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We analyze the effect of particle shape non-convexity on the quasi-static behavior of granular materials by means of contact dynamics simulations. The particles are regular aggregates of four overlapping spheres described by a nonconvexity parameter depending on the relative positions of the particles. Several packings are first submitted to isotropic compression without friction. We find that, as in 2D, the solid fraction of isotropic packings increases with non-convexity up to a maximum value and then declines to be nearly equal to that of a packing composed of only spheres. It is also remarkable that the coordination number increases quickly and saturates so that the packings composed of grains with a high level of nonconvexity are looser but more strongly connected. Then, the quasi-static behavior, structural and force anisotropies are analyzed by subjecting each packing to a triaxial compression. We find that the shear strength increases with non-convexity. We show that this increase results from the presence of multiple contacts between trimers leading to enhanced frictional interlocking.

INTRODUCTION

Spherical or circular shape have been mostly used to investigate the rheology and microstructure of granular materials. The widespread use of this idealized shape has been motivated by the fact that the rheology is mainly governed by the collective contact interactions of the particles. Nevertheless these models are not able to reflect some of the more complex aspects of real granular media behavior, such as high shear resistance observed for angular particles [START_REF] Mirghasemi | Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles[END_REF][START_REF] Azéma | Force transmission in packing of pentagonal particles[END_REF][START_REF] Azéma | Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles[END_REF] or high volumetric changes in the case of elongated particles [START_REF] Donev | Unusually Dense Crystal Packings of Ellipsoids[END_REF]. Among the difficulties, except the fact that numerically the modelization of complex shape gives rise to various technical difficulties both geometrical and computational [START_REF] Nezami | A fast contact detection algorithm for 3-D discrete element method[END_REF], is that 1) the shape parameters need to be defined conveniently in order to be able to generate particle shapes with continuously-variable shape parameters and 2) particles shape can be broken down into different categories: angular shape, non-convex shape, elongated shape...

In this work we focus more precisely on the effect of non-convexity on the rheology of granular media. We consider aggregate of four overlapped spheres as a 3D generalization of trimers [START_REF] Saint-Cyr | Rheology of granular materials composed of nonconvex particles[END_REF] (aggregates of three overlapping disks in 2D). Our numerical approach is presented in Sec.2. We analyze the stress-strain behavior in sec.3 as well as the topology of the contact network and force transmission as a function of nonconvexity, respectively in sec.4 and 5.

NUMERICAL PROCEDURES

The shape of a regular aggregate composed of four spheres of radius r can be characterized by considering the radius R of the circumscribed sphere as compared to the radius R ′ of the inscribed sphere; Fig. 1(a). The difference ∆R = R -R ′ represents the concavity of the aggregate which, by definition, corresponds to the inward deviation from the surface of the circumscribed sphere. Hence, the non-convexity η can be defined by the ratio η = ∆R/R. This parameter can be calculated as a function of the ratio d/2r, where d is the distance between the center of two spheres. This definition is similar to the so-called "Riley Sphericity" used to characterize thin sections in rock mechanic [START_REF] Mitchell | Fundamentals of Soil Behavior[END_REF]. This parameter vary from 0, corresponding to a sphere, to η ≃ 0.76 corresponding to an aggregate where each constituting coplanar spheres intersect themselves in a single point (ie d/2r = √ 3/2). We used contact dynamic simulation (CD) [START_REF] Moreau | Geometric origin of mechanical properties of granular materials[END_REF][START_REF]For our simulations, we used the LMGC90 which is[END_REF][START_REF] Radjai | Contact dynamics as a nonsmooth discrete element method[END_REF] to compact 12 000 aggregates (48 000 spheres) by isotropic compression inside a box of dimensions L 0 × l 0 × H 0 in (a) which the left, bottom and background walls are fixed and the top, the right and the front walls are subjected to the same compressive stress σ 0 . The gravity and friction coefficients µ and µ w between particles and with the walls, respectively, are set to zero in order to get homogeneous and isotropic dense packings. At equilibrium, all samples were in isotropic stress state. Eight samples are prepared according to this protocole for eight values of η ∈ [0, 0.7]. Figure 1(b) shows an example of packing obtain by this procedure for η = 0.4. The grey-level are proportional to the mean pressure. In order to avoid long-range ordering in the limit of small values of η, we introduce a size polydispersity by taking R in the range [Rmin, 3Rmin] and a uniform distribution of particle volume fractions. These samples are then used as initial configuration for triaxial compression tests with µ = 0.4 between particles. A downward velocity v z is imposed on the upper wall while keeping a constant confining stress on lateral wall.

STRESS-STRAIN BEHAVIOR

The stress tensor σ can be evaluated from the simulation data as an average over all the contact of the dyadic product of contact force f c and branch vector ℓ c :

σ αβ = n c f c α ℓ c β c [1]
, where n c is the number density of contacts c. Under triaxial conditions with vertical compression, we have σ 1 ≥ σ 2 = σ 3 , where the σ α are the stress principal values. We extract the mean stress p = (σ 1 + σ 2 + σ 3 )/3 and the stress deviator q = (σ 1 -σ 3 )/3. During shear, the shear stress jumps initially to a high value before decreasing to a nearly constant value in the steady state. The steady-state shear stress (q/p) * characterizes the shear strength of the material. According to the Mohr-Coulomb model, in tri-axial geometry, the internal angle of friction, representing the shear strength of the material, is defined by sin ϕ * = 3q/(2p + q) [START_REF] Mitchell | Fundamentals of Soil Behavior[END_REF]. Figure 2(a) shows the variation of (q/p) * and sin ϕ * averaged in the steady state as a function of η. We see that both (q/p) * and sin ϕ * increases with η. We also observe that the prediction of an approximation from force and fabric anisotropies, to be discussed below, provides a nice fit to the simulation data. Interestingly, the solid fraction first grows in the range η < 0.3, then it declines slowly with η up to a value close to that for spheres for initial state and bellow to that of sheres for critical state. A similar unmonotonic behavior of packing fraction has been previously observed for granular packings of elongated particles such as ellipses, ellipsoidal particles, sphero-cylinders and rounded-cap rectangles [START_REF] Donev | Unusually Dense Crystal Packings of Ellipsoids[END_REF][START_REF] Azéma | Stress-strain behavior and geometrical properties of packings of elongated particles[END_REF] . This is somewhat a counterintuitive finding as the shear strength (a monotonous function of η) does not follow the trend of solid fraction (non-monotonous).

CONTACT vs NEIGHBOR NETWORK

A major effect of concavities is to allow for multiple contacts between two aggregates. Various kind of contacts can occurs as shown in Fig3: (a) simple contact, (b) simpledouble as two simple contacts between two pairs of spheres, or double contact, defined as two contacts between one sphere of one aggregate with two sphere of another aggregate, (c) triple contacts (t) defined as a combination of simple and double contacts (tsd), or one sphere of one aggregate and three spheres of other aggregate (td) or three simple contacts (ts), and (d) quadruple'(q) contacts as two times (2b) contacts. Note that, cinquple and sixtuple are possible but very rare, as well as td and ts contacts.

Thus, given multiple contacts between aggregates, we can distinguish between the "coordination" number Z as the mean particles neighbors per particles (i.e. double, triple... contacts are seen as one contacts), and the "connectivity" number Z c defined as the mean contacts number per particles. Figure 4(a) plots Z and Z c both in the isotropic and residual state as a function of η. We see that Z 0 c jump from 6 for spheres to ≃ 12 for η > 0. Indeed, this is compatible with the isostatic nature of our packings prepared with a zero friction coefficient [START_REF] Roux | Some numerical methods in multibody dynamics: application to granular materials[END_REF]. For frictional aggregates, in the residual state, Z * c is less important but increases from 3.5 to 5.5 with η. Interestingly, we see also that, both in the isostatic and residual state, Z remains nearly constant for η > 0. In others words, the effect of increasing nonconvexity is therefore expressed by an increasing number of multiple contacts with the same average number of neighboring aggregates and thus for large η, the packings are loose but well connected. Figure 4(b) plot the proportion of each contacts types in the residual state as a function of η. By definition, all contacts are simple at η = 0. We see that the fraction of simple contacts declines as η increases and that of multiple contacts increases at the same time. We see also that, for η > 0.4 the proportion of each contacts remains constant with η. The increasing connectivity of the particles is obviously correlated with the increase of shear strength. This is well illustrated in Fig. 5(a) which shows a map of radial forces f n ′ = F n ′ , where F is the resultant of point forces acting at their contact between two aggregates, projected along the branch vector n ′ (i.e. unit vector joining the center of the two contacting aggregates). We see that stronger force chains are composed by simple contacts reinforced by double contacts, double-simple, triple and quadruple contacts.

The anisotropic structures seen in Fig. 5(a) can be characterized more generally trough the angular dependence f n ′ (Ω) and f t ′ (Ω) of radial and orthoradial forces along the direction n ′ , where f t ′ t ′ = F -f n ′ n ′ , and Ω = (θ, φ) the azimutal and radial angles that define the orientations of n ′ in 3D. We can shows that the mean radial and orthoradial force, f n ′ and f t ′ respectively are given by:

f n ′ = Ω f n ′ (Ω)P Ω (Ω)dΩ and f t ′ = Ω f t ′ (Ω)P Ω (Ω)dΩ, (1) 
where, dΩ is the solid angle and P Ω (Ω) the angular distribution of the branch vector. Note that due to quasi-static shearing, we have f t ′ = 0. This means that f t ′ (Ω) and P Ω (Ω) are orthonormal. Under the axisymmetric conditions of our simulations, this angular distribution are independent with φ, so that, at leading order on the spherical harmonic basis, we have [START_REF] Ouadfel | Stress-force-fabric' relationship for assemblies of ellipsoids[END_REF][START_REF] Azéma | Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles[END_REF]:

   (a) P θ (θ) = 1 4π {1 + a ′ c [3 cos 2 (θ -θ c ) -1]}, (b) f n ′ (θ) = f n ′ {1 + a f n ′ [3 cos 2 (θ -θ f n ) -1]}, (c) f t ′ (θ) = f n ′ a f t ′ sin 2(θ -θ f t ), (2) 
where, a ′ c , a f n ′ and a f t ′ are the branch, radial and orthoradial force anisotropic parameters, and θ c = θ f n ′ = θ f t ′ = θ σ the privileged directions of the corresponding angular direction coinciding with the principal direction of the shear stress. This anisotropies are interesting descriptors of granular microstructure and force transmission properties, because they underlie the different microscopic origins of shear strength. Indeed, it can be shown that the general expression of the stress tensor leads to the following simple relation [START_REF] Ouadfel | Stress-force-fabric' relationship for assemblies of ellipsoids[END_REF][START_REF] Azéma | Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles[END_REF]:

q p ≃ 0.4(a ′ c + a f n ′ + a f t ′ ), (3) 
where the cross products between the anisotropy parameters have been neglected. Figure 2(a) shows that Eq. 3 holds well for all values of η. Figure 5(b) shows the variation of all anisotropies averaged in the steady state as a function of η. We see that a ′ c and a f n ′ increases from 0.2 to 0.3 and to 0.2 to 0.4, respectively, but they saturate for η > 0.3. The saturation of a ′ c is correlated with the fact that the mean number of neighbor per particles remains nearly constant with η. The large amplitude of a f n ′ reflect that stronger forces chains are developed due to the increase of multiple contacts with η. Nevertheless, as shown in Sec. 4, at larger η the proportion of multiple contact remains constant and thus a f n ′ saturate also.

In contrast, we see that a f t ′ increase rapidly with η from 0.05 for η = 0 to be nearly equal to a ′ c for η = 0.7. Remarking that, at the contact scale the ratio |f t |/(µf n ) ∈ [0, 1], where f n and f t are the normal and tangential forces, provides a good measure of the degree of the mobilization of friction, Eq. 2(c) can thus be seen as the angular mobilization of friction in the neighbor frame [START_REF] Azéma | Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles[END_REF][START_REF] Saint-Cyr | Rheology of granular materials composed of nonconvex particles[END_REF]. Indeed, it is easy to see that, the mean mobilization of friction is simply given by |f t ′ | / f n ′ = 5a f t ′ /2. In other words, the increase of a f t ′ underlie an increase of the friction mobilization. In fact, much more contacts are interlocked with the increase of η which have to effect to freeze the relative motion of the particles, and thus to increase the proportion of sliding particles.

DISCUSSION AND CONCLUSION

In this paper, we applied the contact dynamics method to simulate large samples of nonconvex aggregates. A single parameter was defined to characterize shape nonconvexity and it was varied in order to investigate its effect on the shear strength, solid fraction, texture and force transmission. It was shown that the shear strength increases with nonconvexity. By distinguishing the contact network from the neighbor network we have shown that the origins of this increase result from the increase of multiple contacts between aggregate. This lead to an increase of the proportion of interlocked aggregates. As the consequence the increasing mobilization of friction force and the associated anisotropy are key effects of non-convexity

In this articles we have developed the texture and force transmission in terms of the neighbor orientation. It will be instructive to reinterpret and to compare this result as a function of the contacts orientation. Much more work is needed in order to understand the mechanical role of each contact type on the stress transmission. An idea is to isolate the contribution of each contact on the texture and forces anisotropies. This investigation are underway and they will be presented in forthcoming publication.
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 1 Figure 1: (a) Geometry of regular aggregate. (b) Map of particles pressure at the end of isotropic state for η = 0.4

Figure 2 :

 2 Figure 2: (a) Normalized shear stress (q/p) * averaged in the residual state together with the harmonic approximation and the friction angle sin ϕ, (b) The initial and final solid fractions as a function of nonconvexity.
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 34 Figure 3: Different types of contact between two aggregate: (a) simple (s), (b) simple-double (sd) and double (d), (c) triple double-simple (tsd), double (td), simple (ts) and (d) quadruple contacts

Figure 2 (

 2 Figure2(b) displays the solid fraction ρ at initial (isotropic) ρ 0 and critical ρ * state as a function of non-convexity η. Interestingly, the solid fraction first grows in the range η < 0.3, then it declines slowly with η up to a value close to that for spheres for initial state and bellow to that of sheres for critical state. A similar unmonotonic behavior of packing fraction has been previously observed for granular packings of elongated particles such as ellipses, ellipsoidal particles, sphero-cylinders and rounded-cap rectangles[START_REF] Donev | Unusually Dense Crystal Packings of Ellipsoids[END_REF][START_REF] Azéma | Stress-strain behavior and geometrical properties of packings of elongated particles[END_REF] . This is somewhat a counterintuitive finding as the shear strength (a monotonous function of η) does not follow the trend of solid fraction (non-monotonous).

Figure 5 :

 5 Figure 5: (a) Map of the neighbor force network at η = 0.6 Line thickness is proportional to the radial force. s-contacts are in black, sd-contacts in red, d-contacts are in green, t-contacts are in blue and q-contacts are in yellow. (b) branch, length-branch, radial and orthoradial force anisotropies averaged in the residual state as a function of η.