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Abstract We investigate the rheology, force transmission and texture of granular
materials composed of elongated particles by means of contact dynamics simula-
tions. The particles have a rounded-cap rectangular (RCR) shape described by a
single elongation parameter varying from 0 for a circular particle to 1 for an in-
finitely thin or long particle. We study the quasi-static behavior, structural and force
anisotropies as a function of the elongation parameter for packings submited to biax-
ial compression. The shear strength is found to increase linearly with this parameter
whereas the solid fraction both at the initial isotropic state and in the critical state is
nonmonotonous. We show that for these elongated particles aharmonic decomposi-
tion of the stress tensor provides a fairly good approximattion of the internal state.
Our data suggest that the increase of shear strength with reflects both enhanced
friction mobilization and anisotropic particle orientation as the elongation of the
particles increases.

1 Introduction

A wide variety of particle shapes can be found in nature and industry: elongated and
platy shapes, angular and facetted shapes, and nonconvex shapes. The issue of shape
effect opens actually the door to a vast and substantial scientific domain given a
multitude of potential particle morphologies. The effect of particle shape is mediated
by the specificgranular texture induced by each particle shape. For example, it
is found that hard ellipses can be jammed even though they areunderconstrained
[1]. In the case of anisometric or elongated particle shapes, such as spheroids and
sphero-cylinders, the particles tend to develop orientational order affecting force
transmission and frictional behavior [2, 3]. This “nematic” ordering occurs while
the particles interact only via contact and friction.
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In this paper we focus particularly on the connectivity of particles and we show,
depending on the elongation, how each contact type contributes to the internal an-
gle of friction [7]. We first introduce our numerical approach in Section 2. Then,
in Section 3, the stress-strain behavior is presented for different values ofη . The
microstructure is analyzed in Section 4.

2 Numerical procedures

The CD method is based on implicit time integration of the equations of motion
and a nonsmooth formulation of mutual exclusion and dry friction between parti-
cles [4, 5]. This method requires no elastic repulsive potential and no smoothing of
the Coulomb friction law for the determination of forces. For this reason, the sim-
ulations can be performed with large time steps compared to molecular dynamics
simulations. We used LMGC90 which is a multipurpose software developed in our
laboratory, capable of modeling a collection of deformableor undeformable parti-
cles of various shapes by different algorithms [6].

The particles are modeled as a juxtaposition of two half-disks of radiusR′ with
one rectangle of lengthL and width 2R′ to which we will refer as Rounded-Cap
Rectangular (RCR) particles, see Fig. 1. The RCR shape can becharacterized by a
single aspect ratioα or by anelongation parameterη = (R−R′)/R = (α −1)/α
varying fromη = 0, for a circle, to 1 corresponding to a line.
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η = 0.4

Fig. 1 Shape of a Rounded-Cap Rectangle (RCR) (left). Snapshot of the portion of the packing for
η = 0.4 (right).

We prepared 8 different packings of 13000 RCR particles withη varying from 0
to 0.7 by steps of 0.1. The radiusR ∈ [Rmin,3Rmin] of the circumscribing circle de-
fines the size of a RCR particle. All samples were compacted byisotropic compres-
sion inside a rectangular frame of dimensionsl0× h0 in which the left and bottom
walls are fixed, and the right and top walls are subjected to the same compressive
stressσ0. The gravity was set to zero in order to avoid force gradientsin the samples.
The coefficient of friction was set to 0 between grains and walls during the isotropic
compression. Thus, at equilibrium, all samples were in isotropic stress state. Fig. 1
displays snapshot of the packings forη = 0.4 at the end of isotropic compaction.
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The isotropic samples are then subjected to vertical compression by downward dis-
placement of the top wall at a constant velocityvy for a constant confining stressσ0

acting on the lateral walls. The friction coefficientµ between particles is set to 0.5
and to zero with the walls.

3 Stress-strain behavior

The stress tensorσσσ can be evaluated from the simulation data as an average over
the dyadic product of contact forcefff c and branch vectorℓℓℓc : σαβ = nc〈 f c

αℓc
β 〉c

[4], wherenc is the number density of contactsc, and the average〈...〉c run over
all contacts in a control volume. We can extract the mean stress p = (σ1 + σ2)/2
as well as the stress deviatorq = (σ1 −σ2)/2 whereσ1 andσ2 are the principal
stresses values. The principal strain values areε1 =

∫ h
h0

dh′/h′ andε2 =
∫ l

l0
dl′/l′.

The control variable is the shear strain given byεp = ε1 + ε2.
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Fig. 2 (a) Internal angle of frictionϕ∗ as a function elongationη . (b) Solid fraction as a function
of particle shape parameterη at different levels of shear strain

During shear, the shear stress jumps initially to a high value before decreasing
to a nearly constant value in the steady state. The steady-state shear stress(q/p)∗

characterizes the shear strength of the material. According to the Mohr-Coulomb
model, the internal angle of friction, representing the shear strength of the material,
is defined by sinϕ∗ = (q/p)∗ [8]. Interestingly, as shown by Fig. 2(b), the shear
strength varies linearly with the elongation parameter.

Figure 2 displays the solid fractionφ as a function ofη at different levels of shear
deformationεq. It is remarkable that, at all levels of deformation, the solid fraction
increases withη , reaches a maximum atη ≃ 0.4 and then declines asη further
increases. We note that solid fractions as large as 0.90 are reached forη = 0.4 in
the initial state. A similar nonmonotonous behavior was observed for packings of
ellipses or ellipsoidal particles [1]. This is somewhat a counterintuitive finding as
the shear strength (a monotonous function ofη) does not follow the trend of solid
fraction (nonmonotonous).
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4 Granular texture and force transmission

Remembering that RCR particles are clumps of two disks with one rectangle, a
major effect of elongation is then to allow for multiple contacts between two touch-
ing particles: cap-to-cap (cc), cap-to-side (cs) and side-to-side (ss) contacts in each
packing. The side-to-side or side-to-cap contacts are ableto accommodate force
lines that are usually unsustainable by cap-to-cap contacts. Fig. 3 (left) shows the
proportionskcc, kcs andkss of cc, cs andss contacts averaged over the residual state
as a function ofη . We see thatkcc declines withη from 1 (for disks) to 0.2 for
η = 0.7. At the same time,kcs andkss increase from 0 to 0.6 and to 0.2, respec-
tively. Interestingly,kcs ≃ kcc for η ≃ 0.4, andkss ≃ kcs for η = 0.7. In this way, as
the particle elongation increases, the packing passes froma contact network domi-
nated bycc contacts to a contact network dominated by thecomplex contactscs and
ss.
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Fig. 3 (left) Proportions of side-to-side (ss), cap-to-side (cs) and cap-to-cap (cc) contactsand
(right) shear strength(q/p)∗ (circle) forcs (square),ss (triangle up) andcc (triangle down) contacts
as a function ofη , together with the harmonic approximation fits (see below).

An additive decomposition of the stress tensor can be performed by grouping
the contacts according to their types:σσσ = σσσ cc + σσσ cs + σσσ ss, whereσσσ cc, σσσ cs andσσσ ss

are obtained from the expression of the stress tensor (see sec. 3) by restricting the
summation tocc, cs andss contacts, respectively. The corresponding stress deviators
qcc, qcs andqss are then calculated and normalized by the mean pressurep. Note that,
by construction we haveq/p = (qcc +qcs +qss)/p. Fig. 3 (right) showsqcc/p, qcs/p
andqss/p averaged in the residual state as a function ofη . We see clearly thatqcc/p
follows a trend opposite to that ofqcs/p. For η < 0.3, (q/p)∗ is dominated bycc
contacts. Forη ≃ 0.3, cc andcs contacts participate equally to the shear stress, and
for η > 0.3, thecs contacts dominate(q/p)∗. Remarkably,qss/p ≃ 0 for η < 0.4.
In this way, the growth of the number ofcs andss contacts is clearly at the origin of
a gradual consolidation of the packings asη increases.

The shear strength of a granular material reflects its ability to develop force and
fabric anisotropies[9, 2, 10, 7]. The fabric anisotropyacγ , whereγ stands alterna-
tively for {cc,cs,ss}, is the anisotropy of the distributionPγ(θ ) of contact orienta-
tion θ . At the lowest order, we have
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Pγ(θ ) = {1+ acγ cos2(θ −θσ )}/2π , (1)

whereθσ is the major principal stress direction (θσ = π/2). Note that, by construc-
tion the whole contact anisotropy is given byac = acss +accs +accc. In the same way,
the normal and tangential branch anisotropies (alnγ , altγ ) and forces anisotropies
(a f nγ , a f tγ ) can be defined from the distributions of the angular averageof normal
and tangential branch length and forces, respectively, by:















〈ℓnγ〉(θ ) = 〈ℓ〉{1+ alnγ cos2(θ −θσ )},
〈ℓtγ 〉(θ ) = 〈ℓ〉altγ sin2(θ −θσ ),
〈 fnγ 〉(θ ) = 〈 f 〉{1+ a f nγ cos2(θ −θσ )}
〈 ftγ 〉(θ ) = 〈 f 〉a f tγ sin2(θ −θσ ),

(2)

where〈 f 〉 and〈ℓ〉 are the mean force and the mean branch length. By construction,
the total normal and tangential branch and force anisotropies are given by the sum
of the corresponding partial anisotropies.

Using the above Fourier approximations together with the expression of the stress
tensor it can be shown that [2, 10, 7]:

qγ

p
≃

1
2
(acγ + alnγ + altγ + a f nγ + a f tγ) (3)

We can see in Fig.3(right) that this decomposition is nicelyverified by our numer-
ical data both for the partial shear stressqγ/p as well as for the whole shear stress
(q/p)∗. The contribution of the normal and tangential branch anisotropies is negli-
gible. Fig.4 shows only the partial critical-state anisotropiesacγ , a f nγ , anda f tγ , to-
gether with the total critical-state anisotropiesac, a f n anda f t . The anisotropyacss of
ss contacts increases slowly withη from 0 to 0.18. At the same time,accc decreases
and atη = 0.7 we haveacss = accc. Hence, although thess contacts represent at
η = 0.7 nearly 20% of contacts, their contribution to the contact anisotropy remains
modest and of the same order ascc contacts. The variation of the contact anisotropy
ac is thus largely governed by that ofaccs. We see also that, thecs contacts carry
most of the normal and tangential force anisotropies. Thess contacts contribute
modestly to the global force anisotropies only forη ≥ 0.4. The anisotropya f ncc de-
clines withη , mainly due to their low number, anda f tcc stays nearly constant. The
increase ofac with η and a hight value ofa f t for the most elongated particle reveal
that (1) particles tend to be aligned orthogonally to the compressive direction and
(2) a strong mobilization of friction due the increase of theside length of particles
[3, 10, 7].

5 Conclusions

In this paper, we applied the contact dynamics method to simulate large samples
of elongated particles. It was shown that the shear strengthis an increasing lin-
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Fig. 4 (left) Partial contact orientation anisotropiesaccc, accs andacss as a function ofη in the
critical state. (right) Partial normal (line) and tangential (dashed line) force anisotropiesa f ncc,
a f ncs anda f nss, anda f tcc, a f tcs anda f tss as a function ofη in the critical state.

ear function of elongation whereas the solid fraction first increases and then de-
clines. We find that both force and texture anisotropies contribute to the increase
of shear strength. The increasing mobilization of frictionforce (and the associated
anisotropy) as well as a local nematic ordering of the particles (reveled by contact
anisotropy), seem to be the key effect of particle elongation. Currently, we work to
extend these results to 3D systems composed with rounded-cap-cylinders (sphero-
cylinders).
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