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ABSTRACT: Infrared Focal Plane Array cameras have several aberrations and measurement 
artefacts with different material origins: lenses, sensors, Read-Out-Circuits of the sensors. The 
authors’ goal is to characterize each artefact separately to obtain more versatile correction 
procedures and improve the correction accuracy. This paper focuses on some radiometric 
artefacts associated with variations of measured illuminance. It presents a new correction 
algorithm dedicated to Narcissus and vignetting effects, which is identified and validated for 
two different lenses. It also proposes an innovative experimental protocol to detect low-level 
contrast-induced artefacts. Several R&D cameras and lenses are tested and some present such 
artefacts, which can not be corrected by traditional pixel-to-pixel methods. Their origins are 
shown to derive either from the optical system or the Read-Out-Circuit. 

KEY WORDS: IRFPA camera, artefacts, aberrations, non uniformity correction, IR optics, 
vignetting. 
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1. Introduction 

The use of Infrared Focal Plane Array (IRFPA) cameras for quantitative thermal 
field measurements is more and more widespread in the industrial and scientific 
communities. Even though scientific reasons justify this recent interest (e.g. 
(Chrysochoos et al., 1989), (La Rosa et al., 2000), (Chrysochoos 2002), (Louche et al., 
2005), (Bouferra et al., 2005), (Doudard et al., 2007), (Pastor et al., 2008)), the 
pragmatic reasons for this involvement is the availability of affordable IRFPA cameras 
on the civil market and their numerical array data format that simplify data processing. 

When an accurate thermal field measurement is required, one faces the complexity 
of such a measurement system. To tackle low-level heterogeneities (i.e less than 10 % of 
the thermal dynamic range of the studied scene), one has to take into account the 
external and internal conditions of measurement. In the field of experimental mechanics 
for example, the thermal heterogeneities in the scene (e.g. actuators, lighting) may be 
several orders of magnitude above the sought ones in a particular region (e.g. heat 
sources related to material plasticity) (Poncelet et al., 2010), so that their influence has 
to be studied. These camera-related artefacts are not only due to the optical part of the 
camera. For instance, the conversion of photons into electrical charges by each 
elementary sensor, the transmission of each pixel information through the Read-Out-
Circuit (ROC) and the following image processing circuits may have other deleterious 
effects (Pron et al., 2004). These effects are considered as “radiometric artefacts” when 
they induce a change in the measured luminance of the object) or “geometrical 
aberrations” when they induce an apparent displacement or deformation of the object). 

Knowing the specifications of all the components (lens, sensor, ROC, etc.) is 
essential to correct these artefacts. Because of the scarcity of available specifications, 
one has to evaluate them by oneself. Unfortunately, most of the users only have their 
IRFPA camera at hand and not the necessary thermal, optical and electronic devices to 
characterise the different components of their camera independently. 

For this first reason, and because the goal of the user is, in the end, the correction of 
the camera and not that of its components, the usually proposed methods (e.g. (Schulz et 
al., 1995), (Honorat et al., 2005), (Shi et al., 2005), (Kumar et al., 2007)) consider the 
camera as a black box, and the corrections are in fact calibrations of the measuring chain 
as a whole. These methods do not distinguish between the influences of the different 
components of the camera. A new calibration is therefore needed after an exchange of 
lenses, a different lens focus, a different integration time, a different sub-windowing, etc. 
Moreover, such calibration methods are based on the observation of an extended black 
body, and thus pixels data interdependencies, only revealed by non-uniform targets, can 
not be corrected.  

More generally, the choice of the calibration functions is very often not justified by 
physics, so that the calibration needs a lot of parameters to achieve enough accuracy, 
contrary to physics-based methods that use very few parameters, each of them having a 
particular meaning (Castelein 2003). The quality of these latter methods is naturally 
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closely linked to the validity of the underlining models. It is thus necessary to highlight 
the different artefacts that can be encountered in a real measurement conditions. 

The goal of this paper is to propose some alternative methods based on simple 
experimental protocols (i.e. they do not imply complex or expensive optical set-up) to 
characterise and correct some radiometric artefacts, namely the Narcissus and vignetting 
effects, and also pixel interdependencies that may be generated by ROC and lens. It does 
not consider measurement uncertainties, but systematic errors (GUM, 2008). The 
different “steps” of corrections are as much as possible related to the different 
component of the system and justified by physics laws. 

In a first part, a brief description of the different origins of artefacts will be 
presented, underlining their specific features, and thus helping in the understanding of 
the experimentally obtained results. In a second part, the tested devices (two IRFPA 
camera bodies combined with two IR lenses) will be described. In a third part, an 
algorithm for the correction of vignetting and Narcissus effects will be explained and 
applied to the lenses. In a fourth part, an experimental protocol for the detection of 
contrast-induced artefacts will be detailed and applied to the different cameras and 
lenses. Last, a discussion on the observed artefacts and their corrections will follow. 

2. Origins and features of the artefacts 

From now on, one will make a distinction between the illuminance E, the 
measured illuminance Em (i.e. the equivalent electrical charges accumulated in a 
photodetector) and the read illuminance Er (i.e. the equivalent numerical value given 
by the camera). A brief description of the three corresponding steps of measurement, 
namely the image-forming, the electronic conversion and the electronic reading, will 
now be presented to show the possible artefacts and their main characteristics. 

2.1. Optical artefacts 

From an optical point of view, an experimental infrared measurement set-up is 
summed up to its three fundamental elements: the object in the object plane (y,z), the 
IRFPA sensor in the image plane (y’,z’) and between them the optical system with its 
optical axis x. Every parameter and variable depends on the wavelength λ of the 
considered radiation. This dependence is not represented to simplify the 
equations. The optical relation between the luminance L of the object at a given point 
P(y,z) and its corresponding illuminance E of the IRFPA sensor at the image point 
P’(y’,z’) reads to the first order 

),()','( zyCLzyE =  [1] 

where C is the “transmission coefficient” given by the manufacturer of the lens. No matter 
how simple, this first relation is sufficient if one uses the set-up as an imaging system.  
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When the set-up is used as a thermal field measuring system, one must consider several 
optical artefacts that may have deleterious effects on the measured temperature field. 

- First, the so-called “transmission coefficient” is more precisely a mean 
transmission coefficient. A variation of the transmission coefficient f(y,z) with the 
considered point has to be taken into account. The most well-known artefact in this 
category is the “vignetting” effect. It corresponds to a transmission coefficient 
decreasing with the distance to the optical axis, causing a darkening of the image at its 
periphery, where signal is only due to the temperature of the camera case. Moreover, 
for a majority of sensors, the more tilted the rays, the less sensible the elementary 
sensor. However this second artefact is not stricto-sensu linked to the lens (but to the 
lens-sensor combination), one includes it in the vignetting effect in this paper. This 
type of artefact is multiplicative. 

- Second, the luminance Lr owing to the reflection of the surrounding must be 
added to the luminance L of the studied point P due to its own temperature. A 
particular element of the surrounding is the camera itself, whose reflection on the 
object is responsible for the phenomenon called “Narcissus effect”. Consequently one 
considers this type of artefact – at least the Narcissus effect – as “partially-internal” 
because it depends not only on the camera, but also on the relative position of the 
object in front of the camera, its shape and emissivity. 

- Third, a second source placed at a different point in the object plane Ps(ys,zs) may 
have a contribution to the illuminance E(y’,z’) because of complex multiple reflections 
inside the optical system. These types of artefacts are referred to as “lens flare” in the 
field of photography. Some of these artefacts are due to (unwanted) reflections 
between the optical system and the object, hence showing some similarity with the 
Narcissus effect. These artefacts are to be added to the previous ones. 

Consequently a more realistic form of the Eq. (1) reads: 
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where g stands for the correlation between points P and Ps due to multiple reflections. 

The study of geometrical aberrations, such as the barrel or pincushion distortions, 
will not be in the scope of this paper. However, one must keep in mind that they 
induce an illumination measurement error (as long as the measured field is 
heterogeneous) through the introduction of a displacement of the image point. 

2.2. Sensor artefacts 

They come from the heterogeneity of sensibility of the elementary photodetectors 
and from the diffusion of charges in the sensor. An independent calibration of each 
pixel, as proposed by (Honorat et al. 2005), corrects exclusively heterogeneity 
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problems but only if performed on a uniform black body with a collimator. On the 
contrary, the interdependency between close pixels is to be considered to correct 
diffusion effects, for example by writing to the first order the measured illuminance 
Em at the (i,j) th pixel as follows 

( ))),(()),(()),((
,

, jiijlkkl

lk

jlikjiijm
ij zyESzyESBzyESE −+= ∑ −−  [3] 

where (yi,zj) are the geometrical coordinates of the (i,j) th pixel. Sij is the calibration 
function of the (i,j) th pixel (a polynomial function in most cases), whose dependence 
with the working temperature of the sensor is neglected since the camera are used in 
steady-state conditions in this study. The matrix B links the difference of illuminance 
between the considered pixel and its neighbours to the measured illuminance. For a 
diffusion-free sensor, one has B = 0. 

2.3. Read-Out-Circuit artefacts 

The Read-Out-Circuit may generate interactions between pixels information 
during the sequential reading. Depending on the ROC, the reading order is not 
necessarily Figure 1a), but may be far more complex to enable various sub-windowing 
possibilities. An example of such an order is given Figure 1b, corresponding to the 
Cedip Jade III Camera. A general expression of the read illuminance Er is written 

( )m
ij

m
JI

n

ijnm
ij

r
ij EEREE nn −+= ∑  [4] 

where n ranges from 0 (the current pixel) to N, the last read pixel whose influence on 
the current one is detectable. The indices In and Jn describe the reading order as 
illustrated in Figure 1 and the coefficient Rijn the attenuation of the last but n read 
pixel on the current pixel (i,j). 

From this brief overview of the different origins and features of potential artefacts, 
one sees that the distinction between each of them may be difficult when the camera 
components are not tested separately. Nonetheless, these artefacts may be 
distinguished through several considerations. First and foremost, the features of an 
artefact are linked to its origins. For instance, optical ones can reasonably be supposed 
to be symmetrical with respect to the optical axis. Diffusion ones can be supposed to 
be identical from one pixel to another and to be localised in the neighbourhood of the 
given pixel. Finally ROC-related ones should induce particular patterns between rows 
and columns, etc. Second, exchanging camera components when possible (lenses for 
example) enables to deduce which artefacts is or is not due to the component. Last, 
changing the settings (focus, integration time, sub-windowing, etc.) helps understand 
the origins of artefacts. The next section will present the devices whose radiometric 
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artefacts will be searched for, namely the vignetting and Narcissus effects and the 
contrast-induced artefacts, which combine “lens flare” and ROC-related artefacts. 

 

a    b 
 

Figure 1. Two different reading orders: (a) standard top-left-to-bottom-right scanning 
(b) 4-channels multiplexed reading as used in the Cedip Jade III camera. 

 

3. Tested devices 

The two investigated IRFPA cameras are presented in Table 1. Both are produced 
by CEDIP-FLIR and are based on a Stirling-cooled InSb sensor allowing a high 
sensibility in middle wave infrared wavelength band. Even if it is not mentioned by 
the manufacturer, one assumes two totally different types of ROC from the differences 
of resolution and sub-windowing possibilities.  

 

 Jade III Titanium SC 7600 

Type of sensor InSb InSb 

Pitch 30 µm 15 µm 

Spatial resolution 320 x 240 pixels 640 x 512 pixels 

Max. frequency in full frame mode 150 fps 100 fps 

Spectral bandwith 3.5 - 5 µm 1.5 - 5.1 µm 

NETD given by the maker 20 mK at 20°C 20 mK at 20°C 

Temperature of the detector 70 K 70 K 

Sub-windowing ½ frame (centered) 
¼ frame (centered) 
64 x 8 (centered) 

Free size and  
free position 

(64 x 4 at minimum) 

Table 1.  Main characteristics of the two IRFPA cameras. 
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Table 2 presents the chosen lenses: a 50 mm prime lens and a microscope lens. 
Both are designed by CEDIP-FLIR to be used with either camera, yet the bandwith of 
the MW x1 lens is thinner than the bandwith of the Titanium camera. The microscope 
lens has worse features in terms of transmission and distortion (CEDIP 2004, CEDIP 
2005) but allows a high magnification (x1). The manufacturer of the prime lens 
specifies the absence of vignetting when focus is higher than 1500 mm. In this paper, 
the prime lens is always used near the minimum working distance (about 300 mm). 

In the case of the vignetting effect, the study will be limited to the Jade camera 
equipped with the two lenses. On the contrary, investigations of the contrast-induced 
artefacts will be performed on the 4 possible setups combinations to deduce and 
characterise the different artefacts of each component. Each study requires a planar 
extended differential black body. DCN1000 black body produced by HGH will be 
used. Its active surface is 100 x 100 mm2, the given emissivity in the middle wave 
wavelength band is higher than 0.97 %, the specified spatial non-uniformity is ± 
0.010 K at room temperature ± 5 K, and its stability is ± 0.002 K. 

 

 MW 50 mm MW x1 

Focal 50 +/- 0.5 mm 10.45 +/- 0.5 mm 

F/number 2 +/- 5 % 2 +/- 10 % 

Horizontal Field of view 10.97 ° 9.6 mm 

Spectral bandwith 3.5-5 +/- 0.25 µm 3.5-5 +/- 0.25 µm 

Mean transmission coefficient > 94 % > 85 % 

Table 2. Main characteristics of the two IR lenses. 

4. Axisymmetrical radiometric artefacts detection and correction 

One focuses in this section on the axisymmetrical artefacts due to optical 
phenomena, namely the vignetting and Narcissus effects (in the case of a planar object 
normal to the optical axis).  

4.1. Experimental protocol 

The camera is placed in front of the black body. Two different black body 
temperatures TBB1 and TBB2 are chosen (enough for the considered integration time and 
under the saturation temperature). The camera is not focused on the active surface of 
the black body but 10 mm in front of it, where the target will be placed in due time. 
The embedded non uniformity correction of the camera is disabled. At each 
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temperature a film of several hundreds of images is acquired and a time average is 
performed to reduce temporal noise. The unit of these images are “digital level” of 
temperature (DL). Using the global calibration curve of the camera T(i,j)= fcal (E

r(i,j)), 
one converts DL into the equivalent apparent temperature T at the pixel (i,j) in Kelvin 
(K). This temperature is then converted into a emitted flux (w/m2) with the Stefan-
Boltzman law Er(i,j) = εBB σsb Τ(i,j)4 where ε BB is the emissivity of the black body and 
σsb the Stefan-Boltzman constant. Figure 2 shows the result for TBB1 = 25 °C with a 
scale normalized by the maximum value of the image, i.e. )max((%) rrr EEE = . The 
vignetting effect is clearly noticeable: a uniform read illuminance was expected 
because of the extended black body, but one observes an important decrease toward 
the edge of the image (about 20 %). The emissivity of the black body is high, so that 
the Narcissus effect is not visible because of its low magnitude. 

 
 

 

Figure 2. Non-corrected image of the black body, normalized by the maximum 
value of the image (50 mm prime lens, black body temperature = 25 °C, IT = 
1400 µs). The “unmatched columns” and the step between the upper and lower 
halves are electronic artefacts, corresponding to 4-channels multiplexed ROC. 

4.2. Correction Algorithm 

In the present case, one does not consider the second term of the right hand 
member of Eq. [2] that stands for “lens flare” artefact type, because of its very low 
relative magnitude. Consequently Eq. [2] is simplified to: 

 

( )),(),(),()','( zyLzyLzyfzyE r+= . [5] 

Because of the axisymmetry of the lens, the vignetting is modeled as a 
transmission function f of the radius to the optical axis. A radial polynomial function 
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P (i.e. composed of even powers and only depending on the radius) is thus relevant to 
model such axisymmetrical phenomenon with very few parameters. For the same 
reasons, the Narcissus effect is modeled as an external luminance function Lr that is 
also a radial power function. The origins of the coordinate systems used for each 
function are different from the sensor centre. First because most manufacturers 
tolerate a sensor shift with respect to the optical axis (around a few pixels). Second 
because the optical axis is actually not normal to the black body during experiment, 
which induces a difference of vignetting centre and Narcissus centre. 

The transmission function f(rv) is fitted on the difference between the two images 
at TBB1 and TBB2, so that the Narcissus effect does not affect identification. The 
external luminance function Lr(r’)  is then fitted on the first of the two images. In both 
cases, the least-square method is used. Lastly any image Er is corrected as follows:  

),(
),(),(),(

),(
jif

jiLjifjiE
jiE

rr
cor

−
= . [6] 

Each pixel is thus corrected linearly with an offset -Lr and a gain 1/f, in the same 
way as the usual “2 points Non-Uniformity-Correction”. The important difference lies 
in the number of necessary parameters. The 2 points Non-Uniformity-Correction uses 
a number of parameters equal to twice the number of pixels since each pixel (i,j) 
correction requires different coefficients Lr(i,j)  and f(i,j). On the contrary the proposed 
correction requires less than a dozen, since the gain and offset applied to each pixel 
come from the same two polynomial functions Lr(r’)  and f(rv).  

4.3. Application 

Two images rE1 and rE2 are taken at respectively 25 and 35°C. An other image rE3  

is recorded at 30°C. A last imagerE4  is taken with the black body at 30 °C and a semi-

circular target in front of it. Figures 3a, 3b, 3c,and 3d present them. For the sake of 
clarity, images are normalised on this figure by their respective range, i.e. 

))min()(max())min(((%) rrrrr EEEEE −−= . Correction functions are fitted using images 

rE1 and rE2 . Polynomials of the 4th degree are used for the transmission and the 

external luminance function, so that the correction algorithm has only six parameters. 
Higher degrees allows only minor improvements. All four images are then corrected 
and presented Figures 3a’, 3b’, 3c’, and 3d’. To ease comparison with initial images, 
they are normalized by the range of their respective non-corrected image, i.e. 

))min()(max())min(((%) rrrrcocor EEEEE −−= . 

Figures 3a’ and  3b’ show the residues of the identification, i.e. the images rE1  and 
rE2  corrected by the algorithm that is identified on these same images. No longer halos 

are present, only vertical and horizontal patterns are visible, which correspond to the 
sensor non-uniformity. The standard deviation of the uncorrected images is about 15%, 
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while corrected one is about 6%. Even though the level of heterogeneity is still 
important due to this last electronic artefact, the global level is noticeably less important. 

Figures 3c’ and 3d’ show validations of the correction algorithm, i.e. the images 
rE3  and rE4  corrected by the algorithm identified on the other two images rE1  and 
rE2 . In comparison with the corresponding non-corrected images, the remaining halo 

is negligible. Once more the standard deviation drops from 15% to 6%, most of the 
remaining visible heterogeneity being again due to the sensor. In Figure 3d’ both the 
target and the black body behind it are far more uniform than in the initial image 3d). 

This correction method is also applied to the microscope lens. The identification is 
performed in two images at 25°C and 35°C. An image at 30°C is then corrected. 
When the corrected image is normalized by the range of its non-corrected image, it is 
not differentiable from the corresponding image obtained with the prime lens: no halo 
is visible, only sensor non-uniformity is noticeable. More precisely, the difference 
between the corrected images obtained with the prime and the microscope lens at 
30°C is less than 1 %. This proves that only the electronic artefact remains after that 
the correction algorithm is applied. 

 

 

Figure 3. (a,b) Raw image at 25°C and 35°C used for identification; (a’,b’) 
corresponding residues of the identification; (c) raw image at 30°C; (d) raw image of 
the semi-circular target ; (c’,d’) corresponding corrected images (50 mm prime lens, 
IT = 1400 µs). 

5. Contrast-induced radiometric artefacts detection 

This section is dedicated to the “contrast-induced” artefacts, i.e. to the second term 
of the right hand member of Eq. (2). Since these artefacts correlate the read illuminance 
of different points of the image, one can not detect them without black body target. 
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5.1. Experimental protocol 

A special removable target is designed to measure contrast-induced artefacts. It is 
an improvement compared to a target proposed before (Poncelet 2007). It generates a 
periodic, uniform and lambertian penny-shaped source of radiation placed on an 
infinite reflective plane. The advantages of such a target are: 

- The size of the source (1 mm diameter) and the lambertian feature make it similar 
to a theoretical point source when observed with a standard lens. With the microscope 
lens, a simple but realistic modelisation of the source is still possible (a uniform 
lambertian penny-shaped source is supposed). 

- The lambertian feature corresponds to the radiation behaviour of the high 
emissivity coatings generally used for IR thermography, contrary to an electronic 
source (IR LED or IR LASER).  

- The possibility to perform lock-in acquisitions thanks to the periodicity of the 
source, which helps one to considerably reduce the external disturbances. 

- The reflective plane does not attenuate the multiple reflections between lens and 
target. 

The target is composed of a mirror polished 1-mm thick steel plate with a conical 
central hole acting as a diaphragm. On the outside (face exposed to the camera), the 
hole has a diameter of 1 mm and on the inside (face in front of the black body) about 3 
mm. A chopping disc, driven by a DC gear motor, is fixed to the inside face. The plate 
equipped with the chopping disc is mounted on the DCN1000 extended black body 
with four long screws allowing enough clearance for the chopping disc system. The 
whole setup is presented in Figure 4. The black body is fixed onto a manual 3-axis 
micro-positioning table. Table and camera are fixed on a laboratory table and target-
camera orientation is checked.  

The black body regulates the differential temperature between its emitting area and a 
platinum probe. This probe is located in the front of the black body case and measures 
the ambient temperature or the target temperature if one is fixed to the case. There is a 
difference of temperature between the centre of the target and the case because of the 
low thermal conductivity of the target itself and at the target-case contact. The drift of 
this difference is quantified by thermography and its characteristic time is about 30 s. 
The rotating period of the chopping disc has to be shorter so that lock-in measures are 
not affected by these drifts. Moreover it has to be longer than the camera’s acquisition 
period (i.e. 0.01 s in the case of 100 fps) to avoid beat phenomenon. The chosen period 
is about 0.5 s. The differential temperature between the target and the emitting area has 
to be the highest possible to enhance the detection of artefacts. Nonetheless the influence 
of saturated pixels will not be addressed in this paper. The chosen differential 
temperature leads to signals 30 % lower than the saturation level. 

Each test consists in acquiring a sequence of several thousands of images when the 
temperature of the black body is stabilised. Except the chopping disc that is on, the 
target is motionless in front of the camera and its hole appears in the frame. During 
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the data processing the sequence is separated in two groups of images, depending on 
the state of the source. If the signal measured in the hole is higher (resp. lower) than 
its mean value, the current image belongs to the “source on” group (resp. the “source 
off” group). The time average of each group is computed before calculating their 
difference. This differential image is eventually divided by the amplitude of the source 
to obtain the Measured Differential Rationalized Radiation (latter called MDRR). In a 
uniform area (100 x 100 pix) of this image, the standard deviation is less than 0.02 % 
of the contrast of the target because of the great number of images initially acquired. 
 
 

   
a      b 

Figure 4. IR target: (a) principle of the target; (b) target fixed on the extended black body. 

5.2. Application 

One first uses the setup composed of the Jade III camera and the microscope lens 
and follows the experimental protocol described above. The target is placed at the 
nominal position of work (working distance 44.9 +/- 0.01 mm, orientation: 90 +/- 0.1° 
to the optical axis). Integration time is adequate for measurement at room temperature 
and the thermal contrast of the target is about 25 K. The MDRR is presented In Figure 5. 

The full scale image (Figure 5a) shows the position of source in the frame. When a 
smaller scale is used (Figure 5b), several unexpected heterogeneities are noticeable. 
Their maximum level is about 1 % of the thermal contrast of the frame. They are of 
three different kinds: 

- A positive halo, approximately symmetrical with respect to the optical axis. Its 
magnitude is about 0.6 %. 

- A negative band appearing on the half of the image, oriented along the major axis 
of the frame. Its magnitude is about -0.5 %. 
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a b  

Figure 5. Measured Differential Rationalized Radiation (MDRR) for the Jade III camera 
and microscope lens. (a) Full scale ; (b) smaller scale to show low-level artefacts. Dashed 
lines delimit the ¼ frames of the sensor (IT = 1400 µs, 150 fps, 10 000 recorded images). 

- Three negative “ghost images”, each in a different ¼ frame, of the same size as 
the source, whose positions follow a regularly spaced pattern oriented by the axis of 
the frame. Their magnitude is about 0.1 %. 

The camera and lens are changed to deduce which artefact is linked to which 
component. The MDRR are presented in Figure 6 for Jade III with prime lens (a) and 
Titanium and microscope lens (b). In the first case, the positive halo is not present, but 
the two types of negative heterogeneities (band and “ghost images”) are still there. 
Consequently the positive halo is supposed to be lens-related and the negative 
artefacts camera-related because only the lens has been changed between Figures 5b 
and 6a. The result for the third setup where only the camera has changed but not the 
lens (Figure 5b and 6b) confirms this hypothesis: one sees the positive halo but no 
longer the negative heterogeneities. Neither lens-related artefacts for the prime lens, 
nor camera-related artefacts for the Titanium camera are noticeable. The optical (lens-
related) artefact is thus studied with the Titanium camera with the microscope lens 
and the electronic ones with the Jade III and the prime lens. 

The lens-related artefact clearly depends on the properties of the target surface: when 
a high emissivity coating covers it, the halo disappears. Consequently the heterogeneity 
is not only due to multiple reflections inside the lens (which correspond to usual “flare” 
effects), but also to reflections between the lens and the object. Even though the prime 
lens could also reflect part of the light back to the target, the high numerical aperture of 
the microscope lens (NA = 0.4) intensifies the phenomenon. When the target is 
translated in the range of the depth of field [-0.1 mm 0.1 mm], the shape and intensity of 
the heterogeneity is unchanged. The heterogeneity is also independent of the tilt angle in 
the [0° 2°] (above 2° the left and right part of the target are out of the depth of field). The 
artefact is thus independent of the relative position of the lens to the target. As expected 
for a lens-related artefact, wherever is the source, the artefact is symmetrical with 
respect to the optical axis. When the source is taken away from the centre of the frame, 
shape and intensity evolve from sharp and intense to blurred and faded (Figure 7). 
Artefact intensity is in any case below 1 % of the source intensity. 
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Regarding the electronic artefacts, no variations with the frame rate (resp. with the 
integration time) were noticeable in the range [50 fps 150 fps] (resp. [140 µs 1400 µs]). 
The variation with the source position is presented Figure 8. The negative band is limited 
to the ¼ frame where the source is (Figures 8a-d). It is along the x axis. It reappears at the 
left hand side of the same row (Figures 8, 8f-g). The magnitude of the band decreases 
toward the positive x. This attenuation is independent of the x position of the source and 
independent of the ¼ frame (Figures 8a-d). No matter in which ¼ frame the source is, a 
negative “ghost image” of the source appears in each of the other 3 ¼ frames, along with 
positive bands of lower level (around 0,03 %). The distance between ghost images (or a 
ghost image and the source) along x axis is equal to 160 pix, i.e. half the width of the 
frame. The distance from ghost images to the middle of the frame (y =120 pix line) is 
equal to the distance from the source to the middle of the frame (Figures 8a,8e-g). A 
close look at these electronic artefacts reveals that only one in two columns is affected 
(Figure 8h). The understanding and the modelisations of these radiometric artefacts will 
now be discussed. 

 

a  b  

Figure 6. Measured Differential Rationalized Radiation (MDRR) for 2 different set-
ups. (a) Jade III camera and prime lens. Dashed lines delimit the ¼ frames of the 
sensor (IT = 1400 µs, 150 fps, 10 000 recorded images); (b)Titanium camera and 
microscope lens  (IT = 705 µs, 52 fps, 10 000 recorded images). 

 

 

Figure 7. Measured Differential Rationalized Radiation (MDRR) for five different 
positions of the source (white disc). Titanium camera, microscope lens, IT =705 µs, 52 fps. 
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Figure 8.  Measured Differential Rationalized Radiation (MDRR) for 7 positions of 
the source. Dashed lines delimit the ¼ frames of the sensor (Jade III camera, prime 
lens, IT = 1400 µs, 150 fps). 

6. Discussion 

A first attempt to simulate the contrast-induced optical artefact is made to improve 
its understanding. A numerical model is computed using the ray-tracing software Zemax© 
(ZEMAX 2010). The microscope lens is completely modelled (i.e. mount and lenses with 
theoretical geometry and bulk materials properties). The reflection coefficient is set to a 
reasonable value of 1 % for each thin-film coating. A 1-mm-diameter uniform penny-
shaped IR source is placed in the object plane. The radiation of the source follows a cosn 
law with n = 5 and a maximum radiation angle equal to 45.7°. Calculations use non-
sequential mode. The maximum number of rays is set to 20 × 106. Figure 9 shows the 
intensity of radiation coming back to the object plane for two different positions of the 
source. These results are in good agreement with experimental observations: 

- The magnitude of the reflected radiation is between 1 % to 2 % depending on the 
position of the source. 

- The reflected radiation is symmetrical with respect to the optical axis. Moreover 
the reflection shape is identical to the source shape. 

Nonetheless some differences exist. The optical artefact observed on the MDRR is 
slightly below 1%. This value is raised if the reflection coefficient of the mirror-
polished target (about 90 %) is considered. Furthermore the measured shape is more 
blurred and depends on the position of the source (compare Figures 7 and 9). 
However, the origin of this optical artefact is confirmed. In reference to the Narcissus 
effect where the camera reflects on the object, this artefact is named “inverse-
Narcissus” effect because the source “reflects” on the lens. 
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Figure 9. Numerical modelisation of the inverse Narcissus effect: Rationalized 
radiation returning to the object plane for (a) a off-centered disc source (white circle) 
and (b) a centered disc source. Spatial unit is in “equivalent pixel” for microscope 
lens (1 pixel = 0.03 mm). 

Obviously, the simplest way to prevent this artefact is to use a high emissivity 
coating on the studied object. When the rough surface can not or must not be coated 
for other reasons, an other solution would be to correct this artefact a posteriori. In 
Eq. [2], the form of the correlation function g has to be chosen and then fitted on ray-
tracing calculations. This possibility is reasonable in the case of flat objects, since the 
artefact is not very dependent on the relative position of the lens. 

Concerning the correction algorithm for the vignetting and Narcissus effects, it 
turns out to be efficient with only 6 parameters. As expected, the corrected images are 
still spoilt by the other artefacts, especially sensor non-uniformity. This remaining 
non-uniformity is the same whatever lens is corrected, which shows that the correction 
does not interfere with sensor own heterogeneity. 

As for the “contrast-induced electronic artefacts” (ghost images and bands) an 
explanation of their origin is found in the way the ROC works. A study of Jade III raw 
images leads to the conclusion that its ROC follows a 4-channel multiplexed reading 
order type. This is in good agreement with the relative position of the negative “ghost 
images”, the negative bands in each ¼ frame and the one-in-two feature. Although not 
yet precisely pinpointed, a “memory” effect of the embedded electronic data 
processing may be the only cause of these artefacts. 

7. Conclusion 

This work is part of a general study on the artefacts of IRFPA cameras and their 
corrections. In this paper, only the radiometric artefacts are investigated. The various 
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origins of these artefacts have been briefly presented to facilitate test results 
interpretation. Two experimental protocols are proposed, the first one to detect and 
correct vignetting and Narcissus effects and the second one to assess contrast-induced 
artefacts. They are applied to two cameras and two lenses built by CEDIP-FLIR: 

- The level of the heterogeneity due to vignetting and Narcissus effects is 
important for both lenses. The proposed correction method relies on the optical 
properties of such effects, so that it needs few parameters. It applies to the case of 
uniform emissivity. The corrected images no longer show halos, but only sensor 
pattern. The correction is thus only related to the lens and not to the rest of the camera. 

- A special target was designed to detect contrast-induced artefacts. Two different 
artefacts were differentiable: optical ones and electronic ones. 

- A particular optical artefact, called inverse Narcissus effect, appears only with 
the microscope lens. Its magnitude is less than 1 % of the effective dynamic range. 
They are successfully modelled by ray-tracing. The best solution is to use a high 
emissivity coating to cover the object when possible, otherwise an a posteriori 
correction based on ray-tracing could be envisaged in the case of flat objects. 

- Electronic artefacts are only detected on Jade III camera. Their magnitude is less 
than 1 % of the frame contrast, so that they are not negligible in the case of low-level 
heterogeneities studies. The Read-Out-Circuit is responsible for them, so that raising 
surface emissivity will not solve this problem. Framing little contrasted images is the 
best solution, or an a posteriori correction has to be installed. 

A post-processing correction of these artefacts is currently developed. It is 
composed of different “steps”, each dedicated to one specific artefact. The correction 
of vignetting and Narcissus is the first completed step. The correction of the ROC-
related artefacts and the sensor non-uniformity artefacts are on their ways. The case of 
the geometrical aberrations will be investigated in a future article with the same 
sequential physics-based corrections framework. 
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