
HAL Id: hal-00686530
https://hal.science/hal-00686530

Submitted on 10 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Visual Programming Language for Designing
Interactions Embedded in Web-based Geographic

Applications
The Nhan Luong, Patrick Etcheverry, Christophe Marquesuzaà, Thierry

Nodenot

To cite this version:
The Nhan Luong, Patrick Etcheverry, Christophe Marquesuzaà, Thierry Nodenot. A Visual Pro-
gramming Language for Designing Interactions Embedded in Web-based Geographic Applications.
The 2012 ACM international conference on Intelligent User Interfaces, Feb 2012, Lisbon, Portugal.
pp.207 - 216, �10.1145/2166966.2167003�. �hal-00686530�

https://hal.science/hal-00686530
https://hal.archives-ouvertes.fr


A Visual Programming Language for Designing Interactions
Embedded in Web-based Geographic Applications

The Nhan Luong, Patrick Etcheverry, Christophe Marquesuzaà and Thierry Nodenot
T2i - LIUPPA - Université de Pau et des Pays de l’Adour

2 Allée du Parc Montaury, 64600 Anglet, France
{thenhan.luong, patrick.etcheverry, christophe.marquesuzaa, thierry.nodenot}@iutbayonne.univ-pau.fr

ABSTRACT

Visual programming languages (VPLs) provide notations for
representing both the intermediate and the final results of a
knowledge engineering process. Whereas some VPLs partic-
ularly focus on control flow and/or data flow of a software,
very few VPLs stress on the interactive dimension of applica-
tion (dialogue flow). This paper focuses on a VPL allowing
designers to specify interactions between a user and a sys-
tem, in the field of Web-based geographic applications. We
first present the underlying interaction model that the VPL is
based on, and then the detailed characteristics of the VPL.
We show how this VPL has been integrated in a graphical
design framework allowing designers to immediately assess
their specification. Then we illustrate the way to use the
framework from the design step to the final code generation
step. Last, we detail an experimentation aiming at evaluating
the strengths and the weaknesses of our VPL.

Author Keywords

Visual design language, interaction design, geographic
application design, visual authoring tools.

ACM Classification Keywords

H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

General Terms

Design, Languages.

INTRODUCTION

Visual programming languages (VPLs) aim at facilitating
software design and implementation by minimizing or avoid-
ing complex coding steps. The visual nature of these lan-
guages is characterized by the use of graphic elements that
can be combined and connected within a two (or more) di-
mensional design workspace. The expressive power of these
languages explain their attractiveness for simplifying the de-
scription of complex things. This richness can also be a con-
straint when it comes to interpreting the meaning of diagrams
in order to automatically generate executable code.

Our research consists in promoting VPLs to empower de-
signers developing interactive applications. Depending on
the domain, such VPL-based prototyping tools are more or
less difficult to produce. Our challenge is to focus on an
ill-structured domain that addresses (on a medium-term) the

design of applications promoting “Engaged reading interac-
tive scenarios that make use of geographic information”. We
chose such a domain for three main reasons. Firstly, geo-
graphic information promoting engaged reading can be quite
informal, but its semantics, once captured by automatic or
semi-automatic analysers, can be exploited to promote rich
interactive scenarios. Secondly, there is a real need for some
VPLs to design applications for touristic, cultural or educa-
tional purposes. Lastly, deploying such interactive applica-
tions from a VPL is a challenging task because the required
VPL must stress on the interactive dimension of the applica-
tion (dialogue flow) and not only on the control flow and/or
the data flow.

In this paper we present this VPL that does not address
computer-science companies with structured teams of devel-
opers but people (with some computer-science background)
from firms or organisations who are interested in deploy-
ing interactive applications without having to manage all the
complexity of the technology. This visual language only fo-
cuses on human computer interactions and proposes specific
descriptor elements allowing designers to rapidly specify and
assess what happens (from a system reaction viewpoint) when
a user carries out an action.

The paper is structured as follows: Section 2 (“Related
Work”) defines more precisely the concept of VPL and posi-
tions our contribution according to similar and related work.
Section 3 (“Geographic Application Modelling”) describes
the underlying model on which the VPL is based on. This
three-part model allows designers to define the contents that
will be handled, how they will be displayed on the screen
and the possible interactions allowed within these contents.
Section 4 (“Visual Specification of Interactions”) presents the
main contribution of the paper: we describe the characteris-
tics of the VPL that will allow designers to specify interac-
tions according to the model described in Section 3. Section
5 (“Application Design with the WINDMash Prototype”) il-
lustrates the operational nature of the proposed VPL through
a graphical design environment called WINDMash. This de-
sign environment integrates our VPL and allows designers
to visually specify Web-based geographic applications from
an interactive viewpoint and then to generate the correspond-
ing executable code. Section 6 (“Evaluation”) presents a first
experimentation aiming at evaluating the main strengths and
weaknesses of our VPL. Finally, we conclude this paper by
summing up the results and presenting our plans for future
work.



RELATED WORK

This paper intends to offer a VPL allowing designers to
graphically describe human computer interactions and to gen-
erate the corresponding Web-based application. The contri-
bution focus on a VPL adapted to the description of interac-
tions. Focusing on interaction is particularly interesting be-
cause it is generally the most complex thing to describe, to
specify and to implement in a program. In this paper, the un-
derlying code generation process is not considered as a scien-
tific contribution but as an engineering work based on existing
model transformation techniques (MDA).

In next sections, we use visual programming to mean the con-
struction of a program starting from a graphical representa-
tion of its behaviour. We define a VPL in the same way as [15,
19, 20, 22]: any graphical language that lets programmers
create programs by handling program elements represented
graphically rather than textually. According to the classifi-
cation described in [3] (which compiles the viewpoint of au-
thors such as [6, 7, 22]), we offer a hybrid text and visual
language: programs are visually created and then translated
into an underlying high-level textual language, which is then
translated into executable source code.

Integrating VPLs in Geographic Information Systems (GIS)
is not a new idea: ArcGIS, Mapinfo, AutoCAD Map3D are
sophisticated GIS restricted to specialists. VPLs try to make
these systems available to standard users. As shown in [9],
the two recurring problems addressed by VPLs in such sys-
tems relate to the creation/selection/aggregation of data and
to the manner of representing this data on a map or textu-
ally. To our knowledge, there is no VPL allowing designers
to define user interactions with displayed data, except the de-
fault interactions provided by the displayer (e.g. changing
the background of the map that displays the data). Moreover,
default interactions provided by displayers cannot (generally)
be set up or disabled by designers.

Similar problems can be highlighted with Mashup systems
such as Google Mashup or IBM mashup center which allow
designers to graphically create/aggregate data (from feeds for
example) and to display it in a specific way (on a map with
Google Mashup, using widgets with IBM mashup center).
However, these tools do not allow designers to create new
interactions with displayed data: interactive possibilities are
predefined by displayers (sorting data in a spreadsheet wid-
get for example) and designers have little control over these
predefined interactions.

The underlying programming approach is also very impor-
tant. We can identify two main approaches [9, 25] that use
VPLs in GIS: The traditional programming approach and the
programming by demonstration approach. The first approach
deals with using a visual language to describe what the pro-
gram must do (cf. ModelBuilder in ArcGIS or the Workflow
Designer in AutoCAD Map3D). The resulting description is
then compiled or interpreted and run. The second approach
consists in creating a program by showing an existing system
how to carry out a specific task: The system memorizes each
step of the process as a new program. Each step is graphically
represented to allow designers checking the features of the

program they are elaborating (see for example the C-SPRL
system in [25]).

In these two approaches, VPLs are used to specify which
data must be handled and what must be done with this
data. There is also a continuous feedback which allows de-
signers to control/correct the program they are elaborating.
However, designers activity is quite different: In a tradi-
tional programming approach, designers carry out a spec-
ification/formalization activity of the program to elaborate
whereas in a programming by demonstration approach, de-
signers carry out a “tutor” activity by showing an existing
system how to execute a specific task. The VPL we propose
aims at elaborating geographic application from scratch and
so, designers will use our language to design their program in
a traditional way.

The interaction programming language we propose is based
on UML which provides several models to describe interac-
tions in an application. As shown in [1, 14, 26], UML can
be used as a visual programming language to generate Java
code starting from classes and statechart diagrams. Gener-
ally, the interactive aspect of the application is described us-
ing statechart diagrams that specify the reactions of a system
according to the actions of a user. Statechart diagrams allow
designers to describe the interactive dimension of an applica-
tion globally but this global description can be complex if the
application includes many interactive possibilities.

The sequence diagram-like VPL we propose allows designers
to decompose the global interaction of a system into several
separate interactions. The design is facilitated because each
diagram describes only one interaction. The global view and
the coherence of the interactive possibilities of the system can
be reconstituted by merging the set of sequence diagrams to
produce a state chart diagram as presented in [14] and in [26].

GEOGRAPHIC APPLICATION MODELLING

We offer to guide the design process considering the contents
presented to users and the interactive possibilities given to
them. With such an approach, designers’ work involves defin-
ing the contents to be manipulated, how they will be displayed
and the interactions handling these contents.

We offer design tools allowing designers to focus on the ap-
plication’s interactive dimension. To achieve this goal, we
rely on operational models to be elaborated and integrated in
design environments. These environments should assist the
designer from the specification step to the deployment step.

This section defines the main key concepts that we offer
to describe the interactions within an application. Figure 1
presents an overview of these concepts. The model may be
divided into three parts (Content, Interface and Interaction)
articulated around the concept of geographic contents (geo-
contents) which represents the central concept of our model
because our design approach mainly focuses on emphasizing
geographic data [16].

In the content part, geocontents are defined by a set of struc-
tured information; each one has a type (absolute or relative
spatial entity), a value (e.g. “Mauléon-Licharre”) and one or



Figure 1. Global model for describing geographic applications

more possible representations of this value (e.g. 9th token of
the first paragraph in the text or POINT(2, 45) in the map).
Each considered representation allows a geocontent specific
dimension (textual or spatial) to be emphasized.

The application interface is a visualization layer allowing
geocontents to be displayed in various forms [8].

In our approach, design is guided by interactions to empha-
size contents specified by the designer. As proposed by [10,
24], the vocabulary used for designing interactions is based
on user action and system reaction. An interaction is defined
as a communication between a user and the system. This
communication is always initiated by the user and ends when
the application has visually reacted to the user request. An in-
teraction is implemented by a user action triggering a system
(external or internal) reaction.

To automatically generate a Web-based application according
to this model, we have implemented a design environment.
Each model’s part is instanciated into an RDF file [17] which
lists the characteristics of geographic contents / interface /
interactions. Merging these RDF descriptions constitutes a
structured specification which is used to automatically gener-
ate the final application thanks to MDA techniques.

We will now define how to instantiate the interaction model
part with a visual specification language allowing designers to
specify interactions according to previously defined concepts.

VISUAL SPECIFICATION OF INTERACTIONS

To use the interaction model during the design activity, we
offer a visual language [4, 23] allowing designers to describe
the characteristics of the interactions to set up. For an interac-

tion, it is necessary to specify: the user action triggering the
interaction, the system reactions, and the geocontents which
are visually modified by the interaction.

As mentioned in Related Work, we offer a visual language
inspired from UML sequence diagrams. Sequence diagrams
are often used as a graphic language to describe interactions
between a user and a system and also between system compo-
nents [12, 5]. [13] proposed specific uses of these diagrams
to describe interactions according to graphic components dis-
played on the interface. We also agree with this approach
since our objective is to describe interactions according to
what the user sees on the screen (interface components) but
also contents displayed by these components.

[11] proposed an approach dedicated to interaction design
based on the nature of the contents to emphasize. This ap-
proach was already based on the traditional UML sequence
diagrams. We currently offer a language derived from the se-
quence diagrams which is both simplified and partially spe-
cialized for the description of interactions on geographic con-
tents. It is not an extension of traditional sequence diagrams
but only a resumption of their graphic formalism in order to
describe interactions according to our interaction model.

In the following subsections we present the interaction ele-
ments of the visual language that we offer to specify interac-
tions. Each interaction is described by a diagram specifying
the user action initiating the interaction as well as the system
reactions. Geocontents involved in the interaction are rep-
resented on these diagrams and are defined according to the
model presented in the previous section or calculated during
the interaction via internal reactions.



Specification of a user action

A user action is initiated by a specific event (e.g. click, mouse-
over, . . . ). This event is applied on contents which are dis-
played on an interface component. As an interaction is trig-
gered by a user event, a user action is represented by an arrow
going from the user toward the system and labelled with the
name of this triggering event (Figure 2).

Figure 2. Specification of a user action

The arrow destination refers to the contents involved in the
interaction and the interface component used to display them.
The contents have an automatically generated identifier that
can be renamed by the designer. This identifier allows the
designer to handle the same contents into several interactions.

Specification of an external system reaction

This reaction is always visible by the user. It results in a vi-
sual modification of contents displayed on the interface. This
modification is carried out by the system by applying one or
some visual effects on the contents to emphasize.

Figure 3. Specification of an external system reaction

Since an external reaction is applied on contents and can be
seen by the user, it is represented by an arrow going from the
contents to emphasize toward the user (Figure 3). The arrow
label specifies the effect applied to emphasize these contents.

Specification of an internal system reaction

We consider three distinct internal reactions: projection, se-
lection and calculation.

Projection

The projection operation involves transferring contents on a
given interface component. Thereafter, the transferred con-
tents can either be displayed on the target interface compo-
nent or be used to calculate new contents on this interface
component. The arrow origin (Figure 4) specifies the con-
tents that must be projected and the destination defines the
interface component where the contents is projected.

Figure 4. Specification of a projection operation

Selection

A selection is an operation allowing the designer to specify
contents by selecting a subset of displayed contents. This
subset becomes new contents that can be emphasized in the
continuation of the interaction.

Figure 5. Specification of a selection operation

The selection operation is graphically represented by an ar-
row going from the initial contents toward the subset con-
tents designated by the user (Figure 5). The selected contents
belong to the interface component displaying the initial con-
tents. Thenceforth, these new created contents can be dis-
played via another external reaction or can be transferred on
another interface component with a projection operation.

Calculation

This operation allows designers to create new contents by ap-
plying a calculation operation on specific contents. As the
contents are in a geographic nature, the authorized operations
are also in a geographic nature: distance calculation, orienta-
tion, surface, etc. A calculation operation is represented by
an arrow labelled with the calculation service to apply. The
arrow connects the input and output contents (Figure 6).

Figure 6. Specification of a calculation operation

The calculation parameters must be defined during the design
activity. The calculation operations must also be pertinent
with the input contents. These consistency checks can only
be carried out if the design activity is supported by an adapted
software environment.

APPLICATION DESIGN WITH WINDMASH

In order to illustrate our approach, we use the WINDMash1

prototype allowing a designer to elaborate in a visual way
Web-based geographic applications.

Starting from a text and a map presenting some towns located
on the French Atlantic and Mediterranean coasts, the main
goal of the application to design is to learn the concept of

1
http://erozate.iutbayonne.univ-pau.fr/Nhan/windmash4/

http://erozate.iutbayonne.univ-pau.fr/Nhan/windmash4/


“département”2. The behaviour of the application (Figure 7)
is as follows: When the user clicks on a town written on the
text (located on the left part of the screen) or displayed on
the map zone (located on the right part of the screen), then
the name of the corresponding “département” is automati-
cally displayed (in a dedicated zone in the top centre of the
screen) and the border of the “département” are highlighted
(in a dedicated zone in the bottom centre of the screen). The
name of the clicked town in the main text and the border of
this town in the main map will also be highlighted.

Figure 7. Screenshot of the final application

A designer may use three complementary workspaces on the
WINDMash environment. These workspaces respectively
deal with defining the geocontents to be handled (Data work-
space), organizing the presentation layout of the application
(Interface workspace) and specifying how end-users will be
able to interact with the application (Interaction workspace).
Each workspace corresponds to the instanciation of its spe-
cific part of the global model presented in Figure 1. Each
workspace allows designers to specify a particular viewpoint
of the application, and each specification leads to the instan-
ciation of a specific part of the global model.

Defining geocontents of the application

In order to build the geocontents that will be handled in the
final application, designers use the Data workspace (Figure 8)
which provides (on the left side) a set of services allowing to
automatically extract geocontents from a text or a geographic
database.

We have used the following text to illustrate the example de-
scribed above: “France has a long ocean coastline which
is made up of a combination of cliff areas, rocky areas and
sandy beaches. The south-west coast is washed by the At-
lantic ocean and offers mile upon mile of unbroken sandy
beaches from Arcachon southwards the area of Biarritz. It all
changes as one reaches the Basque country, where the sea-
side is quite built up from Capbreton to the Spanish border.
The south-east coast of France borders the warm Mediter-
ranean sea. The seas are generally calm along the coast and
the waters warm and very salty with many famous of French
beaches from Perpignan to Nice.”

Figure 8 presents a simple processing chain which corre-
sponds to the presented example. The design of such pro-
cessing chain is based on drag and drop. Starting from the
2A “département” is an administrative and geographic French con-
cept corresponding to a region. Each place, town, city belongs to one
(and only one) of 95 “département” (except overseas territories).

Figure 8. Geocontents designed with WINDMash

RawText presented above, the designer can use a service
named PlaceExtraction which automatically extracts
all places quoted in the text. These extracted places become
a new set of geocontents (named here “Towns”) which are
added in the geocontent library of WINDMash.

Organizing presentation layout of the application

The Interface workspace of WINDMash enables de-
signers to organize the presentation layout of their
Web-based geographic application. WINDMash sup-
ports many ways to represent geographic contents such as
TextDisplayer, MapDisplayer, ListDisplayer,
CalendarDisplayer, TimelineDisplayer and
PhotoDisplayer. Indeed, in this phase, designers
have to decide how previously defined geocontents will be
displayed on the screen. This choice is done by selecting
specific displayers that will define the appearance of the
geocontents.

In our example, designers have to create a graphic interface
composed of a main left TextDisplayer showing the text
and a main right MapDisplayer showing spatial informa-
tion of the towns quoted in this text. Final application also
needs a bottom centre secondary MapDisplayer showing
the department border of the selected town and a top centre
secondary TextDisplayer showing the name of the cor-
responding department. For more reader-friendliness, design-
ers decide also to highlight all towns quoted in the primary
text.

Figure 9 illustrates how designers can build the corresponding
graphical interface of the final application. Designers have to
drag and drop two TextDisplayers and two MapDis-

players onto the central workspace. Designers can easily



Figure 9. Interface designed with WINDMash

position and resize these displayers in order to build the fi-
nal interface of the application. They can set up the name of
the primary text displayer “Town Text”, the name of the
primary map displayer “Town Map”, the name of the sec-
ondary text displayer “Department Name” and the name
of the secondary map displayer “Department Map”.

Then, designers select the set of geocontents that must be ini-
tially appeared in each one of these displayers. From the
geocontents library in the left menu of WINDMash, they
drag the set of annotations named “Towns” and drop it into
the displayer “Town Text” as well as the displayer “Town
Map”. Two displayers named “Department Name” and
“Department Map” do not hold geocontents yet, they will
show computed geocontents when interactions are triggered.

Thus, the Interface phase involves positioning displayers into
the interface and then dragging and dropping a set of geocon-
tents into each displayer. Next subsection will show how to
make geocontents interactive in the Interaction phase.

Specifying user interactions of the application

WINDMash allows designers to specify the interactions of
their application using the VPL presented in the previous
main section. In our example (Figure 10):

When the user selects a town in the text displayer named
“Town Text” (A, B), this town (C) is highlighted in
this displayer (D) as well as in the map displayer named
“Town Map” (E, F). In addition, the text displayer named
“Department Name” will show the name of the depart-
ment of the selected town (G, H, I, J) and the map displayer
named “Department Map” will zoom in on the depart-
ment (G, H, K, L).

The second interaction triggered from towns selected in the
map can be designed in the same way.

The diagram construction is carried out rather simply: when
a designer drags and drops created displayers into the Inter-
action workspace, they become lifelines. Then, the designer
has to drag the necessary interaction elements (user action,
selection, projection, calculation or external system reaction)
and drop them on the adequate lifeline.

The five interaction elements defined for our VPL allow de-
signers to build complex interactions as we see in Figure 10.

A demonstration video of the complete design process is
available at: http://youtu.be/3uxR8euHPwM?hd=1.

EVALUATION

We conducted a first test protocol in order to assess if our vi-
sual language allows designers to correctly design the inter-
active behaviour of their geographic Web-based application.
To prepare and to carry out this evaluation, we focused on
three research papers [2, 18, 21]. The goal was to assess the
cognitive dimensions of our VPL notations. We wanted to
concretely evaluate if designers understood the VPL compo-
nents but also their underlying advantages and drawbacks.

[21] suggested that syntactic and semantic density were the
main characteristics of visual languages. [2] proposed new
dimensions with different levels of adoption and refinement
such as consistency, visibility, viscosity, hidden dependen-
cies, creative ambiguity or abstraction management. As more
recently presented by [18], we used a set of nine principles
for evaluating the cognitively effective visual notation of our
VPL. This approach uses a combination of craft and scien-
tific knowledge. Moreover, [18] proposed a modular structure
which allows notation designer to easily add or remove prin-
ciples where each principle is defined by a name, a semantic
(theoretical) definition, an operational (empirical) definition,
some design strategies, exemplars and counter exemplars.

Participants, Procedure, and Measurement

We invited thirty two volunteers in second year “DUT Infor-
matique” (High National Diploma in Computer Science) to
participate in this evaluation. None of the students had any
significant academic experience of the UML sequence dia-
gram. The evaluation procedure was organized into six steps.

Example presentation

We gave a 35 minutes presentation on a simple but complete
example of how to design a Web-based geographic applica-
tion. Within this example, we specified an application helping
the user to know the “préfecture”3 of a list of given cities.

The example application (Figure 11) displays both a list of
towns and cities and a map initially displaying a visible
point for each town/city. The application behaviour is pre-
sented as follows: When the user clicks on any place name
in the top list, the application computes the “préfecture” of
this place and the map zooms in on this “préfecture” (see
http://bit.ly/uwAZne).

The sequence of interaction elements can be done in some
equivalent ways for defining a visual interaction. For exam-
ple, a sequence of a projection and a calculation or the inverse
sequence produces two different diagrams, but the resulting
behaviour is identical.

During this presentation, we focused on the Interaction phase
in order for the participants to understand the role of our VPL
components.

3A “préfecture” is a French administrative city corresponding to the
main city of a “département”.

http://youtu.be/3uxR8euHPwM?hd=1
http://bit.ly/uwAZne


Figure 10. Interaction designed with WINDMash

Figure 11. Screenshot of the example application

Oral presentation of the test application

Then, during ten minutes, we presented the work for partici-
pants to design the application presented in Figure 7.

Guided creation of the Content and Interface phases

Then, we have co-designed during ten minutes the two phases
corresponding to the design of embedded geocontents (Con-
tent phase) and the design of graphical user interface (Inter-
face phase).

Hand-made production of the Interaction phase

Then, we made a break with the WINDMash environment
in order for the participants to focus on the design of the in-
teractive abilities of the application. During fifteen minutes,
they produced, without any help nor answer to their ques-
tions, some paper interaction diagrams using our VPL.

This preparatory work allowed them to focus on the VPL in-
dependently from the WINDMash environment.

Implementation and assessment of the Interaction phase

During fifteen minutes, participants had to translate their in-
teraction diagrams and then to generate the executable code
in order to assess the final application.

Evaluation

Last we asked participants to give us their hand-made paper
interaction specifications while justifying if they had to make
some changes within the WINDMash environment.

To conclude, we spent ten minutes with the participants to
fill in an evaluation form composed of eleven questions (pre-
sented in a colloquial wording in French) relative to the nine
cognitive dimensions [18] used to evaluate our VPL:

• Semiotic clarity (SC1: Is there redundancy between se-
mantic constructs and graphical symbols? SC2: Is there
deficit between semantic constructs and graphical sym-
bols?)

• Perceptual Discriminability (PD): Is any symbol clearly
distinguishable to each other?

• Semantic Transparency (ST): Does visual representation
appearance suggest its meaning?

• Complexity Management (CM): Does visual language
include explicit mechanisms for dealing with complexity?

• Cognitive Integration (CI): Does visual language include
explicit mechanisms to support integration of information
from different diagrams?



• Visual Expressiveness (VE): Does visual language use the
full range and capacities of visual variables?

• Dual Coding (DC): Does visual language use text to com-
plement graphics?

• Graphic Economy (GE): Is the number of different graph-
ical symbols cognitively manageable?

• Cognitive fit (CF1: Is visual language handled similarly
on paper and within the WINDMash environment? CF2: Is
visual language handled well by designers unfamiliar with
UML sequence diagrams?)

For any question, four possible answers were available
(Strongly Agree, Agree, Disagree, Strongly Disagree). More-
over, participants had the options to justify their answer with
a short open comment.

Results and Discussion

Figure 12 resumes the participants’ answers:

Strongly
Agree

Agree Disagree Strongly
Disagree

SC1 0% 0% 13% 88% ¨̂

SC2 0% 0% 63% 38% ¨̂

PD 38% 50% 0% 13% _̈ ¨̂

ST 50% 38% 13% 0% ¨̂

CM 38% 63% 0% 0% ¨̂

CI 13% _̈ 13% _̈ 25% ¨̂ 50% ¨̂ : −
VE 13% 50% 38% 0% : −
DC 0% 13% 38% 50% ¨̂

GE 25% 75% 0% 0% ¨̂

CF1 75% 25% 0% 0% ¨̂

CF2 0% 63% 13% 25% : −
Figure 12. Result table of the experimentation

From a global viewpoint, the evaluation results are encourag-
ing as illustrated by smileys added in the above result table.

However, some specific points still need to be improved. Re-
lating to Cognitive Integration, it should be interesting to de-
fine mechanisms allowing designers to reuse interaction parts
of a diagram in other diagrams. This traditional software en-
gineering approach (black box vs. glass box) would increase
reuse abilities of the VPL. Another interesting perspective re-
lates to the Visual Expressiveness principle. We should im-
prove the usability of each interaction element, and specially
its visual representation, to better suggest its role. The un-
derlying design environment may also better check connec-
tion possibilities between graphic elements in order to reduce
some possible designers errors.

Moreover, for the test application, participants have produced
two different artifacts/deliverables. We may raise some pat-
terns to their strengths and weaknesses. They first produced
a hand-made production of the Interaction phase. During this
step, 81% of the participants have produced a “fully-correct”
proposal. Other 19% have syntactic problems which may be

hided/overcome by an electronic assistance-tool (our graphi-
cal Interaction description WINDMash tool). 6% of the par-
ticipants have produced a proposal with 4 diagrams whereas
94% used 2 diagrams.

In addition, the study of hand-made interaction diagrams
highlights the simplicity, the flexibility and the power of our
VPL that allows designers to specify complex interactions: it
is possible to decompose the description of a complex interac-
tion into some simple interactions whose behaviour is equiv-
alent to the one of the complex interaction. For example, a
participant proposed the four following diagrams (Figure 13)
that are equivalent to the diagram in Figure 10:

(a) (b)

(c) (d)

Figure 13. Interaction diagram in Figure 10 divided into four diagrams

• the first for describing the highlight of the “Town” name
clicked in the displayer named “Town Text” (Figure
13(a))

• the second for describing the highlight in the displayer
named “Town Map” of the “Town” clicked in the dis-
player named “Town Text” (Figure 13(b))

• the third for calculating the department of the selected
“Town”, then sending and showing the result of this cal-
culation in the displayer “Department Name” (Figure
13(c))

• the fourth for calculating the department of the selected
“Town”, then sending and zooming in on the result of this
calculation in the displayer “Department Map” (Figure
13(d))



The interaction elements used in Figure 10 (A, B, C, ..., L)
can also be found in Figure 13 but they are dispatched into
four diagrams.

Lastly, the participants had to transfer their hand-made pro-
posal into the WINDMash environment and to generate their
application to immediately check their design. As WIND-
Mash is still a prototype, most of the participants encoun-
tered problems due to our environment and especially when
they wanted to correct or to modify a diagram. Our system
is still unstable and they had to start again the whole three-
steps process. Hence, during the 15 minutes given time, some
participants (a quarter) could not achieve. However, among
those who had syntactic problems with their hand-made pro-
posal, all could correct some or all of their “mistakes”. This
was quite frustrating for the participants but we had noticed
that it was “only” a debugging problem for our WINDMash
environment (that we have to shorten drastically before next
evaluation).

CONCLUSION AND FUTURE WORK

In this paper we have offered a VPL allowing designers to
specify and to implement interactions into Web-based ge-
ographic applications. Our VPL has been integrated in a
graphic design framework called WINDMash for designing
applications according to three main views:

• Which data (geocontents) must be emphasized?

• How this data must be visually displayed?

• What kind of interactions are available to handle this data?

The considered interactions focus on users and are always
described in terms of user action triggering system reactions.
We gave priority to this “simple” vision of interactions for
two main reasons:

• to facilitate designers’ work by describing “simple” pro-
cesses rather than a global and complex process;

• to favour the elaboration of operational models that can be
exploited to generate executable code from visual specifi-
cations thanks to model transformation techniques.

Interactions diagrams resulting from our VPL highlight the
exchanged flow between the user and the system but also be-
tween the interface elements composing the system. We have
chosen to describe interactions according to data presented on
the interface. We think that it is a natural way to describe:

• the interface elements that may trigger an interaction;

• how the system will react from a visual viewpoint.

The resulting interaction diagrams may be simple but these
diagrams are always described with high level abstraction el-
ements that increase the expressive power and the meaning
of the diagram: The designer may define what happens when
a user selects a town, without defining what is a town. Des-
ignating something on the interface is easy to describe / un-
derstand from a graphical viewpoint, even if the designated
element is something complex (any town).

Our VPL is mostly independent from the geographic field we
work on because interactions are described according to:

• user actions which deal with designating data presented on
a displayer;

• internal system reactions which deal with computing what
has been selected by the user, transferring data toward spe-
cific displayers or computing new data (in this work calcu-
lation operations are the only elements that are specific to
the geographic area);

• external system reactions which deal with emphasizing
(highlight, show, hide, etc.) specific or computed data.

As shown on the experimentation presented in this paper, our
VPL offers sufficient flexibility to manage the complexity of
an interaction. According to their expertise level, designers
may choose to describe a complex interaction (composed of
multiple system reactions) with a single diagram or with sev-
eral diagrams, each one specifying a system reaction part of
the global interaction.

First evaluation results about our VPL are very encouraging.
Of course, the evaluation task is still a work in progress and
we must elaborate new test protocols to evaluate our interac-
tion language according to other criteria such as those pre-
sented in [2]. However, this first experimentation has shown
that our visual language is rather easy to master for design-
ers specialists knowing UML sequence diagrams. We have
noted that sequence diagrams seem particularly adapted when
it deals with describing interactions thought in terms of flow
exchanges between a user and the system but also between
system components.

Future work deals with elaborating mechanisms allowing de-
signers to check the consistency of the designed interactions.
As seen in this paper, describing interactions in a separate
way is of course an advantage when it deals with designing a
complex interactive system. However, this advantage can also
become a problem when designers need to evaluate the con-
sistency of all the system’s interactive possibilities. Currently,
interactions are specified separately by a set of diagrams but
there is no mechanism control that checks the global coher-
ence of the described interactions. The interactions described
below introduce an example of two ambiguous specifications
that can lead to an incoherent system reaction:

• When the user clicks on a town in the text, the map zooms
in on this town;

• When the user clicks on a town in the text, the map displays
the corresponding administrative province of this town.

Currently, each specified interaction is encoded using RDF.
We plan to exploit the underlying merging and querying
mechanisms of RDF to try to detect possible inconsistencies
between all interactions specified by the designer. This hard
task deals with specifying rules that must been verified to en-
sure the consistency between two diagrams. The idea is to in-
tegrate these checking rules into WINDMash in order to pro-
vide a first assistance level allowing designers to keep control
over the global behaviour of the elaborated application.



ACKNOWLEDGEMENTS

This work has been supported by the ANR MOANO
(http://moano.liuppa.univ-pau.fr) project.

REFERENCES

1. Barbier, F. Supporting the uml state machine diagrams at
runtime. In Model Driven Architecture Foundations and
Applications, I. Schieferdecker and A. Hartman, Eds.,
vol. 5095 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008, 338–348.

2. Blackwell, A., and Green, T. R. A Cognitive Dimensions
Questionnaire Optimised for Users. In Proceedings of
12th Workshop of the Psychology of Programming
Interest Group (Corigliano Calabro, Cosenza, Italy,
2000), 137–154.

3. Boshernitsan, M., and Downes, M. S. Visual
programming languages: a survey. Tech. Rep.
UCB/CSD-04-1368, EECS Department, University of
California, Berkeley, Dec 2004.

4. Botturi, L., and Stubbs, T., Eds. Handbook of Visual
Languages for Instructional Design - Theories and
Practices. Information Science Reference, 2007.

5. Bowles, J. Decomposing interactions. In Algebraic
Methodology and Software Technology, M. Johnson and
V. Vene, Eds., vol. 4019 of LNCS, Springer Berlin /
Heidelberg (2006), 189–203.

6. Burnett, M. M., and Baker, M. J. A classification system
for visual programming languages. J. Vis. Lang.
Comput. 5, 3 (1994), 287–300.

7. Chang, S.-K., Ed. Principles of visual programming
systems. Prentice-Hall, Inc., 1990.

8. Cooper, A. About Face: The Essentials of User Interface
Design, 1st ed. John Wiley & Sons, Inc., 1995.

9. Dobesova, Z. Visual programming language in
geographic information systems. In Proceedings of the
2nd international conference on Applied informatics and
computing theory, AICT’11, World Scientific and
Engineering Academy and Society (WSEAS) (Stevens
Point, Wisconsin, USA, 2011), 276–280.

10. Engels, G., Hausmann, J. H., Heckel, R., and Sauer, S.
Dynamic meta modeling: a graphical approach to the
operational semantics of behavioral diagrams in UML.
In Proceedings of the 3rd International Conference on
the Unified Modeling Language: advancing the
standard, UML’00, Springer-Verlag (2000), 323–337.

11. Etcheverry, P., Marquesuzaà, C., and Corbineau, S.
Designing suited interactions for a document
management system handling localized documents. In
Proceedings of the 24th annual ACM international
conference on Design of communication, SIGDOC ’06,
ACM (2006), 188–195.

12. Harel, D., and Marelly, R. Come, Let’s Play:
Scenario-Based Programming Using LSC’s and the
Play-Engine. Springer-Verlag New York, Inc., 2003.

13. Hennicker, R., and Koch, N. Modeling the user interface
of web applications with UML. In Workshop of the

pUML-Group held together with the “UML”2001 on
Practical UML-Based Rigorous Development Methods -
Countering or Integrating the eXtremists (2001),
158–172.

14. Khler, H.-J., Nickel, U., Niereand, J., and Zndorf, A.
Using UML as visual programming language. Technical
Report tr-ri-99-205 (1999).

15. Koegel, J. F., and Heines, J. M. Improving visual
programming languages for multimedia authoring. In
ED-MEDIA ’93, World Conference on Educational
Multimedia and Hypermedia (1993), 286–293.

16. Luong, T. N., Laborie, S., and Nodenot, T. A framework
with tools for designing web-based geographic
applications. In ACM Symposium on Document
Engineering (2011), 33–42.

17. Manola, F., and Miller, E. RDF Primer.
Recommendation, W3C, February 2004.
http://www.w3.org/TR/rdf-syntax/.

18. Moody, D. The physics of notations: Toward a scientific
basis for constructing visual notations in software
engineering. IEEE Trans. Softw. Eng. 35 (November
2009), 756–779.

19. Myers, B. A. Taxonomies of visual programming and
program visualization. Journal of Visual Languages and
Computing 1 (March 1990), 97–123.

20. Narayanan, N. H., and Hübscher, R. Visual language
theory: towards a human computer interaction
perspective. Springer-Verlag New York, Inc., New York,
NY, USA, 1998, 87–128.

21. Raymond, D. R. Characterizing visual languages. In
Proc. 1991 IEEE Workshop on Visual Languages.
(Kobe, Society Press (1991), 176–182.

22. Shu, N. C. Visual programming: Perspectives and
approaches. IBM Systems Journal 38, 2/3 (1999),
199–221.

23. Stubbs, T., and Gibbons, A. The power of design
drawings in other design fields. In Handbook of Visual
Languages in Instructional Design; Theories and
Practice (2007).

24. Stühmer, R., Anicic, D., Sen, S., Ma, J., Schmidt, K.-U.,
and Stojanovic, N. Lifting events in RDF from
interactions with annotated web pages. In Proceedings
of the 8th International Semantic Web Conference,
Springer-Verlag (2009), 893–908.

25. Traynor, C., and Williams, M. G. End users and GIS: a
demonstration is worth a thousand words. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2001, 115–134.

26. Ziadi, T., Blanc, X., and Raji, A. From requirements to
code revisited. In Proceedings of the 2009 IEEE
International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing, ISORC ’09, IEEE Computer
Society (Washington, DC, USA, 2009), 228–235.

http://moano.liuppa.univ-pau.fr
http://www.w3.org/TR/rdf-syntax/

	Introduction
	Related work
	Geographic application modelling
	Visual specification of interactions
	Specification of a user action
	Specification of an external system reaction
	Specification of an internal system reaction
	Projection
	Selection
	Calculation


	Application design with WINDMash
	Defining geocontents of the application
	Organizing presentation layout of the application
	Specifying user interactions of the application

	Evaluation
	Participants, Procedure, and Measurement
	Example presentation
	Oral presentation of the test application
	Guided creation of the Content and Interface phases
	Hand-made production of the Interaction phase
	Implementation and assessment of the Interaction phase
	Evaluation

	Results and Discussion

	Conclusion and future work
	Acknowledgements
	REFERENCES 

