data points and check the effect of particle volume fraction.

4 Two-dimensional simulations

In this section, we first briefly introduce the numerical model. Then, we
present our numerical results which will be discussed and compared with
the experiments. It should be noted that the goal of these 2D numerical
simulations is not to fit the experimental data. We are mainly interested in
the influence of the matrix volume fraction and particle-matrix adhesion on
the mechanical behavior.

4.1 Lattice element method

We used a lattice-based model in which different phases (particles, matrix,
particle-matrix interface) are discretized as linear elastic elements forming
a triangular network; see Fig. 12b for a schematic representation [25, 27,
37, 26, 19, 21, 11, 6, 4]. The stiffness of each phase is controlled by the
elastic parameters of its elements whereas its fracture corresponds to the
breaking of the elements at a threshold expressed in force or energy. Hence,
in contrast to discrete element methods, the lattice element method (LEM)
allows naturally for particle breaking and the treatment of a continuous
matrix between the particles. A detailed description of the LEM and its
implementation can be found in Ref. [32].

A snapshot of a 2D numerical sample is shown in Fig. 12a. The parti-
cles have the same size distribution as in experiments. The sample is built
using a geometrical approach designed to generate dense granular packings
for given distribution of particle diameters [38]. These samples are then
compacted under isotropic compression by means of discrete element simu-
lations. Finally, the matrix is distributed between the particles in the form
of trapezoidal bonds with variable width depending on the total amount of
matrix. At high levels of the matrix volume fraction ρm, the bonds overlap
and the porosity can be reduced down to zero. The particle volume fraction
ρp = 0.8 is the same for all samples. The particle-matrix adhesion is the
only source of cohesion for the material. The interparticle zones are thus
bare (with no matrix interposed) and can be considered as initial cracks in
the sample.

All samples are subjected to axial compression with free side boundaries.
Step-wise displacements are applied to nodes forming the upper boundary
of the sample. The lower boundary is a line defined by nodes which are
constrained to remain immobile. The initial state is the reference configu-
ration and the equilibrium state at each step is calculated by searching the
minimum of the total potential energy of the system by means of the con-
jugate gradient method. This “quasi-static” driving of the system leads to
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Figure 12: (a) A numerical sample composed of particles (in black), the ce-
menting matrix (in grey) and voids (in white); (b) A zoom on the discretized
particles and matrix.

irreversible rupture of overloaded elements occurring mostly in cascade. All
overloaded elements are broken simultaneously within a computation step.

The local parameters of the model are the length a of the lattice vector,
the spring constants kp, km and kpm of the elements belonging to particles,
matrix and their interface, respectively, as well as the corresponding tensile
force thresholds fp, fm and fpm. Since we are interested in the effective
compressive strength σY it is dimensionally convenient to express the local
thresholds in stress units. We thus define the equivalent debonding stresses
σi ≡ f i/a, where the exponent i refers to each phase ’p’ or ’m’, or the
interface ’pm’. On the other hand, the equivalent stiffness of each phase
or interface depends on the lattice form and spring constant. For a regular
triangular lattice, we have Ei = αki, where α depends on the direction of
compression. We used the same values of the ratios Ep/Em and σp/σs as
in experiments. We assume that Epm = EpEm/(Ep + Em) corresponding
to a serial combination of the particle and matrix elements at the interface.

4.2 Numerical results

Figure 13 shows typical stress-strain plots for two different values of the
matrix volume fraction ρm. In both cases, we observe a brittle behavior
characterized by an effective stiffness E and strength σY (peak stress). The
behavior appears to be more brittle than in experiments (see Fig. 3). Let
us also remark that the effective stiffness in the simulations depends only on
ρm whereas in experiments it is controlled both by both ρm and ρs. In the
simulations, the effective stiffness E increases linearly with ρm as shown in
Fig. 14.

Figure 15 shows the compressive strength σY as a function of ρmσpm.
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Figure 13: Axial stress normalized by the particle tensile strength as a
function of axial strain for two different values of the matrix volume fraction
ρm in lattice-element simulations.

Figure 14: Effective stiffness E normalized by the particle stiffness as a
function of the matrix volume fraction ρm.
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Figure 15: Compressive strength σY vs. the product ρmσpm from numerical
data.

As in experiments (see Fig. 7), the data collapse on the same straight line
passing through the origin. Deviations of data points from linear fit can be
observed beyond ρmσpm ' 0.1. A similar effect can be observed in Fig. 7
for ρmσpm ' 0.3 in the experiments.

In order to characterize particle damage in the simulations, we consider
the proportion nb of broken elements in the particles with respect to the
number of broken elements in the whole system. This definition does not
correspond exactly to the fraction of damaged particles that we measured
in the experiments. But it has the advantage of accounting for the extent
of fracture inside the particles and provides richer statistics than in the
experiments. Figs. 16 displays a gray-level map of nb in the parameter
space (ρm,σpm). It compares well to the map for the fraction of damaged
particles in the experiments; see Fig. 8. In particular, we readily observe
the a particle-damage limit which has the same shape as in experiments.
The characteristic value of the matrix volume fraction is ρm ' 0.1 (to be
compared with ρm ' 0.2 in the experiments. This is consistent with the fact
that the percolation of the matrix is expected to occur at lower values in 2D
(the particle volume fraction being ' 0.8) than in 3D (the particle volume
fraction being ' 0.58).

We now consider the particle damage as a function of the toughness Kc

in traction. In contrast to the experiments, the toughness can be evaluated
at the scale of the lattice bonds. In our numerical system, the elastic energy
of a particle-matrix bond at failure is (fpm)2/(2kpm), and this energy is fully
dissipated when the bond fails. Hence, the adhesion energy (per unit length
in 2D) is

Gpm
c =

(fpm)2

2akpm
. (9)
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Figure 16: A grey-level map of the fraction nb of broken bonds in numerical
simulations as a function of the matrix volume fraction ρm and particle-
matrix adhesion σpm.

Using this expression, the particle-matrix interface toughness is given by

Kpm
c = (Et

effG
pm
c )

1
2 (10)

We normalize Kpm
c by the toughness Kp

c of the particles to define the
“relative toughness” Kr

c ≡ Kpm
c /Kp

c . In Fig. 17 is plotted the fraction nb of
broken bonds in the particle phase as a function of Kr

c for all our simulation
data. As in the experiments, below a characteristic toughness Kr

c ' 0.2,
no particle damage occurs. Beyond this point, the fraction of broken bonds
increases nearly linearly with Kr

c within statistical precision and saturates
to 1 beyond Kr

c ' 0.6. Given the definition of nb, this saturation means
that nearly all bonds break inside the particles. This does not mean that
all particles are damaged. The saturation regime corresponds to the limit
where the particle-matrix adhesion is of the order of or larger than the
particle tensile strength. This limit does not occur in our experiments where
the total number of damaged particles are considered, and not the broken
bonds.

In summary, as far as the evolution of the compressive strength and
damage with particle-matrix adhesion and matrix volume fraction are con-
sidered, our numerical results are in excellent qualitative agreement with the
experimental data. Both simulations and experiments reveal three regimes
of particle damage controlled by a toughness parameter. Let us also mention
that the simulations were also used to investigate the case of simple traction.
Similar trends were found also for the effective tensile strength and particle
damage [32].
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Figure 17: Fraction nb of broken bonds in the particle phase vs relative
toughness Kr

c (see text).

5 Conclusion

In this paper, we introduced an experimental model of cemented granular
materials as a particular class of materials involving the characteristics of
both particle-reinforced composites (due to the cementing matrix) and gran-
ular media (due to particle jamming). The samples consist of LECA beads
as particles, a joint seal paste as cementing matrix and silicone coatings used
to control the particle-matrix adherence. We mainly focused on the influence
of matrix volume fraction and particle-matrix adhesion on the compressive
strength and particle damage. We also used the lattice-element method in
order to simulate 2D cemented granular samples, and the numerical data
were analyzed along the same lines as in experiments.

Interestingly, for the whole investigated range of matrix volume fractions,
both experiments and simulations show that the compressive strength scales
with the product of matrix volume fraction and particle-matrix adhesion.
On the other hand, our numerical and experimental data show that parti-
cle damage is controlled by a toughness parameter pertaining to the contact
debonding energy. Below a critical value of this parameter, no particle dam-
age occurs. Beyond this limit, particle damage increases with the toughness
parameter. On the basis of particle damage data as a function of the matrix
volume fraction and particle-matrix adhesion, three distinct regimes of crack
propagation are identified.

This work provides for the first time direct experimental evidence for the
role of matrix content and particle-matrix adherence in the cohesion of ce-
mented granular media. However, more experiments are necessary in order
to extend the range of parameters (matrix volume fraction, adhesion) and
to evaluate the robustness of the results with respect to the experimental
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and numerical preparation protocol. In the same way, the effect of silicone
coating requires a more detailed investigation. Finally, the numerical ap-
proach by the lattice element method proves to be a promising tool, but it
needs to be extended to three dimensions for a direct comparison with the
experiments.
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