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Abstract. This article describes the influence of the magnetic field on a small amount of residual Fe3+

ion impurities contained in a sapphire resonator excited on a whispering gallery mode and cooled down to
4 K. The energy levels and transition probabilities between pairs of levels of the system are calculated in
order to determine the effect of the magnetic field on the maser output power and also on the pump power
threshold.

1 Introduction

The need for microwave sources exhibiting ultra-high spec-
tral purity and high temporal stability is a key point high-
lighted by the performance limitations in major strategic
applications such as radar, spatial communications, ultra-
high accuracy navigation system and high bitrate optical
telecommunications. The Cryogenic Sapphire Oscillator
(CSO) is currently the only microwave technology able to
provide a relative frequency stability better than 1×10−14

for integration time between 1 s and 104 s [1,2]. Neverthe-
less, the CSO remains a complex instrument and needs
several servo loops to control the oscillator phase and the
microwave power incident on the resonator. Recently, we
reported in [3,4] the possibility to use the sapphire res-
onator in another way. Here, the sustaining amplification
is achieved through the interaction between a whispering
gallery mode and the paramagnetic Fe3+ ions also present
in the sapphire crystal. The frequency instability of the
Whispering Gallery Mode maser is limited to 10−14 due
to the measurement readout [5].

In the sapphire crystal, the Fe3+ ion exhibits three
energy states at zero magnetic field enabling to realize a
self-sustaining solid-state maser. For a maser the ultimate
limit in terms of frequency instability is the Schawlow-
Townes limit [6] which is inversely proportional to the
square root of the maser output power. As a consequence
to decrease the frequency instability we have to increase
the maser output power.

In this paper we describe, theoretically, the effect of a
magnetic field on the Whispering Gallery Mode (WGM)
maser oscillator and we show that in a particular

a e-mail: yann.kersale@femto-st.fr

configuration the maser output power can be increased
by a factor of 6 dB.

2 Principle

Maser materials, and maser operations were introduced in
the 1950s by several groups [7–10]. In particular, the ac-
tion of iron ions in corundum was studied by Friedman and
Nagy [11]. The corundum used for this experiment was of
poor quality, and as a consequence the iron doping was
deliberately strong. Recently we have demonstrated that
high-quality sapphire resonator with a small amount of
paramagnetic impurities (Fe3+ ions) can provide a maser
signal with an output power of −30 dBm [12]. The maser
fundamental limit is defined by [6,13]:

σy(τ) =
1

Qsignal

√
kBT

2Poutτ
(1)

with Qsignal being the loaded Q-factor of the considered
mode, Pout the power in watts at the maser output, kB

the Boltzmann constant and T the temperature of the am-
plifying medium. As we can see in equation (1) to get the
best frequency instability we have to maximize the maser
output power. In order to maximize it we have studied the
effect of the magnetic field (orientation and amplitude) on
the pump power threshold and on the maser output power.

2.1 Fe3+ Characteristics

The Fe3+ ion has the [Ar]3d5 electronic configuration. The
number of total spins is S = 5/2, the total orbital number
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is L = 0 and the spectroscopic ground state term is 6S.
The Fe3+ ion replaces the cation Al3+ in the crystal and
undergoes the action of a crystal field of the nearby ions
O2− and Al3+.

These interactions are described by the following
Hamiltonian:

Ĥ = gµBHŜ + D

[
Ŝ2

Z − 1

3
S(S + 1)

]

+
1

6
a

[
Ŝ4

ξ + Ŝ4
η + Ŝ4

ζ − 1

5
S(S + 1)(3S2 + 3S − 1)

]

+
1

180
F

[
35Ŝ4

Z − 30S(S + 1)Ŝ2
Z

+25Ŝ2
Z − 6S(S + 1) + 3S2(S + 1)

]
. (2)

To calculate this Hamiltonian we have considered the crys-
tal cubic field with trigonal distortion and the axis (Z) as
axis of symmetry, which is the case of our resonators. In-
deed, corundum α-Al2O3 crystallizes in the rhombohedral
system. (ξ, η, ζ) are the axes of the trigonal crystal field.
The crystalline axis of symmetry (C3) = (Z) is defined in
the direction (1, 1, 1) of this system. For more details on
the structure of corundum, see [8,9].

The energy levels are calculated based on the parame-
ters “D”, “F ” and “a” in the above equation. “D ” and
“F ” are the parameters of the axial field, respectively,
second and fourth order, and the spacing between levels is
primarily due to “D ”. “a” is the parameter of trigonal field
(mixing between the levels E1 and E3 of the system). The
values of these parameters, measured at 4 K by Symmons
and Bogle [14], are equal to: D=1719.2±1, |a|=229.4±1
and a − F = 341.5 ± 1 expressed in 10−4 cm−1. We
assumed that hi = gj ×µB ×Hi, where the indices are re-
spectively i = x, y and Z and j = ⊥, ⊥ and ‖, g is the Lande
factor and µB the Bohr magneton. We will also consider
that h± = hx ± ihy = g⊥ × µB(Hx ± iHy), γ = a − F

and p = (2
√

5/3)a. Moreover for our system (S = 5/2)
the factor 1

3S(S + 1) = 35/12.

The matrix Hamiltonian of the Fe3+ ion in sapphire
can now be written as follows: see equation (3) in the
next page.

2.2 Energy levels

The matrix in equation (3) was numerically solved in or-
der to determine the eigenstates and eigenvalues of this
system. In order to verify if our numerical model is cor-
rect we plot (Fig. 1) the evolution of the energy levels
as a function of a magnetic field applied in the parallel
direction of the crystal axis.

The energy levels of the Fe3+ ions in the sapphire lat-
tice represented here are very similar to what has been
published before [15] and so we can consider that our nu-
merical model is correct.

In the next plot we have represented the energy levels
for a magnetic field perpendicular to the crystal axis (see
Fig. 2).
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Fig. 1. (Color online) Energy level variations of the Fe3+ ion
in alumina as a function of a magnetic field parallel to the
crystal Z-axis.
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Fig. 2. (Color online) Energy levels variations of the Fe3+ ion
in alumina as a function of a magnetic field perpendicular to
the crystal Z-axis.

When the magnetic field is parallel to the Z-axis all the
levels are immediately split when the value of the field in-
creases. As opposed, when the field is perpendicular to the
crystal axis, and with a value of 50 G, states 5 and 6 are
separated by 450 kHz as well as levels 3 and 4 while states
1 and 2 are separated by more than 400 MHz. Consid-
ering the Electronic Spin Resonance (ESR) bandwidth of
100 MHz [12] we can consider that the two upper states
(i.e., levels 5 and 6) are mixed and the two lower states
can be considered completely separated and so on, ions
pumped from the level 1 to levels 5 and 6 will participate
in the maser action.

A zoom on the prevision plot leads us to determine the
transition frequencies of the system under magnetic field
(see Fig. 3).

The transition frequencies of the system with a
magnetic field of 50 G oriented in the perpendicular plane
of the crystal are a little bit different from the values
with zero magnetic field. We get: ν14 = 12.2676 GHz
(12.037 GHz with no magnetic field) and ν16 =
31.5647 GHz (31.318 GHz with no magnetic field). We
will now assume that our sapphire resonator have whis-
pering gallery modes centered on the ν14 transition and
another one centered between ν15 and ν16 at 31.5645 GHz.
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Fig. 3. (Color online) Zoom on the energy levels variations
of the Fe3+ ion in alumina as a function of a magnetic field
perpendicular to the crystal Z-axis.

These can be realized by machining the radius of our ac-
tual resonator centered at 12.037 GHz and 31.318 GHz.
Under this configuration we consider now that the maser
output signal will operate between levels 4 and 1 and the
pump signal will be applied between the level 1 and the
mixed states 5 and 6.

3 General populations of the system

under field

3.1 Population differences at thermal equilibrium

When there is no magnetic field applied, the Fe3+ ion gets
three energy levels in the sapphire lattice and with an
applied magnetic field each state splits in two states with
respect to the Zeeman effect. At thermal equilibrium the
level populations have the Boltzmann relationships [10]:

Nj

Ni

= exp

(
− hνij

kBT

)
= e−∆ij and

6∑

i=1

Ni = N, (4)

where N is the total number of spins and ∆ij = −∆ji with
i, j = 1, 2, 3, 4, 5 and 6.

The population differences at the thermal equilibrium
can thus be expressed as:

∆Nij = Ni − Nj =
1 − e−∆ij

∑6
k=1 e−∆ik

× N. (5)
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Fig. 4. (Color online) Population differences of the Fe3+ ion
in alumina as a function of a magnetic field perpendicular to
the crystal Z-axis.

Figure 4 represents the population differences at 4.2 K
as a function of the magnetic field perpendicular to the
crystal axis.

From this plot we get: ∆N12 = 0.09332 × 10−2 × N ;
∆N13 = 2.55064×10−2 ×N ; ∆N14 = 2.55066×10−2 ×N ;
∆N15 = 5.90472×10−2 ×N ; ∆N16 = 5.90479×10−2 ×N .

3.2 Rate equation for a six-level system

The rate equations of this system are expressed as follows:

dn1

dt
= −

6∑

j �=1

∆n1j − ∆N1j

2τ
(1j)
1

− WS∆n14 − W15∆n15

−W16∆n16,

dn2

dt
= −

6∑

j �=2

∆n2j − ∆N2j

2τ
(2j)
1

− W25∆n25 − W26∆n26,

dn3

dt
= −

6∑

j �=3

∆n3j − ∆N3j

2τ
(3j)
1

,

dn4

dt
= −

6∑

j �=4

∆n4j − ∆N4j

2τ
(4j)
1

+ WS∆n14,

dn5

dt
= −

6∑

j �=5

∆n5j − ∆N5j

2τ
(5j)
1

+ W15∆n15 + W25∆n25,

dn6

dt
= −

6∑

j �=6

∆n6j − ∆N6j

2τ
(6j)
1

+W16∆n16+W26∆n26, (6)
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where Wij represents the rate absorption, and τ ij
1 the spin

lattice relaxation time of the Fe3+ ion in the sapphire
lattice between levels i and j. We will then assume that
τ ij
1 = τ1 ∀i, j and is equal to 10 ms [8,16,17] at the liquid

helium temperature.
To determine the steady state of this system (dni/dt =

0) we have to consider equation (7) which is the sum of
population differences:

∆n12 + ∆n23 + ∆n34 + ∆n45 + ∆n56 − ∆n16 = 0. (7)

The maser output frequency and the stimulated emission
rate (i.e., between levels 1 and 4) will be denoted by νS

and WS and for the pump signal (i.e., from level 1 to levels
5 and 6) will be denoted by νp and Wp with:

νp =
ν15 + ν16

2
; Wp =

W15 + W16

2
. (8)

Finally, the stationary solutions of the system are:

∆n14 =
−3(∆N15 + ∆N16)τ1Wp + 9∆N14(1 + τ1Wp)

3(3 + (3Wp + 2WS)τ1) + 4τ2
1 WpWS

,

(9)

∆n15 + ∆n16

2

=
9(∆N15 + ∆N16) + 6(∆N15+∆N16−∆N14)τ1WS

6(3+(3Wp+2WS)τ1)+8τ2
1 WpWS

.

(10)

4 The maser pump and output power

In this section we will define the relation between the
pump power (Pp) and the maser output power (P41).

4.1 Evolution of the emitted power as a function
of pump power

The maximum of power that can be emitted by a maser
system is defined as [10]

P41 = hνSWS∆n41V41, (11)

where V41 is the effective volume of the whispering gallery
mode involved in the emission process [18].

The stimulated absorption is represented as follows [10]:

WS = Q0S

1

4
γ2g(ν14)H

2
acsignalσ

2
14. (12)

From the definition of the Poynting vector, the power in
the resonator is directly proportional to the magnetic field.
It leads to:

H2
acsignal =

2P41

ZcSeff14

. (13)

Therefore:

WS = Q0S

γ2g(ν14)σ
2
14

2ZcSeff14

P41 = Q0S
wS0

P41. (14)

This representation can also be applied to the probability
of absorption:

Wp = Q0p

γ2Q0p
g(νp)σ

2
p

2ZcSeffp

Pp = Q0p
wp0

Pp. (15)

From equation (7) we can write:

wp0
=

w150
+ w160

2
=

1

2

γ2Q0p
g(νp)(σ

2
15 + σ2

16)

2ZcSeffp

, (16)

where γ is the gyromagnetic factor. Seff14
and Seffp

are
respectively the effective surfaces of the whispering gallery
mode in the meridian resonator plane for the maser signal
and the maser pump, Zc is the characteristic resonator
impedance (112 Ω), and Q0S

and Q0p
are the quality fac-

tors of the whispering gallery modes for the maser signal
and the maser pump respectively [18].

From equation (9) we can now determine the maser
output power (P41) as a function of the pump power (Pp),
with C = hν14wS0

∆N41V14: see equation (17) in the next
page.

4.2 Pump power threshold

The pump power threshold Ppth
appears when the popu-

lation inversion occurs (∆n14 = 0). The rate absorption
threshold (WpT h

) is the solution of the following equation
(from Eq. (8)):

3τ1WpT h
(3∆N14 − (∆N15 + ∆N16)) + 9∆N14 = 0. (18)

Finally we get:

WpT h
=

3

τ1

∆N14

−3∆N14 + ∆N15 + ∆N16
= wp0

PpT h
. (19)

4.3 Determination of the transition probabilities
and the line shape function

In order to determine the transition probabilities (WS and
Wp) of the maser and pump transitions, we have to solve
the previous Hamiltonian in order to calculate σ2

ij which
characterizes the strength of the transition probabilities.
On the next plots we have represented the evolution of all
the transition probabilities for a magnetic field perpendic-
ular to the crystal axis (see Figs. 5–8).

In reality, if the signal is not exactly at the transi-
tion frequency, the transition probability decreases as de-
termined by the line shape function g(ν). The line shape
function is usually described by a Lorentzian or a Gaussian
profile. It is a function normalized and centered around the
transition frequency:

∫ ∞

0

g(ν)dν = 1. (20)

In our case, we have proved that the Fe3+ ions are inho-
mogeneously broadened [12] and so g(ν) is represented by
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P41 =
3(−3(1 + Ppτ1Q0pwp0

) + C((∆N15 + ∆N16)Ppτ1Q0pwp0
− 3∆N14(1 + Ppτ1Q0pwp0

)))

2τ1(3 + 2Ppτ1Q0pwp0
)Q0S

wS0

(17)
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Fig. 5. (Color online) Transition probabilities (σ2
ij) between

levels i and j as a function of a magnetic field perpendicular to
the crystal Z-axis.
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Fig. 6. (Color online) Transition probabilities (σ2
ij) between

levels i and j as a function of a magnetic field perpendicular to
the crystal Z-axis.

a Gaussian normal distribution:

g(ν) =
1

σ
√

2π
Exp

[
−1

2

(
ν − νp

σ

)2
]

(21)

with σ−1 = 2τ2

√
2π [10] and where τ2 is the spin-spin

relaxation time equal to 1 ns [19]. The line shape
function for the pump and the maser signal was
calculated, but on the next plot we represent only
the line shape function for the pump signal
(see Fig. 9).

As the levels 5 and 6 are only separated by 450 kHz
the two line shape functions are very similar and confirm
that states 5 and 6 are mixed together.
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Fig. 7. (Color online) Transition probabilities (σ2
ij) between

levels i and j as a function of a magnetic field perpendicular to
the crystal Z-axis.
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Fig. 8. (Color online) Transition probabilities between levels
5 and 6 as a function of a magnetic field perpendicular to the
crystal Z-axis.

5 Evolution of the maser output power

and pump power threshold

To determine an order of magnitude of these powers we
will consider the parameters at 4.2 K of one of our
resonators [18]: the total population is N = 3.8 × 1020

ions/m3, the effective volumes of the WGM are V14 =
Vp = 11.7 × 10−6 m3. Q0S

= 686 × 106, Q0p
= 108 and

Zc = 112Ω.
On the two next plots we have represented the evolu-

tion of the pump power threshold and the maser output
power as a function of the orientation of the magnetic field
and its amplitude.

As we can see in Figure 10 the orientation of the mag-
netic field has no influence on the maser output power
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Fig. 10. (Color online) Evolution of the maximum emitted
power and pump threshold as a function of the orientation of
the magnetic field, for a magnetic field of 50 G.

while for the pump power threshold it is minimum for an
angle of 90◦. Moreover when the magnetic field increases
(Fig. 11) the pump power threshold also increases and
the maser output power is still constant over 500 G before
decreasing. These two curves confirm our choice to work
at a low-level magnetic field (50 G) perpendicular to the
crystal Z-axis.

The last plot represents the comparison between the
maser output power without and with a magnetic field
(50 G, 90◦) (see Fig. 12).

The use of magnetic field enables us to increase the
maser output power of 6 dB.

6 Conclusion

A complete model of the Whispering Gallery Mode maser
under magnetic field was developed. The eigenvectors and
the eigenvalues of the Fe3+ ion Hamiltonian in the sap-
phire lattice were calculated in order to determine all the
transition probabilities, energy levels, etc.

A general relation between the maser output power
and the pump power was also determined. From this cal-
culation we have demonstrated that the use of a magnetic
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Fig. 11. (Color online) Evolution of the maximum emitted
power and pump power threshold as a function of the magnetic
field perpendicular to the crystal Z-axis.
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Fig. 12. (Color online) Evolution of the maximum emitted
power as a function of the pump power with and without mag-
netic field. The magnetic field is perpendicular to the crystal
Z-axis with a value of 50 G.

field perpendicular to the crystal axis and with an ampli-
tude of 50 G can increase the maser output power by a
factor of 6 dB, and also that the pump power threshold
can be reduced.
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