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Abstract

Some phenomenological wear models exist, but they are most of the

time used to post-process numerical simulations. In certain situations

however, material loss may be sufficient to change the contact area,

contact stresses. In such cases, coupling the wear loss estimation to

the mechanical contact modelling becomes essential. It can be done,

and is done most of the time, by updating geometry between time-

steps, introducing no further non-linearity. The option chosen here is

on the contrary a fully coupled model where the wear displacement

field is added to the unknowns of the frictional contact problem and

requires one more equation. This equation is an adaptation of the Ar-

chard’s wear law to a local formulation in the context of dynamic and
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large displacements applications. This method allows simulation of the

entire wear process in only a few loading cycles. We even quite accu-

rately simulate the process in a single cycle. This is made possible via

our fully coupled approach and an adaptation of the wear factor. The

wear factor is artificially increased in order to decrease the number of

cycles. A detailed description of the resolution of discrete equations is

presented. The solver is a non linear Gauss Seidel algorithm adapted to

wear conditions which derives from the ’Non Smooth Contact Dynam-

ics’ method. The wear model is validated on a total hip arthroplasty

problem. Numerical observations are based on previously published

experimental results.

Keywords : 3D, wear model, contact, friction, dynamic, implicit, hip,

prostheses

1 Introduction

Wear is a problem that arises in many industrial applications, but also in

everyday life. Solutions are required in many areas to reduce wear on mech-

anisms. The tribology of bodies in contact must be optimized by improving

the coating surfaces, which thus concerns Material Science. It is also essen-

tial to analyze and optimize the geometry of parts in contact. The present

study is in this field of expertise. We propose a numerical tool to assist in

the design of products to reduce the effects of wear. There are many articles

on wear modeling in the literature. Two models type have been described.
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In the first model type, the set of resulting wear fragments is considered as

a third body [10], [31], [6] while the second model type does not take these

wear fragments into account [3], [28], [20]. The influence of the third body

is taken into account through the introduction of a macroscopic wear factor.

One of the main reasons of these choice is to reduce the computational time.

In most articles, [11], [20], [22], [18], [27], to save more computational time,

wear is computed after several time steps and the geometry is updated. Our

method is an alternative to the preceding ones. Contrary to them, we pro-

pose a fully coupled model in which wear and geometry are computed at

each iteration of each time step. The aim of this method is to simulate the

wear process in just a few cycles, by using an artificial amplification of the

wear factor.

This article is a follow-up of the paper [15]. We describe a generalization

to three-dimensional problems of wear in dynamic and large displacements

context. The third body is not directly considered in this approach. Wear

behavior is controlled by an extension of Archard’s law [5]. Matter loss, due

to wear, is related to the normal pressure and sliding velocity. It is thus

essential to accurately reproduce the kinematics of the bodies in contact,

but also the applied forces.

The method deals with unilateral signorini’s conditions and the dry fric-

tion law of Coulomb. A numerical treatment is developed in this paper. The

discretized frictional contact problem is solved using a non linear Gauss Sei-
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del algorithm and derives from the ’Non Smooth Contact Dynamics’ method,

developed by J.J Moreau and M. Jean [13]. The non linearities come from

the frictional contact operator which deals with the wear conditions. Here

we focus on the method developed to solve the three-dimensional problem.

Finally, we validate our numerical method on a problem of hip prosthesis

wear.

2 Wear modeling

The wear model is discussed and further described in [15]. Here we just re-

view the main relationships. The wear model is built to deal with large strain

and dynamic effects. It is a macroscopic model. The microscopic effects like

asperities deformations and material tearing are not directly considered. The

influence of these microscopic phenomena are taken into account through a

macroscopic wear factor. The temperature effects are neglected, based on the

assumption that the temperature in invivo joint prostheses, are sufficiently

small.

Let ΩO be the domain at time t = 0 and X be the initial position of a

particle of the body, then the transformation operator ϕ gives the position

x of the particle at time t, as follows

x = ϕ(X, t) (1)
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Figure 1: Local frame

The transformation operator ϕ is split in two parts.

ϕ(X, t) = ϕe(X, t) + ϕw(X, t) (2)

where ϕw is the transformation due to wear and ϕe is the complementary

part. The transformation ϕw is assumed to be nil beyond the contact zone.

Before developing the evolution of the transformation due to the wear in the

contact zone, it is necessary to introduce some notations relative to contact

conditions. We consider two candidate contact bodies. Vectors T 1 and T 2 of

the local frame (T 1, T 2, N ) are chosen in the common tangent plane of the

two bodies. Vector N is the normal vector at the tangent plane such that

(T 1, T 2, N) is orthonormal (see Figure 1).

Let ϕ
1

be the transformation operator of the first body, and ϕ
2

the

transformation operator of the second body. The tangential relative velocity

vT is defined as the projection of the relative velocity vector v on the common

tangent plane:

v = ϕ̇
1
− ϕ̇

2
(3)

Let r = (rT1, rT2, rN ) be the reaction force exerted on the first body, ex-

pressed in the local frame, the normal component of velocity due to the

wear, is assumed to be governed by the following relationship :






d
dt
(ϕw

1
.N) = kw1 rN |vT |

d
dt
(ϕw

2
.N) = −kw2 rN |vT |

(4)
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where kwi is the local wear factor of the body i = 1, 2. The tangential

component is assumed to be nil.

ϕw
i
.T i = 0 ∀i = 1, 2 (5)

This wear law has to be considered in the context of frictional contact

laws. Unilateral Signorini’s conditions and the dry friction law of Coulomb

were chosen for this study. If gN = (ϕ
1
− ϕ

2
).N denotes the gap between

the two bodies, the unilateral Signorini’s conditions can be expressed with

the following relationships






rN ≥ 0

gN ≥ 0

gNrN = 0

or in the equivalent variational equation form

rN = projℜ+(rN − ρngN ) (6)

where projℜ+ denotes the orthogonal projection on the positive real set ℜ+

and ρN is a positive definite real number.

Let rT be the tangential part of the reaction force, then the Coulomb

law is governed by the following relationships






‖rT ‖ ≤ µrN

‖rT ‖ < µrN ⇒ vT = 0

vT 6= 0 ⇒ rT = −µrN
vT
‖vT ‖
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where µ is the friction coefficient. These relationships are equivalent to the

next equation

rT = projC(rN )(rT − ρT vT ) (7)

where C(rN ) is the section of the Coulomb cone
{
rT ∈ ℜ2such that ‖ rT ‖ ≤ µrN

}
,

and ρT is a positive definite real number. The parameters ρN and ρT are

neither Lagrange multipliers, nor penalty coefficients. Their values are not

necessarily large and do not have physical significances. However, for nu-

merical reasons, they have optimal values (see end of paragraph 3.2)

3 Numerical treatment

In this section, we present the numerical method used to solve the motion

equation of a body under contact, friction and wear conditions. This method

is based on the "Non Smooth Contact Dynamics" method proposed by J.J.

Moreau and M. Jean [13]. This method was initially developed for rigid

bodies and applied on deformable bodies in [17], [1]. It is shown in [16], that

it is a non linear Gauss Seidel algorithm.

3.1 Non Smooth Contact Dynamics (NSCD)

In this paragraph, we propose an adaptation of the NSCD method to wear

conditions.

In order to simplify the presentation, body S2 is supposed to be rigid
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and the method is presented to solve the motion equation of body S1. In the

context of large displacements, we use a total lagrangian approach. In this

formulation, the virtual principal power can be written, in the referential

configuration, as follows

∫

Ω0

ρ0ẍ.v
∗dX +

∫

Ω0

tr(PT∇v∗)dX =

∫

∂1Ω0

F 0
d.v

∗dS +

∫

Ω0

f0
d
.v∗dX , (8)

∀t ∈ [0, T ] and ∀v∗ ∈ U0
ad = {v∗, v∗|∂0Ω0

= 0} ,

where ρ0 is the specific mass on the referential configuration and P is the

first tensor of Piola-Kirchhoff. The tensor P is defined by

P = Jσ F−T , (9)

where F = ∇ϕ is the gradient of the transformation ϕ, J = det(F ) and σ is

the Cauchy stress tensor.

The space discretization of the motion equation is obtained using the

finite element method. For each finite element I the position x of a particle

at time t is interpolated as follows:

x = N I(X)q−I (10)

where N I is the matrix of interpolation functions and q−I is the vector of

node positions of element I at time t.

Coupling a θ-method for the time discretization with the previous spacial

interpolation, the non linear system (8) becomes

M(q+)(q̇+− q̇−)−hθ(Fint(q
+)+F+

ext)−h(1−θ)(Fint(q
−)+F−

ext)−hR+ = 0

(11)
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where h is the time step, M(q+) is the mass matrix, q+ is the generalized

vector of the node positions at time t + h, q̇+ is the generalized vector of

the node velocity at time t+h, Fint(q
+) is the generalized vector of internal

forces, R+ is the generalized vector of reaction forces at time t+h, and F+
ext

is the generalized vector of given external forces at time t+h. Subscript "-"

denotes values at time t and subscript "+" denotes values at time t+ h.

Based on the wear law (4) and splitting (2), q+ is a function of the elastic

part qe+ of nodal positions and the vector of nodal reaction forces R+ :

q+ = qe+ + qw+ = fw(q
e+, R+) (12)

The function fw cannot be expressed explicitly. The internal forces are

only assumed to depend on the elastic part of the deformation :

Fint(q
+) = Fint(q

e+) (13)

The system of equations (11) is linearized using a modified Newton

method, applied on the variable q̇e+. Then, q̇e+ is found to be the limit

of sequence (q̇e+k )k∈N such that

(M + h2θ2K)(q̇e+k+1 − q̇e+k )− hRk+1

= −M(q̇+k − q̇−)− hθ[Fint(q
e+
k )− F+

ext]− h(1− θ)[Fint(q
e−)− F−

ext] (14)

where K =
∂Fint

∂qe+
.
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This is a modified Newton method, because the gradient
∂fw
∂qe+

is not

considered in the tangent operator. Moreover, the mass variation
∂M

∂qe+
is

neglected.

Using

KT = (M + h2θ2K)

the equation (14) becomes:

q̇e+k+1 − q̇e+k − hWRk+1 = Vk (15)

with:

W = K−1
T

Vk = K−1
T [−M(q̇+k − q̇−)− hθFint(q

e+
k )− h(1− θ)Fint(q

e−) + hθF+
ext + h(1 − θ)F−

ext]

This system (15) must be coupled with the frictional contact and wear

laws. The equations are expressed in the local frames to solve this problem.

For each node α candidate to contact, Hα denotes the change of frame matrix
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such that

Hα =






























I3 0 0 0 0 0 0

0 . 0 0 0 0 0

0 0 I3 0 0 0 0

0 0 0 Q(α) 0 0 0

0 0 0 0 I3 0 0

0 0 0 0 0 . 0

0 0 0 0 0 0 I3






























where I3 is the identity matrix of ℜ3 and Q(α) is the 3×3 matrix of rotation

between the global and local frame associated with node α.

If veα is the elastic part of the relative velocity at iteration k + 1, then

veα = Hα(q̇
e+
k+1 − q̇e+0 ) (16)

where q̇e+0 is the velocity of the antagonist points (center of the local frames).

If rα represents the reaction forces exerted on node α, at iteration k+1, we

define

Rα
k+1 = HT

α r
α (17)

With these new variables, we can transform equation (15) as follows

(15) ⇔ q̇e+k+1 − hWRα
k+1 = hW (Rk+1 −Rα

k+1) + q̇e+k + Vk

⇔ Hα(q̇
e+
k+1 − hWRα

k+1) = Hα(hW (Rk+1 −Rα
k+1) + q̇e+k + Vk)
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⇔ Hα(q̇
e+
k+1 − q̇e+0 − hWRα

k+1) = Hα(hW (Rk+1 −Rα
k+1) + q̇e+k + Vk − q̇e+0 )

Then, for each node α, the linearized motion equation is reduced to

veα − hWαrα = veαf (18)

where veαf is the free elastic velocity. This is the elastic velocity that node α

would have when the reaction force rα is nil and when the reaction forces of

the other nodes have the previously computed values. Matrix Wα is defined

by

Wα = Hα(M + h2θ2K)−1HT
α (19)

On the other hand, the contact and friction relationships are

rαN = projℜ+(rαN − ρng
α
N ) (20)

and

rαT = projC(rα
N
)(r

α
T − ρT v

eα
T ) (21)

Gap gαN is governed by the following relationship

gαN = gα−N + h(1 − θ)vα−N + hθ(veαN + kwrαN |veαT |) (22)

where gα−N is the gap at time t, vα−N is the normal component of the relative

velocity at time t and kw = kw1 + kw2 is the local wear factor. The system

of equations (18), (20), (21) is solved using a generalized Newton method.

The method is described in detail in the following paragraph. Then, after
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computation of the local variables veαT , veαN , rαT , r
α
N , the next candidate contact

node α + 1 is treated, and so on, until a convergence criterion is satisfied.

An overview of the algorithm is given in the scheme ??.

3.2 Local solver

The system of equations (18), (20), (21) is non linear and non differentiable.

We decided to use a generalized Newton method [4]. This method is applied

at the local variable y = (veαT1
, veαT2

, veαN , rαT1
, rαT2

, rαN )T ∈ ℜ6.

Note that operator projC(rα
N
)(.) is not defined for rαN < 0, so it is replaced

by projC(λ+

N
)(.) with :

λ+
N = projℜ+(rαN − ρNgαN

︸ ︷︷ ︸

λN

)

The solutions of (20) is the same as of

rαN = projC(λ+

N
)(λN )

The variable

λT = rαT − ρT v
eα
T

is also introduced, and the system of equations (18), (20), (21) can be re-

written as

F(y) = Ay + g(y)− vl = 0
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with:

A =








I3 −hWα

0 −I3








, vl =


























(veαf )T1

(veαf )T2

(veαf )N

0

0

0


























and g(y) =







0

0

0

projC(λ+

N
)(λT1

)

projC(λ+

N
)(λT2

)

projℜ+(λN )

(23)

The unknown y is found as the limit of sequence {yn}n∈N such that:

[A+∇g(yn)] (yn+1 − yn) = −F(yn)

⇔ [A+∇g(yn)]
︸ ︷︷ ︸

F ′

yn+1 = ∇g(yn)yn − g(yn) + vl

To compute F ′ we must distinguish to cases

1. If λN ≤ 0 (no contact)

In this case λ+
N = 0 et g(y) = (0)

⇒ ∇g = [0]

⇒ F ′ = A

2. If λN > 0: (contact)

There are two possibilities:

(a) If ‖λT ‖ ≤ µλN (sticking)

then :

14



g(y) =







0

0

0

λT1

λT2

λN

⇒ F ′ =


























1 0 0 −hWα
11 −hWα

12 −hWα
13

0 1 0 −hWα
21 −hWα

22 −hWα
23

0 0 1 −hWα
31 −hWα

32 −hWα
33

−ρT 0 0 0 0 0

0 −ρT 0 0 0 0

F ′
61 F ′

62 −ρNhθ 0 0 −ρNhθ‖vT ‖


























with

F ′
61 = −ρNhθkwrN

vT1
‖v

T
‖

F ′
62 = −ρNhθkwrN

vT2
‖v

T
‖

In this case the two bodies have a sticking contact status.

15



(b) If ‖λT ‖ ≥ µλN (sliding)

then :

g(y) =







0

0

0

µλN
λT1

‖λ
T
‖

µλN
λT2

‖λ
T
‖

λN

⇒ F ′ =


























1 0 0 −hWα
11 −hWα

12 −hWα
13

0 1 0 −hWα
21 −hWα

22 −hWα
23

0 0 1 −hWα
31 −hWα

32 −hWα
33

F ′
41 F ′

42 F ′
43 F ′

44 F ′
45 F ′

46

F ′
51 F ′

52 F ′
53 F ′

54 F ′
55 F ′

56

F ′
61 F ′

62 −ρNhθ 0 0 −ρNhθ‖vT ‖


























with:

F ′
41 = − µ

‖λ
T
‖(ρNhθkwrNλT1

vT1
‖v

T
‖ + ρTλN

λ2
T2

‖λ
T
‖2
)

F ′
42 = − µ

‖λ
T
‖(ρNhθkwrNλT1

vT2
‖v

T
‖ − ρTλN

λT1
λT2

‖λ
T
‖2

)
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F ′
43 = −µρNhθ

λT1

‖λ
T
‖

F ′
44 = µ λN

‖λ
T
‖

λ2
T2

‖λ
T
‖2

F ′
45 = −µ λN

‖λ
T
‖

λT1
λT2

‖λ
T
‖2

F ′
46 = µ

λT1

‖λ
T
‖ (1− ρNhθkw‖vT ‖)

F ′
51 = − µ

‖λ
T
‖(ρNhθkwrNλT2

vT1
‖v

T
‖ − ρTλN

λT1
λT2

‖λ
T
‖2

)

F ′
52 = − µ

‖λ
T
‖(ρNhθkwrNλT2

vT2
‖v

T
‖ + ρTλN

λ2
T1

‖λ
T
‖2
)

F ′
53 = −µρNhθ

λT2

‖λ
T
‖

F ′
54 = −µ λN

‖λ
T
‖

λT1
λT2

‖λ
T
‖2

F ′
55 = µ λN

‖λ
T
‖

λ2
T1

‖λ
T
‖2

F ′
56 = µ

λT2

‖λ
T
‖ (1− ρNhθkw‖vT ‖)

F ′
61 = −ρNhθkwrN

vT1
‖v

T
‖

F ′
62 = −ρNhθkwrN

vT2
‖v

T
‖

In this case, the two bodies have a sliding contact status.

Comments,

* In theory, the real numbers ρN and ρT could take any positive values.

But numerical reasons impose a restriction on their choice. To significantly

reduce the number of iterations and allow for the convergence of the algo-

rithm, we must minimize the conditioning of the tangent matrix F ′. Inspired
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by the work of [13], we chose to take the following values

ρN = 1/(hWα
33)

ρT = 2/(h(Wα
11 +Wα

22))

* When ‖vT ‖ is close to zero, the terms
vTi
‖v

T
‖ for i = 1, 2 are replaced by

zero.

* The wear displacements can not exceed the first layer of finite elements.

To go further, it would require mesh adaptation techniques.
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Compute mass matrix M

For each cycle do

Initialization q̇ = 0, q̇e = 0, q̇w = 0

For each time step do

Compute gap g−N and local frames (T1, T2, N)

For each Newton iteration (k) do

Compute tangent matrix KT

Compute internal forces Fint(q
e+
k )

For each NSCD iteration (computation of Rk+1) do

For each node candidate to contact (α) do

Compute veα, rα (Local solver: 3.2)

Compute wear velocity vwα
N = kwrαN |veαT |

Update Rk+1 with the new rα

Convergence test on reaction forces

end For

end For

Compute q̇e+k+1 (solution of eq. (14))

Compute qe+k+1

Convergence test

end For

Update velocity q̇+ = q̇e+ + q̇w+

Update positions q+, qe+, qw+

end For

end For

Algorithm 1: Over view of the global algorithm
19



4 Numerical simulations : Total hip prosthesis

The method developed in the previous paragraph, was programmed with

MATLAB software. The example presented here was built to improve the

approach. It concerns a total hip prosthesis wear. To deal with this type of

problem some authors have adopted an experimental basis using hip simula-

tors [7], [24], [2]. This type of approach allows quite accurate estimation of

wear loss and location. However, it is hard to reproduce physiological loads

and movements with these techniques. In this section, we propose to use

our numerical method, while trying to be as close as possible to the actual

relative motion of body contact and load conditions.

4.1 Data set

The femoral head prosthesis is modeled by a rigid body. For simplicity, only

the spherical part of the head is considered. The acetabular cup is modeled

by a half-spherical shell whose inner diameter is 28 mm and outer diameter

is 56 mm. The mesh contains 1562 tetrahedral elements (Figure 2). The cup

is made of Ultra-High Molecular Weight Polyethylene (UHMWPE) with a

Young modulus of 1016 MPa, a Poisson rate of 0.46 and a mass density of

938 Kg/m3. The friction coefficient is 0.07.

According to Dowson [9], for a surface roughness of 0.01 µm the wear

factor in the presence of distilled water as an order of magnitude of 10−7

mm3/Nm. Then, as in the study [11] the global wear factor K is chosen to
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Figure 2: Total hip prosthesis model

be 2.2 10−7 mm3/Nm. Assuming that the wear is only supported by the

cup, one takes K2 = K and K1 is neglected. The local wear factor k1 is

computed according to element sizes (see finite element model (Figure 2)).

4.2 Load conditions

Based on the results of Paul [21], force F due to weight and muscle actions,

as a function of the flexion during gait, is modeled as a vertical force applied

on one particular node of the upper face of the acetabular cup (see Figure

4). This is assessed by the following function

F (t) = (
Fmax

2
[1 + cos(4πft + π)] + F0)zc

The constant values Fmax and F0 are computed so as to obtain, for hight

frequency (f = 100Hz), the resulting contact force, plotted in Figure 3,

consistent with that reported in Saikko [26] (continuous line of Figure 7).

We use an high frequency for load conditions in order to save computational

time. The choice of the model (contact, friction, wear, large strains and

dynamics), the boundary conditions (imposed forces), the mesh and the

method of resolution, make that the time step allowing convergence must

be about 10−5s. In addition, a cycle of walk is made in approximately one

second, i.e. a frequency of loading of one Hertz. Then, a simulation of one

cycle would require 105 loading steps. Unfortunately, it is not possible with
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Figure 3: Load function (dashed line) and resulting contact reaction force

for an amplification factor n = 1 and a load frequency of 100 Hz (continuous

line)

Figure 4: Load conditions during gait

our calculation. It is the reason why we use a load frequency of 100 Hz (1.000

loading steps).

Displacements of nodes of the upper face of the cup are assumed to be

nil in the directions xc and y
c
. Thus, hip motion, through the motion of the

upper face of the cup, is modeled by a slider of direction zc.

The center O of the femoral head is blocked and the motion of the femur

is simulated by applying rotations along the axis (xh, yh, zh) (see Figure

4). The abduction-adduction angle is applied along the xh axis, the flexion-

extension angle is applied along the y
h

axis and the internal-external angle

is applied along the zh axis. The values of these rotation angles, as plotted

in Figure 5, are deduced from the observations of Johnston and Smidt [14] .

4.3 Results

We aim to demonstrate that a single loading cycle , is enough to determine

the volumetric wear rate and the worn area. For this, we based our numerical

Figure 5: Head rotations during gait
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Table 1: Volumetric wear comparisons and wear factor estimation after 1

million cycles for a given maximum load boundary force

observations on experimental results.

The key point of the process is the choice of wear factor value. With a

wear factor of 0.22 10−6 mm3/Nm and for a single loading cycle, we find

a wear volume loss of about 10.34 10−06 mm3. Assuming the wear volume

loss is linear versus the number of cycles (Archard’s law), we obtain a wear

rate of 10.34 mm3/106 cycles. This numerical result is lower than that of

our experimental reference of Saikko [26](see table 1). They found a wear

rate between 11.3 and 17.6 mm3/106 cycles.

Now, if we change the wear factor by taking K1 = 0.4 10−6 mm3/Nm,

which is an average of the values estimated by Saikko [26], we find 18.8 10−06

mm3 for a single loading cycle. This gives a wear rate of 18.8 mm3/106 cycles.

Our method thus allows us to estimate the wear rate. However, with this

approach, it is impossible to determine the correct worn area and the correct

wear depth after 1 million cycles. This is because the worn area and the wear

depth are not linear versus the number of cycles. Indeed, Figure 9 represents

the wear depth and the worn area after one cycle and differs markedly from

the area that we should actually must find after 1 million cycles. A worn

area and wear depth such as in Figure 8 should be found.

A strategy to accurately calculate the worn area and wear depth is to

multiply the wear factor by an amplification factor n. In this case, with
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a number of cycles c = 106

n
we can expect to obtain both the wear rate,

the wear depth and the worn area. For example, if the wear coefficient is

multiplied by an amplification factor n = 10 or 102 ... or 106, the final result

obtained after c cycles (c = 105 or 104 ... or 1) represents the result obtained

after 106 cycles with an amplification factor n = 1.

Applying this strategy, an estimate of the wear rate depending on the

amplification factor is plotted in the top of Figure 6. This series of calcu-

lations was carried out with a boundary load function (not plotted in this

paper) adapted for an amplification factor n = 1. We find that the wear rate

increases with the amplification factor. This increase of wear rate comes

from an increase of the resulting contact force (bottom of Figure 6). The

dashed line of Figure 7 gives an illustration, during one cycle, of this increase

of contact forces. This curve is the result of a simulation done with an am-

plification factor n = 106 and with the boundary load function adapted to

n = 1. This overload in the resulting contact forces is explained by inertia

effects due to the hight load frequency we used (100 Hz). Indeed, as the wear

coefficient is increased, the wear displacements are more important and thus

accelerations too.

To overcome this difficulty, we modify the boundary load intensity. For

an amplification factor n = 106, we use the boundary load function plotted

with dashed line in Figure 3 so as to have a resulting contact force consistent

with that reported in Saikko [26] (continuous line of Figure 7). With these
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Figure 6: Wear rate (top) and contact force (bottom) versus the amplification

factor

Figure 7: Resulting contact force for an amplification factor n = 106 and a

load frequency of 100 Hz (dashed line) compared with the reference contact

force (Saikko [26]) (continuous line)

boundary conditions, the computed wear rate is about 18.88 mm3/106 cycles

and the worn area is consistent with experimental observations (see Figure

8).

5 Discussion

Several comments could be made on the results we have presented, with the

following being the most important.

* The wear rate we computed was greater than that measured experimen-

tally by Saikko [26]. This is due to the kinematics that we imposed on the

femoral head. We chose a head movement close the physiological kinematics,

while Saikko’s tests [26] were conducted on a hip simulator, which is differ-

ent. In the paper [25], tracks made by contact points were compared between

Figure 8: Wear depth (mm) obtained after one cycle with an amplification

factor n = 106, the loading force plotted in dashed line of Figure 3 and a

load frequency of 100 Hz
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Figure 9: Wear depth (mm) obtained after one cycle with an amplification

factor n = 1, the loading force plotted in dashed line of Figure 3 and a load

frequency of 100 Hz

different simulators and physiological tracks. It was noted that the distance

rubbed was greater in the case of a physiological drive, which explains why

wear volume is higher in our calculations.

* It should also be noted that to achieve satisfactory results, we used a

wear factor approximately twofold higher than that proposed by [11]. We

made this choice for two reasons. The first is mentioned in the preceding

paragraph, i.e. it is an average of the values found by Saikko [26] and its work

is our experimental reference study. The second reason, which is physical

evidence, is that many studies have shown that a change of direction of

friction is an aggravating factor for wear (see [19], [29]). But in the work of

[11], there is no change of direction, unlike the friction trajectories in the hip

joint. Due to these changes of directions, it is necessary to use a wear factor

higher than that measured in [11].

* In Figure 7 we observe the effects of our fully coupled method. Indeed,

one can note that the peaks of resulting contact forces are different during

one cycle. This difference is significant with an amplification factor n = 106.

The second peak is higher than the first one. It less perceptible and is even

slightly reversed with n = 1 (Figure 3). It is an illustration of the non-

linearity due to the impact of the wear on the contact area and stresses.
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Finally, we highlighted that, for a high amplification factor, the inertia

effects increase the estimated wear rate. These inertia effects are due to the

high solicitation frequency that we have chosen. This choice, which does not

correspond to reality, allows us to simulate a load cycle in about 2 h on a PC

with a time step of 2.5 10−5 s. If we were to simulate the real phenomenon

with a load frequency of 1 Hz, it would require a 100-fold greater calculation

time. This is why we chose a high frequency and limited the inertia effects by

changing the loading conditions while providing an intensity of the resulting

contact force in accordance with experience. It should be noted that the

time step is limited not only because of the wear method but also because of

the driving force conditions from the cup. Due to the solid rigid movements

of the cup, the calculation requires small time steps. The same problem,

under driven displacement conditions, allows a 10-fold greater time step.

6 Conclusion

Through the results presented in the previous paragraph, our method is

clearly able to quite accurately simulate the wear phenomenon in this hip

prosthesis example. However, there are other approaches that provide nu-

merical results. These include the works of [11], [20], [22], [18], [27], but they

require many loading cycles and the geometry has to be updated as little as

possible in order to avoid delaying the calculations. Conversely, our method

can simulate the process in a single load cycle because the algorithm takes
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the geometric variations at each iteration into account.

Obviously, our method has its limitations because of simplifying assump-

tions that we made. As the model is currently constructed, the wear displace-

ments can not exceed the first layer of finite elements. To go further, it would

require mesh adaptation techniques. More over, wear cannot be too great

because we neglect the mass loss in the inertia effects terms. Our method

is illustrated with a simplest wear model and a pure elastic behaviour, but

could be straightforwardly extended to non-linear bulk behaviour and to

more complex wear laws. Actually, the model is based on Archard’s law

which imposes a linearity wear rate versus the number of cycles. But many

works, such as [23] , [12], show that this relationship is not linear. The model

could be enhanced by taking variations in the wear factor into account to

estimate wear beyond 1 million cycles.

Finally, in order to provide hospital practitioners with real answers on

hip prostheses it would be necessary to more accurately model the load

distribution due to the action of muscles and ligaments.
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