N

N

A new bound for the 2/3 conjecture
Daniel Kral’, Chun-Hung Liu, Jean-Sébastien Sereni, Peter Whalen, Zelealem

Yilma

» To cite this version:

Daniel Kral’, Chun-Hung Liu, Jean-Sébastien Sereni, Peter Whalen, Zelealem Yilma. A new bound
for the 2/3 conjecture. 2012. hal-00686989v1

HAL Id: hal-00686989
https://hal.science/hal-00686989v1

Submitted on 11 Apr 2012 (v1), last revised 3 Jan 2013 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00686989v1
https://hal.archives-ouvertes.fr

A new bound for the 2/3 conjecture

Daniel Kral™ Chun-Hung Liu' Jean-Sébastien Serenit
Peter Whalen® Zelealem B. Yilma

Abstract

We show that any n-vertex complete graph with edges colored with three
colors contains a set of at most four vertices such that the number of the
neighbors of these vertices in one of the colors is at least 2n/3. The previous
best value, proved by Erdés et al. in 1989, is 22. It is conjectured that three
vertices suffice.

1 Introduction

Erdés and Hajnal [5] made the observation that for fixed positive integer ¢, positive
real €, and graph G on n > ng vertices, there is a set of ¢ vertices that have a
neighborhood of size at least (1 — (1 + €)(2/3)")n in either G or its complement.
They further inquired whether 2/3 may be replaced by 1/2. This was answered in
the affirmative by Erdds, Faudree, Gyarfas and Schelp [3], who not only proved the
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result but also dispensed with the (1 4 €) factor. They also phrased the question as
a problem of vertex domination in a multicolored graph.

Given a color ¢ in an r-coloring of the edges of the complete graph, a subset A
of the vertex set c-dominates another subset B if, for every y € B\ A, there exists a
vertex € A such that the edge xy is colored c¢. The subset A strongly c-dominates
B if such a vertex x € A exists for every y € B. (Thus, the two notions coincide
when AN B =(.) The result of Erdds et al. [3] may then be stated as follows.

Theorem 1. For any fixed positive integer t and any 2-coloring of the edges of the
complete graph K, on n vertices, there exist a color ¢ and a subset X of size at most
t such that all but at most n/2" vertices of K,, are c-dominated by X .

In a more general form, they asked: Given positive integers r, t, and n along
with an r-coloring of the edges of the complete graph K, on n vertices, what is the
largest subset B of the vertices of K, necessarily monochromatically dominated by
some t-element subset of K, ? However, in the same paper [3], the authors presented
a 3-coloring of the edges of K, — attributed to Kierstead — which shows that if
r > 3, then it is not possible to monochromatically dominate all but a small fraction
of the vertices with any fixed number ¢ of vertices. This 3-coloring is defined as
follows: the vertices of K, are partitioned into three sets Vi, V5, V3 of equal sizes and
an edge zy with z € V; and y € Vj is colored 7 if 1 < ¢ < j < 3. Observe that, if ¢ is
fixed, then at most 2n/3 vertices may be monochromatically dominated.

In the other direction, it was shown in the follow-up paper of Erdds, Faudree,
Gould, Gyarfas, Rousseau and Schelp [4], that if ¢ > 22, then, indeed, at least 2n/3
vertices are monochromatically dominated in any 3-coloring of the edges of K,,. The
authors then ask if 22 may be replaced by a smaller number (specifically, 3). We
prove here that ¢ > 4 is sufficient.

Theorem 2. For any 3-coloring of the edges of K,,, where n > 2, there exist a color
c and a subset A of at most four vertices of K,, such that A strongly c-dominates at
least 2n/3 vertices of K,,.

Our proof suggests that Kierstead’s coloring is in some sense extremal, giving
more credence to the conjecture that three vertices would suffice to monochromati-
cally dominate a set of size 2n/3 in any 3-coloring of the edges of K.

We note that there exists 3-colorings of the edges of K, such that no pair of
vertices monochromatically dominate 2n/3 + O(1) vertices. This can be seen by
realizing that in a random 3-coloring, the probability that an arbitrary pair of vertices

monochromatically dominate more than 5n/9 + o(n) vertices is o(n=2?) by Chernoff’s
bound.



Our proof of Theorem 2 utilizes the flag algebra theory introduced by Razborov,
which, recently, has led to numerous results in extremal graph and hypergraph theory.
In the following section, we present a brief introduction to the flag algebra framework.
The proof of Theorem 2 is presented in Section 3.

We end this introduction by pointing out another interesting question: what
happens when one increases r, the number of colors? Constructions in the vein of

that of Kierstead — for example, partitioning K, into s parts and using r = (s)

2
colors — show that the size of dominated sets decreases with increasing r. While it
may be difficult to determine the minimum value of t dominating a certain proportion
of the vertices, it would be interesting to find out whether such constructions do, in

fact, give the correct bounds.

2 Flag Algebras

Flag algebras were introduced by Razborov [11] as a tool based on the graph limit
theory of Lovéasz and Szegedy [10] and Borgs et al. [2] to approach problems per-
taining to extremal graph theory. This tool has been successfully applied to various
topics, such as Turdn-type problems [13], super-saturation questions [12], jumps in
hypergraphs [1], the Caccetta-Haggkvist conjecture [9], the chromatic number of
common graphs [7] and the number of pentagons in triangle-free graphs [6, 8].

Let us now introduce the terminology related to flag algebras needed in this
paper. Since we deal with 3-colorings of the edges of complete graphs, we restrict
our attention only to this particular case. Let us define a tricolored graph to be a
complete graph whose edges are colored with 3 colors. If G is a tricolored graph,
then V(G) is its vertex-set. For a set F', we define RF' to be the set of all formal
linear combinations of elements of F' with real coefficients. Let F, be the set of non-
isomorphic tricolored graphs with ¢ vertices (two tricolored graphs are considered to
be isomorphic if they differ by a permutation of the vertices and a permutation of the
edge colors). The elements of F3 are shown in Figure 1. We set F := UyenF,. Given
a tricolored graph o, we define F] to be the set of tricolored graphs F' on ¢ vertices
with a fixed embedding of ¢, that is, an injective mapping v from V(o) to V(F') such
that Im(v) induces in F' a subgraph that differs from o only by a permutation of the
edge colors. We set 7 := U;enIF7.

The central notions are factor algebras of F and F? equipped with addition and
multiplication. Let us start with the simpler case of F. Let F be RIF factorised by
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Figure 1: The elements of F5. The edges of color 1, 2 and 3 are represented by solid,
dashed and dotted lines, respectively.

the subspace of RIF generated by all combinations of the form

H- Y pHH)H,

H'€F| g 41

where p(H, H') is the probability that a randomly chosen subset of |V (H)| vertices
of H' induces a subgraph isomorphic to H. We set A := RF.
Next, we define the multiplication on A based on the elements of F as

H, - Hy = Z p(H1,H2;H)7

HEF |1y |41y

where p(Hy, Hy; H) is the probability that two randomly chosen disjoint subsets of
vertices of H with sizes |V (H;)| and |V (Hz)| induce subgraphs isomorphic to H;
and Hy, respectively. The multiplication is linearly extended to RIF. Further, it
can be shown that the result of the multiplication falls into the same class of A
independently of the choice of the elements of F in their classes.

The definition of A7 follows the same lines. Let H and H' be two tricolored graphs
in F” with embeddings v and v/ of o. Let p(H, H') be the probability that /(V (o))
together with a randomly chosen subset of |V (H)|—|V (o) vertices in V(H")\v'(V (o))
induce a subgraph that is isomorphic to H through an isomorphism f that preserves
the embeddings, that is, v/ = f or. The set A“ is composed of all formal real linear
combinations of elements of RIF? factorised by the subspace of RIF? generated by all
combinations of the form

H- Y pHH)H.

H'€FTy
Similarly, p(H;, Ho; H) is the probability that v(V (o)) together with two randomly
chosen disjoint subsets of |V (H;)| — |V (o)| and |V (Hs)| — |V (0)| vertices in V(H) \



v(V (o)) induce subgraphs isomorphic to H; and Hs, respectively, with the isomor-
phisms preserving the embeddings of 0. The definition of the product is then analo-
gous to that in A.

Consider an infinite sequence (G;);en of tricolored graphs with an increasing
number of vertices. Recall that if H € F, then p(H,G;) is the probability that
a randomly chosen subset of |V (H)| vertices of GG; induces a subgraph isomorphic
to H. The sequence (G;)ien is convergent if p(H,G;) has a limit for every H €
F. A standard argument (using Tychonoff’s theorem [14]) yields that every infinite
sequence of tricolored graphs has a convergent (infinite) subsequence.

Fix now a convergent sequence (G;);en of tricolored graphs. We set q(H) =
lim; ,, p(H,G;) for every H € F, and we linearly extend ¢ to .A. The key property
is that ¢ is a homomorphism from A to R. Moreover, for ¢ € F and an embedding
v of o in G;, define pY(H) = p(H, G;). So, for every i € N, the mappings p? form
a random distribution of mappings from A to R, where randomness comes from the
choice of v. Since p(H,G;) converges (as i tends to infinity) for every H € F, the
sequence of these distributions also converges. In what follows, ¢” will be a randomly
chosen mapping from A% to R based on the limit distribution. It can be shown that
such a mapping is a homomorphism from A% to R. In fact, ¢ fully determines the
random distributions of ¢ for all o.

Let us now have a closer look at the relation between ¢ and ¢°. The “averaging’
operator [-] : A% — Ais a linear operator defined on the elements of F? by [H] =
p- H', where H' is the (unlabeled) tricolored graph in I corresponding to H and p is
the probability that a random injective mapping from V(o) to V(H’) is an embedding
of o in H' yielding H. The key relation between ¢ and ¢° is the following:

)

VH € A7, qlH],) = [ (). 1)

where the integration is over the probability space given by the limit random dis-
tribution of ¢”. We immediately conclude that if ¢°(H) > 0 almost surely, then
q([H],) = 0. In particular,

VH € A°, q([H?]) > 0. 2)

2.1 Particular Notation Used in our Proof

Before presenting the proof of Theorem 2, we need to introduce some notation and
several lemmas. Recall that 04, o and o¢, the elements of 3, are given in Figure 1.
For i € {A, B,C} and a triple t € {1,2,3}3, let F} be the element of F]’ in which
the unlabeled vertex of F} is joined by an edge of color ¢; to the image of the j-th

b}
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Figure 2: The elements oy, ..., 07 of F4. The edges of color 1, 2 and 3 are represented
by solid, dashed and dotted lines, respectively.

vertex of o; for j € {1,2,3}. Two elements of .A?5 and two of A7¢ will be of interest
in our further considerations:

wp = 165F5, + 165F5, — 279F 5, — 44F 5, + 3285, + 10F5, + 421F5.,
why = —580FE, — 580F 5, + 668F 5, — 264F3, + 10F 5, + 725Ff, + 632F%,,
we = 100F, + 100FS, — 100F5; — 100F%; + 162FS, + 163F5,, and

wg = —10F, — 10F5, + 10Ff 5 + 10F 5, — TTF5, + 89F5,,.

We make use of seven elements oy, ..., 07 out of the 15 elements of F4. They are
depicted in Figure 2. For i € {1,...,7} and a quadruple ¢ € {1,2,3}4, let F! be the
element of F7' such that the unlabeled vertex of F; is joined by an edge of color g;
to the j-th vertex of o; for j € {1,2,3,4}. If i € {1,...,7} and ¢ € {1,2,3}, then
F (ic) is the element of A% that is the sum of all the five-vertex o;-flags F| qi such that
the unlabeled vertex is joined by an edge of color ¢ to at least one of the vertices of
0;, i.e., at least one of the entries of ¢ is c.

Finally, we define Hy,..., Hi4o to be the elements of F5 in the way depicted in
Appendix A.

3 Proof of Theorem 2

In this section, we prove Theorem 2 by contradiction: in a series of lemma, we shall
prove some properties of a counterexample, which eventually allows us to establish
the nonexistence of counterexamples.

Let G be a tricolored complete graph. For a vertex v of G, let A, be the set of the
colors of the edges incident with v. Consider a sequence of graphs (Gy)ren, obtained
from G by replacing each vertex v of G with a complete graph of order £ with edges
colored uniformly at random with colors in A,; the colors of the edges between the
complete graphs corresponding to the vertices v and v’ of G being assigned the color
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i=1 i=2 {=3 i=4 i=5 i=6 i=7
c=1 -1/3 0 -1/3 -1/J3 0 0 0
c=2 1/2 0 1/6 -1/3 -1/3 -1/3 0
c=3 1/2 1/2 1/2 1/2 1/2 0 0

Table 1: The values e.(0;) for i € {1,...,7} and ¢ € {1, 2, 3}.

of the edge vv'. This sequence of graphs converges asymptotically almost surely; let
gc be the corresponding homomorphism from A to R.

Let n > 2. We define a counterexample to be a tricolored graph with n vertices
such that for every color ¢ € {1,2,3}, each set W of at most four vertices strongly
c-dominates less than 2n/3 vertices of G. A counterexample readily satisfies the
following.

Lemma 3. If G is a counterexample, then every vertex is incident with edges of at
least two different colors.

In the next lemma, we establish an inequality that g satisfies if G is a counterex-
ample. To do so, define the quantity e.(o;) for « € {1,...,7} and ¢ € {1,2,3} to
be 1/2 if o; contains a single edge with color ¢, —1/3 if each vertex of o; is incident
with an edge colored ¢, 1/6 if o; contains at least two edges with color ¢ and a vertex
incident with edges of a single color different from ¢, and 0, otherwise. These values
are gathered in Table 1.

Lemma 4. Let G be a counterexample with n vertices. For every i € {1,...,7}
and ¢ € {1,2,3}, a homomorphism qfi from A% to R almost surely satisfies the
inequality
EC(O'Z')

.

o ) 2
qc (Floy) < 3t

Proof. Fix i € {1,...,7} and ¢ € {1,2,3}. Consider the graph G}, for sufficiently
large k. Let (wy,ws, w3, wy) be a quadruple of vertices of Gy inducing a subgraph
isomorphic to ;. Further, let W be the set of vertices strongly c-dominated by
{wy,...,ws}. We show that |W| < 225 + .(0;)k + o(k) with probability tending to
one as k tends to infinity. This will establish the inequality stated in the lemma.
For i € {1,2,3,4}, let v; be the vertex of G corresponding to the clique W; of Gy,
containing w;. Let V be the set of vertices of G that are strongly c-dominated by

{v1,...,v4}. Since G is a counterexample, |V| < 2n/3, and hence, |V| < 2n/3 —1/3.



If w; and wj are joined by an edge of color ¢ and, furthermore, v; = v;/, then v; is
added to V' as well. Since V is still strongly c-dominated by a quadruple of vertices
in G (replace vj by any of its c-neighbors), it follows that [V| < 2n/3 —1/3.

The set W can contain the |V|k vertices of the cliques corresponding to the
vertices of V', and, potentially, it also contains some additional vertices if w; has
no c-neighbors among wy, ..., w,. In this case, the additional vertices in W are the
c-neighbors of w; in W;. There are at most k/3 + o(k) such vertices if v; is incident
with edges of all three colors in G, and at most k/2+ o(k) if v; is incident with edges
of only two colors in G.

If e.(o;) = —1/3, then all the vertices wy,...,wy have a c-neighbor among
wy,...,wy and thus W contains only vertices of the cliques corresponding to the
vertices V. We conclude that |[IW] < (zngl)k + o(k), as required.

If e.(0;) = 0, then all but one of the vertices wy, ..., w4 have a c-neighbor among
wi, ..., ws and the vertex w; that has none is incident in o; with edges of the two
colors different from c. In particular, either w; has no c-neighbors inside W; or v; is
incident with edges of three distinct colors in G. This implies that || < wj%(k)
in the former case and |[W| < 2% + o(k) in the latter case. So, the bound holds.

If e.(0;) = 1/6, then all but one of the vertices among wy, . . ., w4 have a c-neighbor
among wy, . .., wy. Let w; be the exceptional vertex. Since w; has at most k/2+ o(k)
c-neighbors in W, it follows that [W| < 225 + & 4 o(k).

Finally, if e.(0;) = 1/2, then two vertices w; and w; among wy, ..., w, have no
c-neighbors in {wy,...,ws}. The vertices w; and w; have at most k/2 + o(k) c-
neighbors each in W; and W}, respectively. Moreover, since o; contains edges of all
three colors, one of w; and w; is incident in o; with edges of the two colors different
from c¢. Hence, this vertex has at most k/3 + o(k) c-neighbors in W;. We conclude
that the set W contains at most [V|k + 5k/6 + o(k) < 225 + & + o(k) vertices. [

As a consequence of (1), we have the following corollary of Lemma 4.

Lemma 5. Let G be a counterexample with n vertices. For everyi € {1,...,7} and
c €{1,2,3} such that e.(0;) < 0, it holds that

qg([[Qai/B — F(ic)]]ai) > 0.

We now prove that in a counterexample, at most two colors are used to color the
edges incident with any given vertex. As we shall see, this structural property of
counterexamples directly implies their nonexistence, thereby proving Theorem 2.

Lemma 6. No counterexample contains a vertex incident with edges of all three
colors.



Proof. Let G be a counterexample and w3z € A be the sum of all elements of Fx
that contain a vertex incident with at least three colors. By the definition of g¢, the
graph G has a vertex incident with edges of all three colors if and only if g5 (ws) > 0.
Lemma 5 implies that go(H) is non-negative for each element H of A corresponding
to any column of Table 2 (in Appendix B). In addition, (2) ensures that qo(H) is
also non-negative for each element H of A corresponding to any of the first four
columns of Table 3 (in Appendix B). Summing these columns with coefficients

23457815885978657985 134730108347752975 134730108347752975
102 12512 7 459600797103 ] 4596007971038
1585282%2I33891 3945 19679?897557I87189905 33245823856447882025
514752892756256 _ 7 12354069426150144 _ 24708138852300288 _ 7
395665414267%39%415 30762195734543710715 20816545085118359705
772129339134384 7 772129339134384 7 4118023142050048 7
74313622711306287405 48968798259015 39315342699665
2059011571025024 514752892756256 6177034713075072 7
156977347300925119 8880723226482731
32944185136400384 ’ 24708138852300288 ’

respectively, yields an element wg of A given in the very last column of Table 3. As
dc is a homomorphism from A to R, it follows that gg(wy) > 0. Since wy < —ws,
we deduce that gg(ws) < 0, which therefore implies that gg(ws3) = 0, as desired. 0O

We are now in a position to prove Theorem 2, whose statement is recalled below.

Theorem 7. Let n > 2. Every tricolored graph with n vertices contains a subset of
at most four vertices that strongly c-dominates at least 2n/3 vertices for some color
c.

Proof. Suppose, on the contrary, that there exists a counterexample GG. Recall that
A, is the set of colors that appear on the edges incident to the vertex v. Now, by
Lemmas 3 and 6, it holds that |A,| = 2 for every vertex v of G. Hence, V(G) can be
partitioned into three sets V;, V5 and Vi, where v € V; if and only if ¢ ¢ A,. Without
loss of generality, assume that |Vi| > |Vo| > |V3|. Pick w € V; and v € V5. As
A, N A, = {3} for all w € V3, we observe that V5 is 3-dominated by {u}. Similarly,
V1 is 3-dominated by {v}. Therefore, the set {u,v} strongly 3-dominates Vj U V5,
which has size at least 2n/3. O
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B Vectors Used in the Proof of Lemma 6

Table 2: The first ten vectors

Lo

90

Sor

Sof

Vo

Yo

€or

o

<o

1o

xmww..m\NbNH
(01— /92|
mmw&A|.m\mbm”
WWWN..m\mbNH
WWW&A|.m\¢bNH
xwww..m\wbﬂw
WWWM.l,m\mbNH
WWW&A|.m\NbNH
WWWM.l,m\NbNH
WMWN..m\HbNH

Hy
Ho
Hj

-1/90 0

Hy

Hsy

-1/90 -1/180  1/90 0

Hg

0
-1/60

0
-1/60

Hy

0
0

0
0

Hg

2/45

-1/45

Hy

0

0

Hyy

0
0

-1/90
0

S O

o O

Hyq
Hyo

Hyz

“1/180  1/90 0

0

1/90 0

Hyy

0
0

0
0
0

His

0
1/180

1/180

-1/360

-1/180
-1/180

0

0

0
0

-1/180

Hig

0

0

-1/90

Hq7

Hig

)

1/180 -1/360 0

0

)

-1/180

Hyg

0

0

-1/180 0

90

~

1

-1/90

Hog

o

N

— O O
~

i

o O O
o O O
o O O
o O O
o O O
o

o B
- = O
~ —_
- -
o O O
o O O
o

3
/00
i

1

— N ™
T

Hoy

0 -1/90  -1/90 0
0

0
0

0  -1/180 -1/180

Hos

0
0

0

0
-1/180

0
~1/180
-1/90

Hoag

-1/180 0
1/90
Continued on next page

~1/180

0

Ho7

0

0

0

-1/90

Hog




Table 2 — Continued from previous page

3 g g g N g g g 3 5

ol - - < - S - <

s = & = =8 =2 = = = =8

Hayg  -1/90 0 0 0 0 0 0 0 0 0
Hyy -1/180 -1/180 -1/180 0 0 0  -1/360 -1/360 0 0
Hs, -1/180 -1/180  1/90 0 -1/180 1/90 1/180 -1/360 0 0
Ha 0  -1/60 -1/60 0 0 0 0 0 0 0
Hy 0 -1/90 1/180 0 0 0 -1/360 1/180 0 0
Hy 0 -1/90 -1/90  1/90 0 0 0 0 -1/90 0
Has 0 0 0 0 0 0 0 0 0 0
Hy 0 -1/180 1/90 0 0 0 1/90 -1/180 0 0
Hy 0 0 0 0 0 0 -1/180 -1/180 O 0
Hys 0 1/90  1/90 0 0 0 0 0 0 0
Hyp 0  -1/180 -1/180 0 0 0 0 0 0 0
Hy 0 0 0 -1/90 0 0 0 0 0 0
Hip 0 0 0 0 0 0 0 0 0 0
Hiy 0 0 0 -1/90 0 0 0 0 0 0
Hy o -1/90 0 0 0 1/90 -1/180 0 0 0 0
Hy 1/180 0 0 -1/180 0 0 0 0 0 0
Hy  -1/180 0 0 -1/90 0 0 1/180 1/180 0 0
Hi  -1/90 0 0 0 0 0 0 0 1/45 0
Hyg o 0 0 0 0 0 0 0 0 0 0
Hi 0 0 0 0 0 0 0 0 0 0
Hg 0 0 0 0 0 0 0 0 0 0
Hsxy 0 0 0 0  -1/180 -1/180 -1/180 -1/180 O 0
Hs; -1/180 0 0 0  -1/180 -1/180 -1/360 -1/360 0 0
Hsy -1/180 0 0 -1/180 0 0  -1/360 -1/360 0 0
Hss -1/180 0 0 0  -1/180 -1/180 0 0 1/180 0
Hsy 0 0 0 0 0 0 0 0 0 0
Hss 0 0 0 0 0 0 -1/180 -1/180 O 0
Hss 0 -1/180 -1/180 0  -1/90  -1/90 0 0 0 0
Hs; -1/180 -1/180 -1/180 0 0 0  -1/360 -1/360 0 0
Hss 0 -1/180 -1/180 0 0 0  1/360 -1/180 1/180 O
Hsy 0  -1/180 1/90 0  -1/90 -1/90 0 0 1/180 0
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3 g g g N g g g 3 5
ol - - < - S - <
s = & = =8 =2 = = = =8
Hey 0  -1/180 1/90 -1/180 0 0  -1/180 -1/180 0 0
He 0  -1/180 -1/180  1/90 0 0 0 0 -1/45 0
Hgy -1/180 0 0 0 0 0  -1/360 -1/360 0 0
Hes -1/180 0 0 0 0 0 1/360 1/360 0 0
Heyt 0 0 0 0 0 0 1/90 -1/180 0 0
Hes 0 0 0 1/90 0 0  -1/360 -1/360 0 0
Hes 0  -1/180 -1/180 0 0 0 -1/180 -1/180 O 0
He; 0 -1/180 -1/180 0 0 0 0 0 0 0
Hes 0  -1/180 1/90 0 1/90 -1/180 1/360 -1/180 0 0
Hgg 1/90 -1/90 1/180 0 0 0 0 0 0 0
Hn 0 -1/180 -1/180  1/90 0 0 -1/360 1/180 0  -1/120
Hny 0 0 0 0 0 0  -1/180 -1/180 1/180 0
Hp 0 0 0 1/90 0 0 0 0 0  -1/60
Hi 0 0 0  -1/60 0 0 0 0 0 0
Hyo o -1/90  1/90  1/90 -1/180 0 0 0 0 0 0
Hw  -1/45 0 0 0 0 0 0 0 0 0
Hzp  -1/90 0 0  -1/90 1/90  1/90 0 0 0 0
Hryo -1/90 0 0 0 0 0 1/90 -1/180 0 0
Hzs  -1/90 0 0 0 0 0 0 0 0 0
Hw -1/90  1/45  -1/90 0  -1/180  1/90 0 0 0 0
Hyy -1/180 0 0 0  -1/180 -1/180 -1/360 -1/360 0 0
Hgi  1/90 0 0 0 0 0  1/360 -1/180 O 0
Hg, -1/180 -1/180 -1/180 0 0 0  1/180 -1/360 1/180 O
Hgs  1/90  1/60  -1/60 0 0 0 -1/360 1/180 0 0
Hyy -1/90 0 0 0  -1/90  1/45 0 0 0 0
Hgs  -1/90 0 0 0 0 0 -1/180 1/360 -1/90 0
Hgs -1/180 -1/180 -1/180 0  -1/180 -1/180 -1/360 -1/360 0 0
Hy;  1/90 -1/180 -1/180 -1/180 -1/180 1/90 -1/360 -1/360 0 0
Hgs  1/90 -1/180 -1/180 0 1/90 -1/180 0 0  -1/90 -1/120
Hgo -1/180 -1/180 -1/180 0  1/180 1/180 -1/360 -1/360 0 0
Hyy 1/90 -1/180 -1/180 0 0 0  -1/180  1/90 0 -1/120

Continued on next page



Table 2 — Continued from previous page

g g 8 g g g g g 3 5
& & Sl 5 [ [ [ [ v
s = & = =8 =2 = = = =8
& g & £ g N g S g &
lC\lI .C\]. lC\lI a .C\]. (@] .C\]. lC\lI .C\]. .C\].
Hyy 1/45  -1/90  -1/90 0 0 0 0 0 -1/90 0
Hys 0 0 0 0 0 0 0 0 0 0
Hys 0 0 0 0 0 0 0 0 0 0
Hoyy 0 -1/180 -1/180 0  -1/90 -1/90 0 0 0 0
Hys 0 1/90 -1/180 0 0 0 1/90 -1/180 0 0
Hys 0  -1/180  1/90 0  -1/90 -1/90 0 0 1/180 0
Hyy 0 1/90 -1/180  1/90 0 0  -1/180 -1/180 O 0
Hos 0 0 0 0 0 0 0 0 -1/30 0
Hyo 0 0 0  -1/60 0 0 0 0 0 0
Hio 0 -1/90 -1/90 0 0 0 0 0 1/90 0
Hip 0 2/45  -1/45 0 0 0 0 0 0 0
Hi 0 -1/90  -1/90 0  -1/90 -1/90 0 0 0 0
Hys 0 1/45  -1/90 0 1/90 -1/180 -1/180 -1/180 0 0
Hys 0 -1/90 -1/90 0 1/45  -1/90 0 0 -1/90 0
Hyps 0 -1/90  -1/90 0 0 0 0 0 -1/90 0
Hys 0 1/45  -1/90 -1/180 -1/90  -1/90 0 0 0 0
Hyr 0 0 0 -1/45 0 0 0 0 0 0
Hys O 0 0 -1/45 0 0 0 0 0 0
Hio O 0 0 -1/90 0 0 0 0 0 0
Hiyo O 0 0 -1/180 0 0 -1/180 -1/180 O 0
Hyi 0 0 0  -1/180 -1/180 -1/180 1/180 -1/360 O 0
Hys 0 0 0 -1/90 0 0 0 0 0 0
Hys 0 0 0  -1/180 -1/180 -1/180 1/180 -1/360 O 0
Hys O 0 0 -1/90 0 0  1/360 -1/180 0 0
Hys 0 0 0  -1/180 -1/90 -1/90 0 0 -1/90 0
Hyg 0 0 0 -1/180 -1/90 1/180 -1/180 -1/180 O 0
Hyr 0 0 0  -1/180 -1/180 -1/180 -1/180 1/360 -1/90 0
Hps 0 0 0 1/180 0 0  -1/180 -1/180 0 0
Hyg 0 0 0 1/90 0 0  -1/360 -1/360 -1/90 -1/120
Hip 0 0 0 -1/90 0 0 0 0 0 0
Hiy 0 0 0  -1/180 -1/180 1/90 -1/180 1/360 O 0
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3 g g g g g g g 3 5

ol - - < - S - <

s = & = =8 =2 = = = =8

& g & £ g N g S g &

lC\lI .C\]. (@] .C\]. a lC\lI .C\]. lC\lI .C\]. .C\].

Hip 0 0 0 -1/180 0 0  -1/360 -1/360 0 0
His 0 0 0 -1/180 0 0 -1/180 -1/180 -1/90 0
Hi 0 0 0  -1/180 0 0  -1/90 1/180 0 0
Hys 0 0 0 1/180 0 0 -1/360 -1/360 0  -1/120
Hig 0 0 0 -1/180 0 0  -1/180 -1/180 1/180 O
Hir 0 0 0 -1/180 1/180 -1/90 -1/360 -1/360 0  -1/120
Hps 0 0 0 1/90 0 0 0 0  -1/90 -1/60
Hiy 0 0 0 0 0 0  -1/180 -1/180 0 0
Hizo 0 0 0 0 0 0 0 0 0 0
Hisi 0 0 0 0  -1/180 -1/180 -1/180 -1/180 O 0
Hizz 0 0 0 0 0 0 1180 -1/90 0 0
Hiss 0 0 0 0  -1/180 -1/180 -1/360 -1/360 1/180 O
Hi 0 0 0 0  -1/60 0 -1/180 -1/180 O 0
Hiss 0 0 0 0 0 -1/60 0 0 0  -1/60
Hiss 0 0 0 0  -1/90 -1/90 -1/180 -1/180 -1/90 O
Hiyr 0 0 0 0 1/90 -1/180 -1/120 0 0 -1/120
Hiss 0 0 0 0  -1/180 -1/180 -1/180 1/360 -1/45 0
Hizy 0 0 0 0  -1/180 -1/180 -1/360 -1/360 -1/90 -1/120
Huo 0 0 0 0 0 0  -1/180  1/90 0 -1/60
Hui 0 0 0 0 0 0  -1/90 -1/90 0 0
Hus 0 0 0 0 0 0 0 0  -2/45 0




Table 3: The last six vectors

[ws - ws],, [wh-wsl,, lwe-wel,, [we wel,, | ws wo
H; 0 0 0 0 0 0
Hs 0 0 0 0 0 0
Hs 0 0 0 0 0 0
—1563854392398577199
g 4 0 0 0 0 1 6177034713075072
5 0 0 0 0 0 0
Hg 29161/60 101524/15 0 0 1 -1
H; 0 0 0 0 0 0
Hg 0 0 2000 20 0 0
Hy 0 0 -4000/3 -40/3 0 0
Hip 0 0 0 0 0 0
—10173977739002723
g 11 1815/2 33640/3 0 0 1 55152095652456
12 0 0 0 0 0 0
His 0 0 0 0 0 0
—734882450141728337
Hiy -242 5104 0 0 1 2316388017403152
His 0 0 0 0 0 0
Hig  -9922/15 -422/3 0 0 1 —%%%%7%‘%’%%%2%58%7%%‘%%”
—5771 4 39
Hiq 57013/60 -65634/5 0 0 1 148248833113801728
Hig 0 0 0 0 0 0
Hyo 0 0 0 0 1 —703462682135213465
3369201661677312
Hy 29161/60 101524/15 0 0 1 -1
Hy  T81/2 -37700/3 0 0 L TR
—39614888077443071
Hao -1804 -580/3 0 0 1 18531104139225216
Hos 0 0 0 0 0 0
Hoy 0 0 0 0 0 0
—15461491234942018543
g 25 8 8 197203/ 20 2043/ 20 (1) 5929953326552069120
26
H 0 0 540 77/3 1 —88140807390257339
" : . 0 0 I
o 0 0 : . | BRI,
H31 37062208278450432
0 0 2000 20 0 0
52 —1570031427111652271
Hs 0 0 L0736 L T
534 -328/3 725/3 2000/3 20/3 1 — ST3RER330335 4694
35 0 0 0 0 0 0
—2040849950139277
H3sg 0 0 0 0 1 1323650295658944
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[[wB : wB]:IO'B [[w,B : wlB]]o'B [[wc : wc]]o—c [I:wlc' ° wlc']]o.c ‘ w3 'UJO
—324486989357699
0 0 2187/5 5929/60 1 —324486989357699
0 0 -4000/3 -40/3 0 0
TG0 0986150 0|1 S
Hy  53792/15 10/3 0 0 1 -1
Hy 0 0 0 0 0 0
Hypy  53792/15 10/3 0 0 1 -1
Hys -249 5104 0 0 1 —2444189%2?2%(31%%%131
H. -19723/60 8018 0 0 1 1818216395
Hi: 19251 //20 464265 0 0 | —rorodbHGEEE
Hyg 0 0 0 0 1 1 1270%%4;%%?7%41 53
Hy;  -4743/20 -27388/5 0 0 1 —%%%%%ﬁg%ﬁ%%%l
Hys 0 0 0 0 0 0
Hyg 0 0 0 0 0 0
H 0 0 0 0 1 —102522009006261748933
HZ? 0 0 4401/10 6853/60 | 1 s et i 441 1307
Hiy 1331/4 244763 0 0 | LSRR,
559369031000 70609835
H53 _7157/30 72838/15 0 0 1 296497666227603456
Hs, 0 0 0 0 0 0
H 0 0 2187/5 5929 /60 1 —324486989357699
H 0 0 o303 o |1 R,
o0 : w0 e |1 ST
5.
—T748267710 % 07
H58 0 0 0 0 1 14824883351138011728
Hsg 0 0 0 0 1 -1
H, 0 0 -540 _77/3 1 —127346913837154513
He 03 484303 ; Y R
Hgs 0 0 0 0 | EReASIISIN
w0 oo |1 L
Hgs  -34522/15 316/3 0 0 1 -1
ne Y i Y e,
Hgr  177241/60  99856/15 0 0 1 =HBS0elrsioal
Hgg 0 0 -815/3 89/6 1 —3%6214}330%88 %12%5
Heo 4631/4 -18328/3 -1000/3 -10/3 1 —llgﬁg%g%ogfﬁgﬁ%ﬁél
H -39153/20  105544/15 -270 -77/6 1 =585164589838:742195
H:(l) 0 / 0 / 0 0/ M b e et
Hpy  -39153/10  211088/15 0 0 1 —4%;9;% ?9;928%;13626%;8;}63
—673764 01
H73 17391/4 114896/15 0 0 1 13236502956558944
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[wp - wgl,, [ws-wpl,, [we-wcl,, [we- wpl,, |ws wo
Hyy -3069/2 -38744/3 0 0 1 -1
H7 -968 20416 0 0 1 —206704879201250857
H7Z -13706/15  -92396/15 0 0 1 —85*24%5255586%92%3%‘9387
H77 0 0 0 0 1 —7%%4%%6%%1%%%1]34 5
B R T
Hrg 4631/2 -36656/3 0 0 1 18531104139225216
H~g 0 0 0 0 1 -1
o 0 0 0 0|1 e
Hg  -4631/15 -13904/5 0 0 1 -1
—10725188546965769537
Hygy 0 0 0 0 1 a0 08
Hgs 0 0 -2810/3 -39/2 1 -1
H 0 0 0 0 1 —7417316739041385395
Hgz 1331/4 244763 270 77/6 1 —2%6;5;’653%2*%%;*;?7
Hgs  -8657/30  -194687/15 -815/3 89/6 1 = 1105266471
wo s s o e |1 SU0G
Hy, 121/3 -61190/3 2000/3 20/3 1 L e
Hyo 0 0 0 0 0 0
Hys 0 0 0 0 0 0
H 0 0 19723/20 2047/20 1 —15461491234942018543
A X g I
e 0 X o B B 0 )
He 0 0 0 0|1 e,
5
Hgg  77841/20 111556/5 0 0 1 -1
—35834405989042100849
Higo 10/3 105125/6 0 0 1 74124416556900864
Hio 0 0 -4000/3 -40/3 0 0
H 0 0 1630/3 -89/3 1 —10943236189159518679
o0 ! S s |1 olsimen
Hio 0 0 -1630/3 89/3 1 _g% 0] ;ﬁ%ﬁ%@éﬁ 59
H105 0 0 0 0 1 —1]74%%%26616 8611%2727
P 0 16303 so3 | 1 —DALREES
8236046284100096
Hyp;  107584/15 20/3 0 0 1 -2
Hios  30504/5 1336/3 0 0 1 =00935245070593753
Hiy  1815/2 33640/3 0 0 1 = 8117337%76922 2
H 0 0 0 0 1 —88&6%%8?21 71&2297
110 2059011571025024
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[wp -ws],,

[wi - whl,, [we-wcl,, [we-wel,, | ws

Wo

4631/4
-1804
-34522/15
-3069,/4
55
0
-93/2
-1804
-70439/30
1815/2
0
4631/4
-328/3
0
-27249/10
55
0
170681,/60

-18328/3
-580/3
316/3

-19372/3

-42050/3

0

24215/3

-580/3
8177
33640/3
0

-18328/3

725/3
0
8684/15
-42050/3
0

103481/15

22910/3
0
0

0

0
22910/3

0

0
105125/3

0
0
0
0
26569,/60
0
0
2187/5

—_
~
ot

Coococooo0oocollococlo0o000c000c00O0O0O0O0
>

0
0
0
0
7921,/60
0
0
5929/60
0

OO OO OO OO oo

0
-6853/30
0
0
-6853/30
0

OO O oo oo

I e e T e T e T S O e e S S O N B S e e T T T e T e e T e T e S e S e O O e R S S ST G S

—7493427555720786047

— 2093303 H 10010

— 500901801 93556615063

T3 19T80333%37

7R 061

R 1

— 833030622351 019599

5550

0BHIEER0E

B onebh it eedl

o1 PA5005753

— 10035313 380061 1143

1
—208

O Rbed6Rss

— 1300030 T 90151258 7431

2183 7013239035T0

—13765

13031003343 03355650

0833253004750 4083

_{1080P R0 1183557

21178404730543104

-1

—1157293995940733471

4632776034806304

0
1

—426427906114141689

B 8 e bi p YORE)

)

DU 1

— SARATOBYT 11953811

TR ObR03 T4

— 31520353933 3000 88

— 37883100057 PP3550 73

— PP 00503810

73

281

RIS

NGve ok i vk el

2316388017403152

1




