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ABSTRACT 28 

Echinococcus multilocularis is a threatening cestode involved in the human alveolar 29 

echinococcosis. The parasite, mainly described in temperate regions of the northern 30 

hemisphere was described for the first time in 1999 in the High Arctic Svalbard archipelago, 31 

Norway. The origin of this contamination could be due to an anthropogenic introduction from 32 

mainland Europe by domestic dogs or with the introduction of the sibling vole, perhaps from 33 

mainland Russia (St Petersburg area), or with roaming Arctic foxes, known as the main 34 

definitive host of the parasite in Arctic regions. The genetic diversity of E. multilocularis in 35 

Svalbard was investigated here for the first time by genotyping using EmsB microsatellite and 36 

compared to other genotyped populations in the main worldwide endemic areas. We found 37 

low polymorphism amongst the 27 metacestode isolates from sibling voles trapped in the core 38 

of the distribution area of the vole on Svalbard. E. mutilocularis arctic populations, using the 39 

Arctic fox as the definitive host, were genetically separated from European temperate 40 

populations that use the red fox, but closely related to Saint Lawrence Island samples from 41 

Alaska. The result is inconsistent with the hypothesis of an anthropogenic introduction from 42 

mainland Europe, but can be seen as consistent with the hypothesis that Arctic foxes 43 

introduced E. multilocularis to Svalbard. 44 
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1. Introduction 53 

The taeniid parasite Echinococcus multilocularis is the causative agent of Alveolar 54 

Echinococcosis (AE), one of the most health-threatening helminthic zoonosis occurring on the 55 



Northern hemisphere (Fig. 1). The parasite, mostly described in Europe, some parts of North 56 

America, and Asia (Vuitton et al., 2003), requires two mammalian hosts to achieve its life 57 

cycle: a carnivore definitive host such as the red fox (Vulpes vulpes Linnaeus 1758), or the 58 

Arctic fox (Vulpes lagopus Linnaeus 1758) in Northern latitudes and a rodent intermediate 59 

host, of which many species appear susceptible (Rausch, 1995; Vuitton et al., 2003). The 60 

recent establishment of the parasite transmission on the Norwegian Arctic archipelago 61 

Svalbard, (Henttonen et al., 2001) was made possible by the anthropogenic introduction of the 62 

only available intermediate host species to the islands, the sibling vole (Microtus levis Miller 63 

1908), certainly from mainland Russia. This introduction probably occurred in the first half of 64 

the 20th century, with mining and maritime activities (Henttonen et al., 2001). The core 65 

rodent habitat on Svalbard is along an 8 km stretch of bird cliffs along the coast in the 66 

Grumant area, 10 km west of the main Norwegian settlement, Longyearbyen (78° 13’ N, 15° 67 

38’ E) (Fuglei et al., 2008; Stien et al., 2010). In the Grumant area E. multilocularis has been 68 

found with high prevalence in the rodents (26%; 59 infected of 224 trapped rodents 69 

(Henttonen et al., 2001)), the Arctic foxes (35%; 13 infected of 37 trapped foxes (Stien et al., 70 

2010)), and in fox faeces (60%; 135 infected of 224 fox faeces sampled (Fuglei et al., 2008)). 71 

While the introduction of the intermediate host was a prerequisite for the establishment of the 72 

parasite life-cycle, the oncoming of the parasite has been suggested to be due to large scale 73 

roaming on sea ice by Arctic foxes between Svalbard and E. multilocularis-endemic areas in 74 

Siberia (Henttonen et al., 2001). An alternative hypothesis is the possible introduction of the 75 

parasite with the sibling voles, which are likely to originate from the St Petersburg area in 76 

Russia. Finally, a third alternative hypothesis is that the parasite has been anthropogenically 77 

introduced from mainland Europe, in association with the substantial movement of humans 78 

and possibly dogs between Europe and Svalbard due to tourism, mining and scientific 79 

explorations in the 20th century.  80 

E. multilocularis present a genetic homogeneity with nuclear and mitochondrial targets (Haag 81 

et al., 1997), but fast evolution markers, such as the repeated microsatellite EmsB, are readily 82 

available to detect variations at regional and local scales (Bart et al., 2006; Knapp et al., 2007; 83 

Knapp et al., 2008). Recently, a European study has documented the presence of several 84 

EmsB profiles distributed in the historical endemic area in the European Alps with surprising 85 

patterns of genetic diversity and evidence for spread to peripheral regions as a mainland-86 

island system (Knapp et al., 2009). From this study, a catalogue of EmsB profiles, described 87 

in Europe and in some of the main worldwide endemic areas including China (Tibetan 88 



plateau), Alaska (Saint Lawrence Island) and Japan (Hokkaido), is now available and allows 89 

us to characterize the parasite diversity. Here we have tested whether E. multilocularis on 90 

Svalbard has been introduced from the European mainland by comparing the EmsB profiles 91 

of samples from Svalbard with samples from the European mainland. In addition we evaluate 92 

the genetic identity of the Svalbard samples in relation to the other endemic areas in the 93 

northern hemisphere with genetic samples available to improve our description of patterns in 94 

the genetic diversity of the parasite.  95 

  96 

 97 

2. Materials and methods 98 

2.1. Samples collection and DNA extraction 99 

A sample collection of 27 metacestodes was constituted from sibling voles (Microtus levis) 100 

trapped in August 2004 - 2006 in the Grumant area (Stien et al., 2010) (Fig. 2). Total DNA 101 

was extracted from metacestode tissue or isolated protoscoleces (Stieger et al., 2002). 102 

2.2. Nuclear targets, PCR amplification and fragment size analyses 103 

PCR amplification was performed for the nuclear targets EmsB, as previously described (Bart 104 

et al., 2006) and for the partial sequences of the protein coding genes of ezrin-radixin-moesin-105 

like protein (Elp), calreticulin (Cal) and thioredoxin peroxidase (Th), as recommanded by 106 

authors (Saarma et al., 2009). The EmsB target was studied for the polymorphism of the 107 

tandemly repeated microsatellite by fragment size analysis, on 3730 ABI sequencer (Applied 108 

Biosystem, Foster City, CA) and analysed on GeneMapper 3.0. The amplified samples were 109 

compared with a worldwide E. multilocularis sample collection, containing aggregated 110 

samples (from fields about 500m² in Switzerland and 100m² in Alaska) (Knapp et al., 2007)) 111 

and non correlated isolates from Europe (Switzerland, Czech Republic, Slovakia, Austria, 112 

Germany, Netherlands, Poland and France; n=42), North America (St Lawrence Island, 113 

Alaska and Canada, n=11), China (Tibetan plateau; n=5) and Japan (Hokkaido; n=6). The 114 

available E. multilocularis samples closest to the putative starting point of the sibling voles 115 

introduced to Svalbard were the North-East Polish specimens (900 km south of St 116 

Petersburg). Two E. granulosus sensu lato was chosen as outgroups (Knapp et al., 2007) and 117 

a hierarchical clustering analysis (HCA), using the Euclidean distance and the UPGMA 118 



method in the R software was performed. A genetic threshold previously described on the 119 

stability on time of EmsB profiles allowed us to discriminate similar and distinct isolates 120 

(Knapp et al., 2007). The nuclear targets elp (1023 bp), cal (1368 bp) and th (583 bp), 121 

previously sequenced for the currently described Echinococcus species (Saarma et al., 2009), 122 

were chosen to investigate the worldwide genetic diversity of the parasite. The targets were 123 

sequenced for E. multilocularis isolates from Central Europe (Switzerland), Canada (an 124 

isolate from a rodent, exact geographical position unknown), Alaska (St Lawrence Island) and 125 

Japan, and compared to one randomly chosen Svalbard sample using BioEdit (Hall, 1999). 126 

 127 

3. Results 128 

In comparison to referenced E. multilocularis sequences (GenBank Ref. FN582291; 129 

FR820773 to FR820783), 4 mutations were described on Elp and Th for the Svalbard isolate 130 

(none in Cal) (FR820594 to FR820596), two of these were common with the Canadian 131 

specimen and one was common with the European specimen (Table 1). However, this low 132 

genetic diversity did not allow us to conclude a divergence among the E. multilocularis 133 

samples. The pattern of the EmsB electrophoregram profiles were first compared to the 134 

others, and were found similar to Alaskan samples by the presence on the electrophoregram 135 

of a 209 bp fragment (Fig. 3(a)) never found in the other samples so far. From the HCA (Fig. 136 

3(b)) performed by EmsB data computing, the European samples were clustered in a group, 137 

somewhat associated with the Chinese samples and distinct from the Japanese samples. The 138 

Svalbard samples were all clustered together, in the same group; the genetic distance amongst 139 

all the Svalbard samples was under the threshold of 0.08 (Fig 3(b)) and allowed us to 140 

considered them as identical to each other. Moreover they were closely related to St Lawrence 141 

Island samples from Alaska, and formed the most distant group from the other Eurasian 142 

samples (Fig. 3 (b)). These Arctic samples clustered clearly in a separate group from the 143 

samples from temperate Europe, China, Japan and Canada. 144 

4. Discussion 145 

In comparison with the high polymorphism of the EmsB target found in multiple European E. 146 

multilocularis populations, an extremely low diversity seemed to occur in the isolated Arctic 147 

islands of St Lawrence, Alaska (Knapp et al., 2007) and Svalbard. Such a pattern has 148 

previously been observed in samples from small areas such as a field in Fribourg 149 



(Switzerland) and by the Savoonga air-strip on St Lawrence (Alaska) (Knapp et al., 2007). 150 

These findings emphasize a putative clonal distribution of the parasite on restricted areas, as 151 

an expected result of an initial contamination by a small number of foxes (Knapp et al., 2007). 152 

In addition, the low genetic polymorphism of the parasite in the investigated Arctic sites 153 

could be linked to (i) the occurrence of one or few E. multilocularis populations in 154 

circumpolar areas, after a founder event in a mainland-island context, (ii) these islands could 155 

be considered as metapopulations connected by sea ice, explaining the genetic similarity 156 

between insular samples or (iii) in this context a low diversity of intermediate and definitive 157 

host species exists when compared to European sites. The Arctic fox appears as a genetically 158 

homogenous species, except for a few isolated islands not connected by sea ice in winter 159 

(Norén et al., 2011). From a co-evolution point of view, one could hypothesize that the 160 

parasite may evolve more slowly in an insular environment than in the temperate mainland 161 

situation where many species of potential intermediate host rodent species occur 162 

simultaneously. As such, these findings indicate particularities in the circumpolar E. 163 

multilocularis life cycle, which seems to have low or no connection with E. multilocularis life 164 

cycles from temperate regions.  165 

Our microsatellite EmsB analysis suggests that Arctic E. multilocularis populations have a 166 

common history. Indeed, a high genetic similarity was observed between the geographically 167 

distant samples from Svalbard and Alaska, and a wide dissimilarity with the clustered 168 

European samples, even from North Europe was found (Fig. 3(b)). This may suggest an 169 

epidemiological connection between polar populations. Most likely, this could be due to the 170 

behavioral characteristics of the Arctic fox, a species with a circumpolar distribution and long 171 

distance movements (Norén et al., 2011). From our samples, we can reject the hypothesis of 172 

an anthropogenic introduction of E. multilocularis from mainland Europe, while the 173 

hypothesis of an Arctic fox driven immigration from Siberia to Svalbard is likely. Concerning 174 

the hypothesis of a strain coming from the Russian sibling vole we can speculate that the 175 

Russian E. multilocularis could be similar to North-East Europe as the Polish parasites were 176 

sampled 900 Km from St Petersburg. However, more samples of E. multilocularis from 177 

Russia are needed to further evaluate this hypothesis. 178 

 179 
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 191 

Table and figure legends 192 

Fig. 1. Worldwide dispersion of E. multilocularis (orange areas) and distribution of the world 193 

collection samples, clustered by local position (black stars) studied for EmsB profiles. The 194 

exact geographical position of the Canadian sample is unknown (From (Eckert et al., 2011; 195 

Osterman Lind et al., 2011)). 196 

Fig. 2. Map of Svalbard and the details of the Grumant area (dotted line) where the sibling 197 

voles (Microtus levis) infected by E. multilocularis were sampled in August 2004 - 2006. 198 

Fig. 3 (a) EmsB electrophoregrams of an Alaskan sample (3AL-r), a Svalbard sample 199 

(Sval14-r), an Austrian sample (278A-F) and a German sample (101D-F), size in base pair. 200 

(b) E. multilocularis hierarchical clustering analysis, based on EmsB microsatellite results. 201 

The genetic threshold at 0.08 described similar and distinct EmsB profiles (for details on the 202 

construction see Knapp et al., 2007). The sample codes used are: Sval: Svalbard; AL: Alaska; 203 

CND: Canada; J: Japan; CH: Switzerland; CZ: Czech Rep., SK: Slovakia; A: Austria; D: 204 

Germany; H: Netherlands; PL: Poland; F: France; PRC: Peoples’ Rep. of China; hosts codes: 205 

-r: rodent; -h: human; -m: monkey; -F: fox. Isolates 500AUB to 502AUB are one E. 206 

multilocularis strain maintained in vivo by several passages in Meriones unguiculatus; the 207 

grey scares represent the E. multilocularis regional groups; 116Eg (from Mauritanian camel) 208 

and 539Eg (from Algerian sheep) are E. granulosus outgroup controls. The approximately 209 

unbiased P values (numbers on nodes, in percent) were calculated with a multiscale bootstrap 210 

resampling (B = 1000). 211 

212 



 213 

Table 1: Comparison of the E. multilocularis Elp and Th gene fragments from different 214 

origins. 215 

E. multilocularis origin  

 

Svalbard 

                  Elp(bp) 

    323          459          631 

 Th(bp) 

   328 

     C      A      T      C 

St Lawrence Island      T      C      C      T 

Canada      C      C      C      C 

Switzerland      T      C      C      C 

Hokkaido      T      C      C      T 

 216 



 217 

Fig. 1 218 
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