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Abstract. Petri nets are a well-known and intensively studied model of concurrency often used to
specify distributed or parallel systems. Vector addition systems with states are simply Petri nets
provided control states. In this paper we introduce a natural partial order semantics for vector
addition systems with states which extends the process semantics of Petri nets. The addition of control
states to Petri nets leads to undecidable problems, namely the equality of two process languages given
by two systems. However we show that basic problems about the set of markings reached along the
processes of a VASS, such as boundedness, covering and reachability, can be reduced to the analogous
problems for Petri nets. We show also how to check effectively any MSO property of these partial
orders, provided that the system is bounded. This result generalizes known results and techniques
for the model checking of compositional message sequence graphs.

Introduction

Consider a set of reactions that take place among a collection of particles such that each
reaction consumes a multiset of available particles and produces a linear combination of
other particle types. This kind of framework can be formalized by a vector addition system
[22] or, equivalently, a (pure) Petri net [30]. Consider in addition some control state which
determines whether a reaction can occur or not, and such that the occurrence of a reac-
tion leads to a possibly distinct control state. Then the model becomes formally a vector
addition system with states (a VASS), a notion introduced in [21]. It is well-known that
all these models are computationally equivalent, because they can simulate each other [30,
33, 34]. More precisely any vector addition system with states over n places can be sim-
ulated by some vector addition system over n + 3 places [21]. These simulations do not
preserve strictly the set of reachable markings because they require additional places to
encode control states. Still they allow us to use techniques or tools designed for Petri nets
to check the properties of the set of reachable markings of a VASS. The addition of control
states to vector addition systems makes it easier to model and to analyse distributed or
parallel systems. For instance it is convenient to use a vector of control states to check the
structural properties of channels within a network of communicating finite state machines
[24].

The popular model of message sequence graphs (MSGs) can be regarded as a partic-
ular case of VASSs where the only allowed reactions are the sending and the receipt of
one message from one site to another [2, 3, 13, 18, 26]. Then each sequence of reactions can
be described by a partial order of events called a message sequence chart (MSC). Each
MSC corresponds to several sequences of elementary actions which are equivalent up to
the reordering of independent events. Similarly each sequence of MSCs is equivalent to
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several sequences of MSCs. Thus control states are used to focus on particular interleav-
ings of events in order to avoid the state explosion problem due to concurrency. However
there exists so far no way to regard an execution of a VASS as a partial order of events.
Consequently there is no means to apply techniques or tools for Petri nets to the analysis
of MSGs. The first contribution of this paper is the definition of a partial order semantics
for VASSs in such a way that the framework of MSGs can effectively be regarded as a
particular case of VASS.

Suggested by Petri in the restricted setting of condition/event systems [31], the process
semantics of a Petri net defines labeled occurrence nets as partially ordered sets of events
with non-branching conditions [4, 10, 16, 33, 37]. As opposed to the other classical partial-
order semantics based on step firing sequences [17, 23, 37], a process records all causal
dependencies between the events occurring along a run. We present in Section 1 a partial
order semantics for VASSs which extends the usual process semantics of Petri nets. The
approach is simple and natural. First we consider the set of firable computation sequences
of a VASS and second we define the processes that represent a given sequence. Then each
process describes some causal dependencies between events which are no longer linearly
ordered. This means that two reactions that appear one after the other in a computation
sequence can occur concurrently (that is, possibly in the reverse order) within a correspond-
ing process. This situation is usual when modeling asynchronous systems. In particular this
is similar to the way message sequence charts are derived from message sequence graphs
(see, e.g. [2,?,3]). Thus, control states represent abstract stages of computations used to
specify particular sets of reaction sequences: They do not appear formally in the process
semantics. In this way, message sequence graphs are embedded in the framework of VASSs.
However, one specific feature of the process semantics is that a computation sequence can
yield several non-isomorphic processes depending on the order identical particles are con-
sumed. Along this paper, we shall exhibit few other facts which make clear that the model
of VASS is more general and more difficult to handle than MSGs.

It is easy to prove that checking the inclusion (or the equality) of two process languages
given by two VASSs is undecidable. The reason is that the equality and the inclusion
problems for rational Mazurkiewicz trace languages [7] are undecidable because the uni-
versality problem is undecidable [35]. Moreover rational Mazurkiewicz trace languages can
be represented by MSGs [19] and MSGs are embedded into VASSs. This basic observation
illustrates the computional gap between Petri nets and VASSs under the process semantics
because these two problems are decidable for Petri nets, by means of a straightforward
reduction to the covering problem [11].This shows also that the analysis of the partially
ordered executions of a VASS does not boil down to the verification of a Petri net in gen-
eral, in spite of the well-known simulation of a VASS by a Petri net. Synthesis problems
have been investigated for various models of concurrency: Asynchronous automata [7, 8,
38], Petri nets [6, 9, 20, 28], communicating finite-state machines [2, 19], etc. They consist
mainly in characterizing which formal behaviours correspond to some class of concurrent
devices and to build if it exists such a device from its behavioural specification. We study in
Section 2 a natural synthesis problem: Given some VASS we ask whether its processes are
generated by some Petri net. We show that this problem is undecidable (even for bounded
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systems) by means of a reduction to the universality problem for rational Mazurkiewicz
trace languages. However we present in the rest of this paper several techniques to check
properties of a VASS under the process semantics with the help of known algorithms and
tools.

A key verification problem for MSGs is to detect channel divergence, i.e. to decide
whether the number of pending messages along an execution is unbounded [2,?,3, 19].
This problem is NP-complete. An equivalent problem in the more general setting of VASSs
is the prefix-boundedness problem. It consists in checking that the set of markings reached
by prefixes of processes is finite. We present in Section 3 a technique to solve this problem
by means of a new construction. We obtain that prefix-boundedness is computationally
equivalent to the boundedness problem for Petri nets and requires exponential space [11].
This result exhibits an interesting complexity gap between MSGs and VASSs. It shows that
algorithms to check properties of MSGs need to be revised in order to deal with the more
expressive framework of VASSs. Other basic decision problems for the markings reached
by prefixes are of course interesting. We show in particular that the reachability and the
covering of a given marking by prefixes can be solved using the same technique.

The model-checking problem for MSGs against monadic second-order logic (MSO) was
investigated first in [25]. As opposed to earlier works [2], formulas are interpreted on the
partially ordered scenarios accepted by the MSGs. This problem was proved decidable
for the whole class of safe MSGs [26] (see also [13]). Each safe MSG can be regarded as
a bounded VASS. However a safe MSG can describe an infinite set of markings because
the reordering of events can produce an unbounded number of pending messages within
channels: In other words, a safe MSG may be divergent. We present in Section 4 a technique
to check effectively that all processes of a given bounded VASS satisfy a given MSO formula.
We shall explain in details why this result subsumes, but cannot be reduced to, previous
works on the model-checking of MSGs.

1 Model and semantics

The goal of this section is to extend the usual process semantics from Petri nets to VASSs.
In order to avoid repetitive definitions we introduce the model of Petri nets with states
as a minimal framework which includes both Petri nets and VASSs. Thus Petri nets are
regarded as Petri nets with states provided with a single state whereas VASSs are simply
Petri nets with states using pure transition rules, only. Next we present the notions of
firable computation sequence, reachable marking, and (non-branching) process as simple
generalizations of the classical definitions in the restricted setting of Petri nets.

For simplicity’s sake, for any mapping λ : A→ B between two finite sets A and B, we
shall denote also by λ the natural mapping λ : A⋆ → B⋆ from words over A to words over
B and the mapping λ : NA → NB from multisets over A to multisets over B such that
λ(µ) =

∑
a∈A µ(a) · λ(a) for each multiset µ ∈ NA. Moreover we will often identify a set S

with the multiset µS for which µS(x) = 1 if x ∈ S and µS(x) = 0 otherwise.
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Fig. 1. A PNS with two control states Fig. 2. A labeled causal net and a prefix

1.1 Petri net with states

We borrow from the setting of Petri nets the abstract notion of places which can represent
different kinds of components within a system: a local control state of a sequential process, a
communication channel, a shared register, a particle type, a molecule in a chemical system,
etc. We let P denote a finite set of places throughout this paper. As usual a multiset of
places is called a marking and it is regarded as a distribution of tokens in places. Further
we fix a finite set N of rule names.

A transition rule (or a reaction) is a means to produce new tokens in some places by
consuming tokens in some other places. Formally a rule is a triple r = (λ, α, β) where λ ∈ N
is a rule name and α, β ∈ NP are markings called the guard and the update respectively.
Such a rule is denoted by λ : α ➝ β. It means intuitively that a set of tokens α can be
consumed to produce a set of tokens β in an atomic way. Different rules can share the
same guard α and the same update β. That is why we use here rule names to distinguish
between similar but distinct rules. For each rule r = (λ, α, β), we put •r = α and r• = β.

Definition 1.1. A Petri net with states (for short: a PNS) over a set of rules R is an
automaton S = (Q, ı,−→, µin) where Q is a finite set of states, with a distinguished initial
state ı ∈ Q, −→⊆ Q×R×Q is a finite set of arcs labeled by rules, and µin ∈ NP is some
initial marking.

Let S = (Q, ı,−→, µin) be a Petri net with states. A labeled arc (q1, r, q2) ∈−→ will be
denoted by q1

r
−→ q2. A rule sequence s = r1...rn ∈ R⋆ is called a computation sequence of

S if there are states q0, ..., qn ∈ Q such that ı = q0 and for each i ∈ [1, n], qi−1
ri−→ qi. These

conditions will be summed-up by the notation ı
s

−→ qn. For instance, (p : x ➝ x + z) · (c :
y + z ➝ y) · (p : x ➝ x+ z) · (c : y + z ➝ y) is a computation sequence of the PNS with two
states depicted in Fig. 1. We denote by CS(S) the set of all computation sequences of S.
This language is obviously a regular and prefix-closed set of words over R. Conversely any
regular and prefix-closed language over a finite subset of rules is the set of computation
sequences of some PNS. Actually the partial order semantics we shall adopt considers PNSs
simply as a formal means to specify regular sets of rules.

A rule sequence s = r1...rn ∈ R⋆ is firable from a marking µ if there are multisets of
places µ0, ..., µn such that µ0 = µ and for each k ∈ [1, n]: µk−1 > •rk and µk = µk−1−

•rk+r
•
k.

This means intuitively that each rule from s can be applied from the marking µ in the
linear order specified by s: Each rule rk consumes •rk tokens from µk−1 and produces r•k
new tokens which yields the subsequent multiset µk. Then we say that µn is reached by
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the rule sequence s from the marking µ. We also say that s leads to µn. We denote by
FCS(S) the set of all firable computation sequences of S. A marking is reachable in S if it
is reached by a firable computation sequence of S. A PNS is said to be bounded if the set
of its reachable markings is finite.

1.2 VASS, Petri net and causal net

Originally introduced in [21], the notion of a vector addition system with states (for short:
a VASS) can be formally defined in several slightly different ways. In this paper, a VASS is
simply a PNS such that each rule r labeling an arc is pure, which means that for all places
p ∈ P , •r(p) × r•(p) = 0. This amounts to require that •r(p) > 1 implies r•(p) = 0 and
vice versa. For this reason each rule r in a VASS can be represented by a vector v ∈ ZP

where v(p) = r•(p) − •r(p) for all p ∈ P . We could also require that a VASS uses a single
rule name, i.e. for all rules r1, r2 ∈ R, r1

• − •r1 = r2
• − •r2 implies r1 = r2. In this way any

two similar rules must carry the same rule name. This restriction would have no effect on
the results presented in this paper.

We explain at present why we can identify the well-known formalism of Petri nets as
particular PNSs provided with a single state.

Definition 1.2. A Petri net is a quadruple N = (P, T,W, µin) where

– P is a finite set of places and T is a finite set of transitions such that P ∩ T = ∅;
– W is a map from (P × T ) ∪ (T × P ) to N, called the weight function;

– µin is a map from P to N, called the initial marking.

We shall depict Petri nets in the usual way as in Fig. 4: Black rectangles represent transi-
tions whereas circles represent places; moreover tokens in places describe the initial mark-
ing. Given a Petri net N = (P, T,W, µin) and a transition t ∈ T , •t =

∑
p∈P W (p, t) · p is

the pre-multiset of t and t• =
∑

p∈P W (t, p) · p is the post-multiset of t. Similarly we put
•p =

∑
t∈T W (t, p) · t and p• =

∑
t∈T W (p, t) · t for each place p ∈ P .

Let N = (P, T,W, µin) be a Petri net. We will regard N as a PNS SN with the same
set of places P and the same initial marking. Moreover SN is provided with a single state
ı such that each transition t ∈ T is represented by a self-loop labeled arc ı

r
−→ ı where

r = (t, •t, t•). In this way, the class of Petri nets is faithfully embedded into the subclass of
PNSs provided with a single state such that each transition carries a rule with a distinct
rule name. Conversely, take any PNS S with a single state ı such that each transition
carries a rule with a distinct rule name. The corresponding Petri net shares with S its set
of places and its initial marking. Moreover for each self-loop ı

r
−→ ı it admits a transition

tr such that •tr = •r and tr
• = r•. For instance the PNS from Fig. 3 corresponds to the

Petri net from Fig. 4.

If the weight function W takes only binary values then it is often described as a flow
relation F ⊆ (P × T ) ∪ (T × P ) where (x, y) ∈ F if W (x, y) = 1. Further F+ denotes the
transitive closure of F .
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Fig. 3. A PNS with a single state Fig. 4. and the corresponding Petri net

Definition 1.3. [10, 37] A causal net is a Petri net K = (B,E, F, µmin) whose places
are called conditions, whose transitions are called events, and whose weight function takes
values in {0, 1} and is represented by a flow relation F ⊆ (B×E)∪ (E×B) which satisfies
the following requirements:

1. the net is acyclic, i.e. for all x, y ∈ B ∪E, (x, y) ∈ F+ implies (y, x) /∈ F+.
2. the conditions do not branch, i.e. |•b| 6 1 and |b•| 6 1 for all b ∈ B.
3. µmin(b) = 1 if •b = ∅ and µmin(b) = 0 otherwise.

Note that the third requirement guarantees that the initial marking µmin can be recovered
from the structure (B,E, F ) because it coincides with the set of minimal conditions. For
that reason causal nets are often defined as a triple (B,E, F ) satisfying the two first
conditions of Def. 1.3. In the literature causal nets are also called occurrence nets, see e.g.
[4, 14, 16, 15, 33]. However more general Petri nets are called occurrence nets in the theory
of partial unfolding or branching processes [10, 12, 29].

The transitive and reflexive closure F ∗ of the flow relation F in a causal net K =
(B,E, F, µmin) yields a partial order over the set of events E. A configuration is a subset
of events H ⊆ E that is downwards closed, i.e. e′F ∗e and e ∈ H imply e′ ∈ H . Each
configuration H defines a prefix causal net KH whose events are precisely the events from
H and whose places consists of the minimal places of K (with respect to the partial order
relation F ∗) and all places related to some event from H . For instance Fig. 2 exhibits a
subset of a causal net (circled with a dotted line) that is a prefix of that causal net. For
each class of labeled causal nets L, we denote by Pref(L) the class of all prefixes of all
labeled causal nets from L.

1.3 Simulation of a VASS by a Petri net

Let us now recall how a k-dimensional VASS or more generally a PNS S with k places can
be simulated by a Petri net N with k+n places, where n is the number of states [34, 30]. The
usual construction is illustrated by Fig. 5 which shows on the left-hand side a PNS with 2
states (ı and q) and 3 places (x, y and z) and on the right-hand side the corresponding Petri
net with 5 places: Each place from S and each state from S corresponds to a place from N.
The initial marking of N describes the initial marking of S and some token is added in the
place corresponding to the initial state of S. Moreover each arc q1

r
−→ q2 in S is represented

by a transition in N. It is easy to see that there is a one-to-one correspondence between
the firable computation sequences of S and the firable rule sequences of N; moreover the
marking reached by N describes the marking reached by S and the current state of S.

This construction of N from S is interesting because it enables us to analyse the set
of reachable markings of S by means of usual techniques from the Petri net literature (see
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Fig. 5. Simulation of a PNS by a Petri net

[11] for a survey). In particular the boundedness problem asks whether the set of reachable
markings is finite whereas the covering problem asks whether a given marking µ is covered
by some reachable marking µ′, i.e. µ 6 µ′. These two problems are decidable (for Petri
nets and Petri nets with states) but they can require exponential space [32].

The simulation of a PNS by a Petri net leads us to the next result.

Proposition 1.4. Let S be a PNS and r be a rule attached to some arc of S. We can
decide whether r occurs in a firable computation sequence of S.

Proof. We have recalled that there is a one-to-one correspondence between the firable
computation sequences of S and the firable computation sequences of N. The rule r occurs
in a firable computation sequence of S if and only if a corresponding transition t in N occurs
in a firable transition sequence in N. This is equivalent to check whether the marking of
•t is covered by a reachable marking of N. As mentionned above this question is known to
be decidable.

1.4 Process semantics of a PNS

In this paper we are interested in a semantics of PNS based on causal nets which is a
direct generalization of the process semantics of Petri nets [4, 10, 15, 16, 33, 37]. The process
semantics of Petri nets characterizes the labeled causal nets that describe an execution of
a given Petri net. We have already observed that each transition of a Petri net can be
regarded as a rule. For that reason we adopt a graphical representation of rules similar to
a transition of a Petri net, as depicted in Fig. 6. Given an initial multiset of places, each
firable computation sequence can be represented by a causal net, called a process, which
somehow glues together the representations of each rule. For instance the labeled causal
net K from Fig. 2 depicts a process of the Petri net N from Fig. 4 in which each condition
of K is labeled by a place of N and each event of K is labeled by a transition of N.

The following definition explains how processes are derived from a given rule sequence.
Next the processes of a PNS will be defined as the processes of its firable computation
sequences (Def. 1.6).

Definition 1.5. A process of a rule sequence s = r1...rn ∈ R⋆ from a marking µ ∈ NP

consists of a causal net K = (B,E, F, µmin) with n events e1, ..., en provided with a labeling
π : B ∪E → P ∪N such that the following conditions are satisfied:

1. π(b) ∈ P for all b ∈ B, π(e) ∈ N for all e ∈ E, and π(µmin) = µ;
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2. ri = (π(ei), π(•ei), π(ei
•)) for all i ∈ [1, n];

3. eiF
+ej implies i < j for any two i, j ∈ [1, n].

We denote by [[s]]µ the class of all processes of s from µ.

In this definition the mapping π denotes the labeling of K and its natural extension to
multisets. The first condition asserts that the initial marking of the causal net describes
the marking µ; moreover each condition is associated with some place and each event
corresponds to some rule name. The second condition requires that the label, the pre-
set and the post-set of each event coincide with the name, the guard and the update of
the corresponding rule. Finally the last property ensures that the total order of rules in
s corresponds to an order extension of the partial order of events in K. Consequently
any subset of events {e1, ..., ek} is downwards closed. Moreover the prefix causal net K′

corresponding to the configuration {e1, ..., en−1} is a process of the rule sequence r1...rn−1

from the same marking µ. Consequently the class of processes of a rule sequence could
be also defined inductively over its length, as we will see in Prop. 3.3. Furthermore it is
easy to see that the class of processes of a rule sequence is empty if and only if the rule
sequence is not firable from µmin.

Let H be a configuration of a process K = (B,E, F, µmin, π) of a rule sequence s from
µ. Let Bmax be the set of maximal conditions of the prefix KH w.r.t. F ∗. Then the multiset
of places π(Bmax) is called the marking reached by KH and we say that KH leads to the
marking π(Bmax). Let sH be a linear extension of the events from H . Then it is clear that
the rule sequence π(sH) is firable from µ and leads to the marking π(Bmax); moreover KH

is a process of π(sH) from µ.

Roughly speaking, any labeled causal net isomorphic to a process of s is also a process
of s. In particular the class of processes of the empty rule sequence from some marking µ
collects all labeled causal nets with no event and such that its set of labeled places represents
the multiset µ. Further a rule sequence may give rise to multiple (non-isomorphic) causal
nets depending on the consumption of tokens by each event and the initial marking. For
instance the computation sequence (p : x ➝ x+z)·(c : y+z ➝ y)·(p : x ➝ x+z)·(c : y+z ➝ y)
of the PNS from Fig. 1 corresponds to the causal net from Fig. 2. However if there are
x + y + z tokens initially, then this computation sequence corresponds to the two labeled
causal nets from Fig. 7 among some others.

Definition 1.6. Let S be a PNS with initial marking µin. A process of S is a process of
a computation sequence of S from µin. We let [[S]] denote the class of all processes of S.
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Thus [[S]] =
⋃

s∈CS(S) [[s]]µin
. It is easy to check that the processes of a PNS provided with

a single state are precisely the processes of the corresponding Petri net w.r.t. the usual
process semantics [4, 15, 37]. Moreover any prefix of a process of S is a process of some
rule sequence. Consequently the class of processes of a Petri net is closed by prefixes.
However the set of processes of a PNS need not to be prefix-closed in general, as the next
example shows.

Example 1.7. Consider the PNS from Fig. 1 with initial marking x + y and its process
depicted in Fig. 2. Clearly the prefix of this process circled with the dotted line in Fig. 2
is not a process of that PNS.

A PNS is said to be prefix-bounded if the set of markings reached by prefixes is finite.
Clearly any prefix-bounded PNS is bounded. The converse property does not hold in gen-
eral. Continuing Example 1.7, each process of the PNS from Fig. 1 leads to a marking with
at most 3 tokens whereas prefixes of these processes lead to infinitely many distinct mark-
ings (see in Fig. 2 a prefix of a process which leads to a marking with 4 tokens). However
we stress that each bounded Petri net is prefix-bounded because its class of processes is
prefix-closed.

Note that the simulation of a PNS by a Petri net considered in Subsection 1.3 is not
faithful from the partial order point-of-view we adopt here. Consider again Figure 5. The
processes of the PNS S (with three places) on the left-hand side differ from the processes
of the Petri net N (with five places) on the right-hand side. In Section 3 we introduce a
simulation of a PNS by another PNS that allows us to analyse the set of markings reached
along the prefixes of the processes of a given PNS.

1.5 From compositional MSGs to PNSs

The formalism of compositional message sequence graphs (cMSGs) was introduced in [18]
in order to strengthen the expressive power of MSGs and to provide an algebraic framework
for the whole class of regular sets of MSCs [19]. As opposed to usual MSGs, cMSGs are
built on components MSCs in which unmatched send or receive events are allowed. It was
argued in [18] that simple protocols such as the alternating bit protocol can be described
by cMSGs but not by MSGs. With no surprise cMSGs can be regarded as a particular case
of VASS under the process semantics.

Consider a distributed system consisting of a set I of sites and a set K of communication
channels between pairs of sites. The behaviour of such a system can be specified by a PNS
over the set P = I ∪ K of places such that the sending of a message from site i to site
j within the channel ki,j from i to j is encoded by a rule i ➝ i + ki,j and the receipt of
such a message is encoded by a rule j + ki,j ➝ j. Then we require that the initial marking
(and each reachable marking) contains a single token in each place i ∈ I so that all
events on a given site are linearly ordered. Such a PNS can actually be regarded as a
compositional message sequence graph. The partial order semantics of cMSGs consists of
message sequence charts which are simply a partial order of events obtained from a process
by removing all conditions.
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Example 1.8. The PNS from Figure 8 describes a simplified sliding window protocol
used to transmit data from a server i to a client j. The maximal number of missing
acknowledgments is specified by the n initial tokens in the place w (the window). The
system behaviour consists of three basic steps.

1. The server sends a new data formalized by a token d if some token w is available: It
consumes first a w token: i+ w ➝ i and next sends a new data: i ➝ i+ d.

2. The client receives a data and returns an acknowledgment formalized by a token a: It
consumes first a data: j + d ➝ j and next produces the ack: j ➝ j + a.

3. The server receives an acknowledgment and increments the window size: First the ack
is consumed: i+ a ➝ i and then a new token w is released: i ➝ i+ w.

A typical process of this system with n = 1 is depicted in Figure 9. It is clear that this
system is bounded and even prefix-bounded.

Since local variables are prohibited in MSGs, the size of any safe cMSG equivalent to the
PNS from the above example is exponential in the size of n. Thus a bounded PNS can be
exponentially more concise than an equivalent safe cMSG. If this protocol starts with an
initial window size of n = 2k ·w, then any safe cMSG describing the same class of processes
needs 2k distinct states.

2 Checking inclusion properties

A classical issue in concurrency theory consists in characterizing the expressive power of
a model. Then a usual problem is the synthesis of a system from its behavioural specifi-
cation. In this section we consider Petri nets with states as a means to specify concurrent
behaviours in the form of processes. We tackle the problem of building a Petri net equiva-
lent to some given Petri net with states. Two classes of specifications are studied according
to the notion of equivalence we adopt.

Definition 2.1. A Petri net with states S is realizable (resp. prefix-realizable) if there is
some Petri net N such that [[S]] = [[N]] (resp. Pref([[S]]) = [[N]]).

Note that the Petri net with states S from Figure 1 is not realizable because the set
of processes it accepts is not prefix-closed (Example 1.7) whereas the set of processes
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Fig. 10. A non prefix-realizable PNS Fig. 11. Some implied process

recognized by any Petri net is prefix-closed. However S is prefix-realizable because the
prefixes of its processes are precisely the processes of the Petri net with states provided
with a single state depicted in Fig. 3 (i.e. the Petri net from Fig. 4). The next example
exhibits a Petri net with states that is not prefix-realizable.

Example 2.2. Consider the PNS S from Figure 10. Any Petri net N such that [[N]] =
Pref([[S]]) would accept the causal net K from Figure 11 as a process. However K is obviously
not the prefix of some process from S. Therefore S is not prefix-realizable.

Although realizability appears to be the simplest problem to consider, we claim that prefix-
realizability is also a natural issue because the processes of a Petri net are prefix-closed.
Further considering prefixes is often a means to focus on deadlock-free implementations of
systems provided with a notion of accepting states. The next basic observation exhibits a
canonical candidate for the synthesis of a Petri net from a Petri net with states.

Proposition 2.3. Let S1 be a Petri net with states and R1 be the subset of rules occurring
in some firable computation sequence of S1. Let S2 be the PNS provided with a single state
and the same initial marking as S1 such that a rule occurs on a self-loop in S2 if and only
if it belongs to R1. Then

1. S1 is realizable if and only if [[S1]] = [[S2]].

2. S1 is prefix-realizable if and only if Pref([[S1]]) = [[S2]].

Proof. Assume first that S1 is not prefix-realizable. Then Pref([[S1]]) 6= [[S2]] because S2 is
equivalent to a Petri net. Assume now that S1 is prefix-realizable. Then there exists some
PNS S′ with a single state such that Pref([[S1]]) = [[S′]]. Any rule from R1 occurs in some
process of S1, so it must occur in some process of S′: Therefore it occurs on a self-loop
in S′. Any other rule occurring on a self-loop in S′ cannot occur in a firable computation
sequence. Therefore we can remove it from S′ without affecting the set of processes of S′.
In other words we can assume S′ = S2. A similar argument holds for realizability.

Note that R1 can be computed from S1 (Prop. 1.4). Clearly Pref([[S1]]) ⊆ [[S2]]. Thus the
difference between the specification S1 and the canonical implementation S2 stems from
processes built on rules of S1 that are not represented by some computation sequence of
S1. This situation is similar to the notion of an implied scenario in the setting of realizable
high-level message sequence charts [1].
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2.1 An undecidable problem with Mazurkiewicz traces

The undecidability results presented in this section rely on the universality problem in the
setting of Mazurkiewicz trace theory [7] that we recall now. Let Σ be some finite alphabet
of actions. The concurrency of a distributed system is often represented by an independence
relation over Σ, that is a binary, symmetric, and irreflexive relation ‖ ⊆ Σ ×Σ. Then the
pair (Σ, ‖) is called an independence alphabet. The associated trace equivalence is the least
congruence ∼ over Σ⋆ such that a‖b implies ab ∼ ba for all a, b ∈ Σ. We let [u] denote
the trace equivalence class of a word u ∈ Σ⋆ and we put [L] =

⋃
u∈L[u] for any language

L ⊆ Σ⋆.

Theorem 2.4. [36, Theorem IV.4.3] It is undecidable whether [L] = Σ⋆ for a given inde-
pendence alphabet (Σ, ‖) and a given regular language L ⊆ Σ⋆.

Since we have not provided the model of VASS with the notion of accepting states, we
need the slightly stronger but immediate next statement.

Corollary 2.5. It is undecidable whether [L] = Σ⋆ for some given independence alphabet
(Σ, ‖) and some given regular and prefix-closed language L ⊆ Σ⋆.

Proof. We proceed by contradiction. We assume that this problem is decidable and show
that the problem from Theorem 2.4 becomes decidable. Let (Σ, ‖) be some independence
alphabet and L ⊆ Σ⋆ be some regular language. We consider some additional letter ⊥ and
the new alphabet Γ = Σ ∪ {⊥} provided with the same independence relation: The new
letter ⊥ is dependent with all letters from Σ. Let L′ = Pref(L) ∪ (L · {⊥} · Γ ⋆). It is clear
that L′ is regular and prefix-closed. Moreover L ⊆ L′. To conclude the proof we can check
easily that [L′] = Γ ⋆ if and only if [L] = Σ⋆.

Assume first that [L] = Σ⋆. It is clear that [L′] ⊆ Γ ⋆. Let v ∈ Γ ⋆. We distinguish two
cases: If v ∈ Σ⋆ then v ∼ u for some u ∈ L. If v /∈ Σ⋆ then v = v0.⊥.v1 with v0 ∈ Σ⋆

and v1 ∈ Γ ⋆. Furthermore v0 ∼ u0 for some u0 ∈ L. It follows that v ∼ u0.⊥.v1 and
u0.⊥.v1 ∈ L′. In both cases we get v ∈ [u] for some u ∈ L′. Hence [L′] = Γ ⋆.

Conversely assume now that Γ ⋆ = [L′] and consider v ∈ Σ⋆. Then v.⊥ ∈ Γ ⋆. There
exists some u ∈ L′ such that v.⊥ ∼ u. Then u = u0.⊥ because ⊥ is dependent with all
letters. Moreover v ∼ u0 (because the trace equivalence is right-cancellative) and u0 ∈
L′ ∩ Σ⋆ (because the trace equivalence is a Parikh equivalence). It follows that u0 ∈ L.
Hence [L] = Σ⋆.

Corollary 2.6. Let (Σ, ‖) be an independence alphabet. It is undecidable whether [L1] ⊆
[L2] for any two regular and prefix-closed language L ⊆ Σ⋆.

Proof. Consider L1 = Σ⋆ and apply Cor. 2.5.
In the sequel of this section, we present a natural encoding of Mazurkiewicz traces in the

form of causal nets. Then each prefix-closed rational Mazurkiewicz trace languages can be
represented by a prefix-bounded PNS. As a consequence the inclusion relation [[S1]] ⊆ [[S2]]
is undecidable for two given prefix-bounded PNSs S1 and S2.
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Fig. 12. Some process corresponding to the rule sequence ρ(abcab) with a‖b

2.2 From Mazurkiewicz traces to processes

Let (Σ, ‖) be a fixed independence alphabet. We consider a finite set of places P and some
mapping Loc : Σ → 2P such that a‖b iff Loc(a) ∩ Loc(b) = ∅. There are several ways to
find such a set P together with the location mapping Loc, one of which is to consider any
subset {a, b} ⊆ Σ to be a place whenever a6 ‖b and to put Loc(a) = {p ∈ P | a ∈ p}.
We assume that each place p ∈ P occurs in some location Loc(a) of some action a ∈ Σ.
We put N = Σ, RΣ = {(a, α, α) ∈ R | α = Loc(a)} and µin = P . Note that there is
exactly one rule (a,Loc(a),Loc(a)) ∈ RΣ for each action a ∈ Σ. Moreover these rules are
synchronisation rules according to the next definition.

Definition 2.7. A rule r = (λ, α, β) is a synchronisation rule if α = β and α(m) 6 1
for each m ∈ P .

We consider the mapping ρ : Σ → RΣ such that ρ(a) = (a,Loc(a),Loc(a)). This bijection
extends naturally to mapping between words over Σ and words over RΣ .

Example 2.8. Let Σ = {a, b, c} provided with the independence relation a‖b. We consider
P = {x, y} together with Loc(a) = {x}, Loc(b) = {y} and Loc(c) = {x, y}. Figure 12
depicts some process corresponding to the rule sequence ρ(abcab).

Note that for any word u ∈ Σ⋆ the rule sequence ρ(u) is firable from µin and leads to
the marking µin. It follows from Prop. 3.3 that all processes from [[ρ(u)]]µin

are isomorphic
to each other, i.e. there is intuitively only one process for ρ(u) from µin.

The next result asserts that trace equivalent words give rise to the same processes.
And conversely, if two words correspond to the same processes, then these two words are
trace equivalent. In this way equivalence classes of words are identified with processes. This
property is actually similar to the well-known fact that trace equivalence classes of words
can be represented by particular labeled partial orders.

Lemma 2.9. For all u, v ∈ Σ⋆: u ∼ v if and only if [[ρ(u)]]µin
= [[ρ(v)]]µin

.

Proof. Let u ∈ Σ⋆ and a, b ∈ Σ such that a 6= b. If u.ab ∼ u.ba then a‖b, Loc(a)∩Loc(b) =
∅, and [[ρ(u.ab)]]µin

= [[ρ(u.ba)]]µin
by Prop. 3.3. Therefore u ∼ v implies [[ρ(u)]]µin

= [[ρ(v)]]µin

for all u, v ∈ Σ⋆ (again with the help of Prop. 3.3). To prove the converse property, we
proceed by induction over the length of u. The base case is trivial. We consider u, v ∈ Σ⋆

of length n + 1 such that [[ρ(u)]]µin
= [[ρ(v)]]µin

. We distinguish two cases:
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1. u = u′.a and v = v′.a for some u′, v′ ∈ Σ⋆ and a ∈ Σ. We have ρ(u) = ρ(u′).ρ(a) and
ρ(v) = ρ(v′).ρ(a). By Prop. 3.3 we have [[ρ(u′)]]µin

= [[ρ(v′)]]µin
. It follows from induction

hypothesis that u′ ∼ v′ hence u′.a ∼ v′.a.
2. u = u′.a and v = v′.b for some u′, v′ ∈ Σ⋆ and a, b ∈ Σ with a 6= b. We have ρ(u) =
ρ(u′).ρ(a) and ρ(v) = ρ(v′).ρ(b) with ρ(a) 6= ρ(b). Then any labeled causal net K
from [[ρ(u)]]µin

= [[ρ(v)]]µin
includes two maximal events ea and eb labeled by a and b

respectively. It follows that a‖b. Let K′ be the prefix of K obtained by erasing the two
maximal event ea and eb. We consider a linear extension w′ of the Σ-labeled events
from K′. Then K′ is the process from [[ρ(w′)]]µin

. Moreover [[ρ(w′.a)]]µin
= [[ρ(v′)]]µin

and
[[ρ(w′.b)]]µin

= [[ρ(u′)]]µin
. By induction hypothesis, we get w′.a ∼ v′ and w′.b ∼ u′. On

the other hand w′.ab ∼ w′.ba because a‖b. Hence u ∼ w′.ba ∼ w′.ab ∼ v.

We consider at present a regular and prefix-closed language L ⊆ Σ⋆ and a finite au-
tomaton A(L) = (Q, ı,−→A(L)) whose states are all accepting and which recognized L.
We may assume that each state of A(L) is reachable from the initial state and each ac-
tion of Σ appears on a labeled arc of A(L). We build from the automaton A(L) the PNS
S(L) = (Q, ı,−→S(L), µin) with the same set of states Q, the same initial state ı ∈ Q and
such that for each rule r = (a, α, α) ∈ RΣ and all states q1, q2 ∈ Q, there is some labeled
arc q1

r
−→S(L) q2 if q1

a
−→A(L) q2. Observe here the multiset of tokens is left unchanged by

each rule. Consequently the set of markings reached by prefixes of [[S(L)]] is finite, i.e. the
PNS SL is prefix-bounded. For any two regular and prefix-closed languages L1, L2 ⊆ Σ⋆

Lemma 2.9 shows that we have [L1] ⊆ [L2] if and only if [[SL1
]] ⊆ [[SL2

]]. Thus the property
[[S1]] ⊆ [[S2]] is undecidable for two given prefix-bounded PNS S1 and S2. We can strengthen
this observation by the next statement.

Theorem 2.10. The property [[N]] ⊆ [[S]] is undecidable for a prefix-bounded PNS S and
a bounded Petri net N.

Proof. Let L ⊆ Σ⋆ be a regular and prefix-closed language and S(L) be the corresponding
PNS. Let N(L) be the Petri net collecting all rules R⋆

Σ of S(L). Then [[N(L)]] = [[R⋆
Σ ]].

Moreover we can check that [[S(L)]] = [[R⋆
Σ ]] if and only if [L] = Σ⋆.

Assume first that [[S]] = [[R⋆
Σ ]]. Let u ∈ Σ⋆. We have [[ρ(u)]]µin

= [[w]]µin
for some

w ∈ CS(S). Let v = ρ−1(w). Clearly v ∈ L. Since [[ρ(u)]]µin
= [[ρ(v)]]µin

we get u ∼ v by
Lemma 2.9. Hence Σ⋆ = [L].

Assume now that [L] = Σ⋆. Let w ∈ R⋆
Σ . We have ρ−1(w) ∈ Σ⋆. Then ρ−1(w) ∼ u for

some u ∈ L. It follows from Lemma 2.9 that [[w]]µin
= [[ρ(u)]]µin

. Moreover ρ(u) ∈ CS(S).
Therefore [[R⋆

Σ ]]µin
= [[CS(S)]]µin

.
By means of a slightly more involved encoding of Mazurkiewicz traces, we show in the

next section that Theorem 2.10 holds also if S is a prefix-bounded VASS.

2.3 Gap between VASS and Petri nets

At present we focus on the subclass of vector addition systems with states, i.e. Petri nets
with states with pure rules only. So far no rule from RΣ is pure, so the processes obtained
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Fig. 13. Building the pure rule corresponding to a synchronisation rule Fig. 14. A release rule

from RΣ cannot be described by a VASS. For this reason we have to use a slightly more
involved encoding of Mazurkiewicz tracesbut we keep the same set of rule names ΣLet us
consider the set of places P ◦ = P × {0, 1} and the initial marking µ◦

in = P × {0}. This
means that we use two copies of each place from P . Moreover we will make sure that any
reachable marking will contain exactly one of these two copies. Intuitively places tagged
by 0 are available and may be consumed by the system whereas places tagged by 1 are
locked and need to be released. We let π : P ◦ → P denote the first projection: π(m,n) = m
for each m ∈ P . This mapping extends naturally to a mapping from multisets over P ◦ to
multisets over P : π(µ) =

∑
(m,n)∈P ◦ µ(m,n) · π(m,n).

We let R1 collect all rules (a, α, β) over P ◦ such that (a, π(α), π(β)) ∈ RΣ, α(m,n) > 1
implies n = 0 and β(m,n) > 1 implies n = 1. Thus we require that α and β correspond
to the same set of untagged tokens, i.e. π(α) = π(β). Moreover we require that the tokens
consumed are available whereas the tokens produced are locked. We denote by π : R1 → RΣ

the function which maps each rule (a, α, β) ∈ R1 to (a, π(α), π(β)) ∈ RΣ . It is clear that
this mapping is a bijection. For instance Figure 13 depicts a synchronization rule from RΣ

together with the corresponding rule from R1.
We consider also a set of additional release rules that consume a locked place and

produce the corresponding available oneas depicted in Figure 14Formally we let R2 denote
the set of rules (a, α, β) such that |α| = |β| = 1, α(m, 0) = 0 for all m ∈ P , and α(m, 1) = 1
implies β(m, 0) = 1. We put R0 = R1 ∪R2.

We build from S the Petri net with states S
◦ = (Q, ı,−→S◦ , µ◦

in) with the same set of
states Q, the same initial state ı ∈ Q, and µ◦

in = P × {0} as initial marking. The labeled
arcs of S◦ are defined as follows: For each rule r ∈ R0 and for all states q1, q2 ∈ Q, we put
q1

r
−→S◦ q2 if one of these two conditions is satisfied:

– r ∈ R1 and q1
a

−→S q2 with a = π(r);
– r ∈ R2 and q1 = q2.

Note here that S◦ is a VASS because each rule from R0 is pure. Since each place p ∈ P
occurs in the location Loc(a) of some action a ∈ Σ and each action a appears on a labeled
arc of A starting from a state reachable from its initial state ı, it is clear that each rule
from R0 appears in some firable computation sequence of S◦.

The bijection π : R1 → RΣ can be regarded as a function π : R0 → RΣ ∪ {ε} where
π(r) map to the empty word ε for each r ∈ R2. This function extends naturally to a
mapping π : R⋆

0 → R⋆
Σ which associates each rule sequence r1...rn from R⋆

0 to the rule
sequence π(r1)...π(rn) from R⋆

Σ . Due to the similar structure between S◦ and S, it is clear
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that each computation sequence u of S◦ maps to some computation sequence π(u) of S.
Furthermore, firable computation sequences correspond to firable computation sequences.
Thus we have π : FCS(S◦) → FCS(S). The next observation asserts that the mapping
π : FCS(S◦) → FCS(S) is actually onto.

Proposition 2.11. For all u ∈ FCS(S) there exists u◦ ∈ FCS(S◦) such that π(u◦) = u.

Proof. By an immediate induction over the length of u, we can check that for each
u ∈ FCS(S) there exists some u◦ ∈ FCS(S◦) such that π(u◦) = u and the marking reached
by u◦ is µ◦

in.
Recall that each rule of S is a synchronisation rule and the initial marking of S consists of
a single token in each place. As a consequence, for each rule sequence u ∈ R⋆

Σ , the class
of processes [[u]]µ◦

in
consists of isomorphic labeled causal nets. For any two rule sequences

u, v ∈ R⋆
Σ , we put u ≃ v if [[u]]µ◦

in
= [[v]]µ◦

in
. Similarly, for each rule sequence u ∈ R⋆

0, the set

of processes [[u]]µ◦

in
consists of isomorphic labeled causal nets because the marking reached

by a firable rule sequence is a set (not a multiset). Moreover we have [[u]]µ◦

in
6= ∅ if and only

if the rule sequence u is firable. For any two rule sequences u, v ∈ R⋆
0, we put u ≃◦ v if

u = v or [[u]]µ◦

in
= [[v]]µ◦

in
6= ∅. The second observation ensures that this process equivalence

is preserved by the mapping π : FCS(S◦) → FCS(S).

Proposition 2.12. For all u1, u2 ∈ FCS(S◦), u1 ≃
◦ u2 implies π(u1) ≃ π(u2).

Proof. Let u1, u2 ∈ FCS(S◦) be such that u1 ≃◦ u2 and u1 6= u2. Let K be the labeled
causal net from [[u1]]µ◦

in
. Then u1 and u2 are two linear extensions of the partial order of

rules occurring in K. We may assume that u1 = v.ab.w and u2 = v.ba.w with v, w ∈ R⋆
0

and a, b ∈ R0. We distinguish then two cases.

1. a ∈ R2 or b ∈ R2. Then π(u1) = π(u2) hence π(u1) ≃ π(u2).
2. a ∈ R1 and b ∈ R1. Since u1 and u2 are two linear extensions of K, the guards of a and
b are disjoint. It follows that π(u1).π(a).π(b) ≃ π(u1).π(b).π(a) hence π(u1) ≃ π(u2).

We will also need the next technical result.

Proposition 2.13. For all firable computation sequences v ∈ FCS(S) and all firable rule
sequences u ∈ R⋆

0, if π(u) ≃ v then u ≃◦ w for some firable computation sequence w ∈
FCS(S◦).

Proof. We distinguish two cases.

1. The marking reached by u consists of available places only. We consider the rule se-
quence w ∈ R0 built inductively over the length of v by replacing each rule r from v
by the corresponding rule π−1(r) ∈ R1 followed by a series of release rules from R2

such that all locked places produced by π−1(r) are released. Then w ∈ FCS(S◦) and
π(w) = v. Hence π(u) ≃ π(w). It follows that u ≃◦ w.

2. Some places in the marking reached by u are locked. We add a sequence of release rules
z to u to get w = u.z such that the marking reached by w consists of available places
only. Then π(w) ≃ v. We apply the first case to get some firable computation sequence
w′ ∈ FCS(S◦) such that w ≃◦ w′. We can remove from w′ the release rules of z and get
some firable computation sequence w′′ ∈ FCS(S◦) such that u ≃◦ w′′.
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Observe here the number of tokens is constant whenever a rule is applied. Consequently
the set of markings reached by prefixes of [[S◦]] is finite, i.e. S◦ is prefix-bounded. We can
prove that S◦ is realizable if and only if S is realizable. Thus,

Theorem 2.14. It is undecidable whether a given prefix-bounded VASS is realizable.

Proof. Let N be the Petri net consisting of all rules of RΣ with the initial marking
µin = P . By Prop. 2.3, S is realizable if and only if [[S]] = [[N]]. Moreover N is equivalent to
a PNS with only synchronisation rules (and with only one state). We let N◦ be the VASS
corresponding to N w.r.t. the above construction of S from S◦. We may apply the three
above propositions with N and N◦ respectively. Since N◦ has a single state, it is equivalent
to a pure Petri net. Further N◦ consists of all rules of R0 and its initial marking is µ◦

in.
Since each rule from R0 appears in some firable computation sequence of S◦, Prop. 2.3
claims that S◦ is realizable if and only if [[S◦]] = [[N◦]]. We can check that S◦ is realizable if
and only if S is realizable.

Assume first that S◦ is realizable: We have [[S◦]] = [[N◦]]. Let K ∈ [[N]]. Let u be a linear
extension of the partial order of rules occurring in K. Then u ∈ FCS(N). There exists
some firable computation sequence u◦ ∈ FCS(N◦) such that π(u◦) = u (Prop. 2.11 applied
with N and N◦). Then u◦ ≃◦ v◦ for some v◦ ∈ FCS(S◦) because [[S◦]] = [[N◦]]. Furthermore
u = π(u◦) ≃ π(v◦) ∈ FCS(S) by Prop. 2.12. Hence K ∈ [[S]]. It follows that [[S]] = [[N]], i.e.
S is realizable.

Assume now that S is realizable: We have [[S]] = [[N]]. By construction, [[S◦]] ⊆ [[N◦]].
We can check [[N◦]] ⊆ [[S◦]], hence [[N◦]] = [[S◦]] and S◦ is realizable. Let K◦ be a process
of N◦ and u◦ be a linear extension of the rules occurring in K◦. Then u◦ ∈ FCS(N◦). Let
u = π(u◦). Then u ∈ FCS(N). Since [[S]] = [[N]] we have u ≃ v for some v ∈ FCS(S). By
Prop. 2.13, there exists some v◦ ∈ FCS(S◦) such that u◦ ≃◦ v◦. Then K◦ ∈ [[v◦]]µ◦

in
hence

K◦ ∈ [[S◦]].
Finally we can consider now the problem of prefix-realizability. We call terminating rule

each rule ⊥ : M ➝ ∅ for which M ⊆ P ◦ is a subset of places such that π(M) = P . We
denote by R3 the set of all terminating rules and we put R⊥ = R0 ∪R3. We build from S◦

the Petri net with states S◦
⊥

= (Q, ı,−→S◦

⊥
, µ◦

in) with the same set of states Q, the same
initial state ı ∈ Q, the same set of places P ◦ and the same initial marking µ◦

in. Each labeled
arc from S◦ appears in S◦

⊥
. For each terminating rule r ∈ R3 and each state q ∈ Q we add

a self-loop q
r

−→S◦

⊥
q. Then we can check that S◦

⊥
is prefix-realizable if and only if S◦ is

realizable. This leads us to the main result of this section.

Theorem 2.15. It is undecidable whether a prefix-bounded VASS is prefix-realizable.

Proof. So far, we have proved that the PNS S is realizable if and only if the VASS S◦ is
realizable. We can prove that S

◦
⊥

is prefix-realizable if and only if S
◦ is realizable. Assume

first that S◦
⊥

is prefix-realizable. Then Pref([[S◦
⊥
]]) = [[N◦

⊥
]] for some Petri net N◦

⊥
. Let

N◦ be the Petri net obtained from N◦
⊥

by erasing all transitions corresponding to some
terminating rule. It is clear that [[S◦]] ⊆ [[N◦]]. To prove that S◦ is realizable, we simply
check that [[N◦]] ⊆ [[S◦]]. Let K ∈ [[N◦]]. We build the label causal net K⊥ from K by adding
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an occurrence of some terminating rule ⊥ : M ➝ ∅. This requires that M coincides with
the marking reached by K. Then K⊥ is a process of N◦

⊥
. Hence K⊥ ∈ Pref([[S◦

⊥
]]). Thus

K⊥ is a prefix of some process K′ ∈ [[u′]]µin
where u′ ∈ CS(S◦

⊥
). Since the terminating rule

⊥ : M ➝ ∅ consumes all places from the marking reached by K, it must be the last rule
of u′, and the single terminating rule of u′, i.e. u′ = u · (⊥ : M ➝ ∅) for some u ∈ CS(S◦).
Hence K⊥ = K′. Therefore K ∈ [[u]]µin

and K ∈ [[S◦]].

Assume now that S◦ is realizable. Then [[S◦]] = [[N◦]] for some Petri net N◦. Adding
to the Petri net N◦ a transition for each terminating rule yields a new Petri net denoted
by N◦

⊥
. We can check that [[S◦

⊥
]] = [[N◦

⊥
]], so S◦

⊥
is prefix-realizable. It is clear that [[S◦

⊥
]] ⊆

[[N◦
⊥
]]. Let K ∈ [[N◦

⊥
]] and u be a linear extension of the partial order of rules in K. Each

terminating rule ⊥ : M ➝ ∅ may only occur in u as the last rule of u. Let v be the word
obtained by removing the possible occurrence of some terminating rule ⊥ : M ➝ ∅ from u.
Then v is a firable rule sequence of N◦ because u is a firable rule sequence of N◦

⊥
. Since

[[S◦]] = [[N◦]], we have [[v]]µ◦

in
= [[v′]]µ◦

in
for some v′ ∈ FCS(S◦). Then [[u]]µ◦

in
= [[u′]]µ◦

in
for some

u′ ∈ FCS(S◦
⊥) obtained from v′ by adding possibly an occurrence some terminating rule.

Therefore K ∈ [[S◦
⊥
]].

As an immediate consequence, we can now establish the following fact.

Corollary 2.16. Given two prefix-bounded vector addition systems with states S1 and S2,
it is undecidable whether [[S1]] = [[S2]] (resp. Pref([[S1]]) = [[S2]], Pref([[S1]]) = Pref([[S2]])).

Proof. By Proposition 2.3, a VASS S is realizable if and only if [[S]] = [[S′]] where S′

is the VASS with a single state which admits a self-loop carrying r if r occurs in some
firable computation sequence of S. By Proposition 1.4, we can effectively build S′ from S.
By Theorem 2.14, [[S]] = [[S′]] is undecidable. Therefore [[S1]] = [[S2]] is undecidable for two
vector addition systems with states S1 and S2.

Observe now that [[S′]] = Pref([[S′]]). It follows that [[S1]] = Pref([[S2]]) is undecidable for
two given chemical rule systems S1 and S2.

Finally, S is prefix-realizable if and only if Pref([[S]]) = Pref([[S′]]). It follows from
Theorem 2.15 that Pref([[S1]]) = Pref([[S2]]) is undecidable for two vector addition systems
with states.

The gap between vector addition systems with states and Petri nets is illustrated by
the next result which shows that these decision problems are decidable if one considers
(possibly unbounded) Petri nets only.

Proposition 2.17. Let N1 and N2 be two Petri nets. The property [[N1]] ⊆ [[N2]] is decid-
able.

Proof. Observe first that this property requires that N1 and N2 share the same initial
marking. Let Ri be the set of rules occurring in some firable computation sequence of
Ni. The set Ri can be effectively computed (Prop. 1.4). Then [[N1]] ⊆ [[N2]] if and only if
R1 ⊆ R2.
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3 Checking reachability properties of process prefixes

Basic decision problems about the set of reachable markings of a Petri net are known to be
decidable, namely boundedness, covering and reachability. Due to the simple simulation of
a VASS by a Petri net recalled in Subsection 1.3 these results apply to the analysis of the
reachable markings of a VASS or a PNS.

On the other hand, adopting a partial order semantics leads us to new difficulties and
the model of VASSs is no longer equivalent to Petri nets. For instance the process language
equality [[S1]] = [[S2]] is

– decidable for two Petri nets S1 and S2, because one need simply to compare their initial
markings and the two subsets of rules occurring in their firable rule sequences.

– undecidable for two prefix-bounded VASSs S1 and S2, because rational sets of Mazurkie-
wicz traces can be described by prefix-bounded VASSs.

Thus VASSs and Petri nets are no longer equivalent models under the process semantics.
In this section we investigate three basic verification problems about the set of markings

reached by prefixes of processes: boundedness, covering and reachability. We show how to
reduce these problems to the particular case of Petri nets in such a way that all complexity
and decidability results extend from Petri nets to PNSs under the process semantics.

Definition 3.1. A marking µ is prefix-reachable in a PNS S if there exists a prefix of a
process of S which leads to the marking µ.

Thus any reachable marking marking is prefix-reachable. In the particular case of Petri
nets, conversely, any prefix-reachable marking is reachable, because the class of processes
is prefix-closed. However the set of prefix-reachable markings can differ from the set of
reachable markings in general. For instance, each process of the PNS from Fig. 1 leads
to a marking with at most 3 tokens whereas prefixes of these processes lead to infinitely
many distinct markings (see in Fig. 2 a prefix of a process which leads to a marking with
4 tokens).

The first basic problem we consider is the prefix-boundedness problem, which asks
whether the set of prefix-reachable markings of a given PNS S is finite. We give below a
linear construction of a PNS S◦ from S such that S is prefix-bounded if and only if S◦ is
bounded. Since the boundedness of S◦ boils down to the boundedness of a Petri net, we
get that the prefix-boundedness problem for PNSs is computationally equivalent to the
boundedness problem of Petri nets. Further we show that this technique apply to other
similar basic problems about prefix-reachable markings, namely covering and reachability.

3.1 From Petri nets with states to Petri nets

Let S = (Q, ı,−→, µin) be a fixed PNS. We build a PNS S◦ that allows us to analyse the set
of prefix-reachable markings of S. The construction of S◦ from S is illustrated by Fig. 15.
The PNS S◦ makes use of three disjoint sets of places: Ppre, Psuf, Pcut which are copies of
the set of places P of S. We let πpre : P → Ppre, πsuf : P → Psuf, and πcut : P → Pcut be
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ı

x + y

q

p
:
x

➝
x

+
zc

:
y

+
z

➝
y

;

ı

πpre(x) + πpre(y)x : πpre(x) ➝ πsuf(x) + πcut(x)
y : πpre(y) ➝ πsuf(y) + πcut(y)
z : πpre(z) ➝ πsuf(z) + πcut(z)

q

x : πpre(x) ➝ πsuf(x) + πcut(x)
y : πpre(y) ➝ πsuf(y) + πcut(y)
z : πpre(z) ➝ πsuf(z) + πcut(z)

p : πpre(x) ➝ πpre(x) + πpre(z)
p : πsuf(x) ➝ πsuf(x) + πsuf(z)

c : πpre(y) + πpre(z) ➝ πpre(y)
c : πsuf(y) + πsuf(z) ➝ πsuf(y)

Fig. 15. Verification of prefix-reachable markings

the bijections that map each place from P to the corresponding place in Ppre, Pcut and Psuf

respectively. These mappings extend naturally to mappings from multisets to multisets.
The initial marking µ◦

in of S◦ is the multiset µ◦
in = πpre(µin).

The PNS S◦ shares with S its set of states Q and its initial state ı. It consists of three
disjoint sets of labeled arcs: −→pre,−→suf,−→cut. The restriction of S◦ to the labeled arcs
from −→pre and to the places from Ppre yields a PNS S

◦
pre isomorphic to S. Thus for each

labeled arc q1
r

−→ q2 in S with r = (a, •r, r•) there exists some labeled arc q1
s

−→pre q2 with
s = (a, πpre(

•r), πpre(r
•)). Similarly the restriction of S◦ to the labeled arcs from −→suf and

to the places from Psuf yields a PNS S◦
suf isomorphic to S, except that its initial marking

is empty: For each labeled arc q1
r

−→ q2 in S with r = (a, •r, r•) there exists some labeled
arc q1

s
−→suf q2 with s = (a, πsuf(

•r), πsuf(r
•)). Note that the two PNSs S◦

pre and S◦
suf are

synchronized because they share a common set of state. The set of labeled arcs −→cut

consists of a self-loop q
s

−→cut q for each state q and each place p ∈ P ; this labeled arc
allows to move a token from the place πpre(p) to the place πsuf(p) and to keep track of that
transfer in the place πcut(p), i.e. •s = πpre(p) and s• = πsuf(p) + πcut(p). Note that tokens
in Pcut cannot be consumed.

Intuitively, for any process K of S and for any prefix K′ of K, the PNS S◦ can simulate
a computation sequence of S which corresponds to K in such a way that each event from
the prefix K′ corresponds to the occurrence of a labeled arc from −→pre and each event
from the suffix K\K′ corresponds to the occurrence of a labeled arc from −→suf. Moreover
the set of places Pcut keeps track of the tokens transferred from K to K′, i.e. from S◦

pre to
S◦

suf, by labeled arcs from −→cut. Thus any prefix-reachable marking of S is represented
by the restriction to Ppre ∪ Pcut of some reachable marking of S◦. The key property of this
representation, stated in Prop. 3.2 below, asserts that, conversely, each firable computation
sequence of S◦ corresponds to a process K of S and a prefix K′ of K such that the marking
of Ppre ∪ Pcut describes the marking reached by K′.

In order to prove our results in details, we shall adopt also the next notations:

– We denote by τpre and τsuf the bijections that maps each labeled arc q
r

−→ q′ from S to
the corresponding labeled arc in −→pre and −→suf respectively.

– For each state q ∈ Q, we denote τ q
cut the bijection between P and the self-loop labeled

on q from −→cut.
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In the next statement and the sequel of this section, for each marking µ and for each subset
of places X, we denote by µ|X the restriction of µ to the places from X. The main results
of this section rely essentially on the next observation.

Proposition 3.2. A multiset of places µ ∈ NP is prefix-reachable in S if and only if there
exists some reachable marking µ◦ of S

◦ such that µ = π−1
pre(µ

◦|Ppre) + π−1
cut(µ

◦|Pcut).

3.2 Proof of Proposition 3.2

For each rule sequence u = r1...rn ∈ R⋆, the cost of u is the vector cost(u) ∈ ZP such
that cost(u)(p) =

∑n
i=1

•ri(p) − ri
•(p) for each p ∈ P . In particular the cost of the empty

rule sequence is the null vector. If a rule sequence u is firable from a marking µ then the
marking reached by u from µ is µ− cost(u). Let K be a process of a rule sequence u firable
from µ. Then µ − cost(u) is the marking reached by K from µ. Moreover the marking
µ− cost(u) corresponds to the set of conditions in K that are not input places of any event
in K (which means intuitively that they are still available), i.e. to the maximal places of
K: We have µ− cost(u) =

∑
p∈max(K)∩P π(p).

For each rule r such that •r 6 µ − cost(u), we let K · r denote the class of labeled
causal nets obtained by adding to K an event that describes an occurrence of rule r which
consumes •r available conditions from K.

Proposition 3.3. Let µ ∈ NP . The class of processes of a rule sequence u ∈ R⋆ satisfies
the three following properties:

– If u is empty, i.e. u = ε, then each process from [[ε]]µ consists of
∑

p∈P µ(p) conditions
and no event.

– for all rules r ∈ R, [[u.r]]µ is empty if [[u]]µ is empty or •r 
 µ− cost(u).
– for all rules r ∈ R, if [[u]]µ is not empty and •r 6 µ − cost(u) then [[u.r]]µ collects all

processes from K · r for all processes K ∈ [[u]]µ.

Proof. By Definition 1.5, a process of the empty rule sequence from a marking µ consists of
a set of labeled places which represents µ. Consider a rule sequence u and a rule r. Assume
that [[u.r]]µ is not empty. Let K be a labeled causal net from [[u.r]]µ. We have already noticed
that some prefix K′ of K is a process of u from µ. Therefore [[u]]µ is not empty. Moreover
K belongs to K′ · r. Since u.r is a firable rule sequence, •r is smaller than the marking
reached by u from µ, i.e. •r 6 µ− cost(u). Thus, if [[u]]µ is empty or •r > µ− cost(u) then
[[u.r]]µ is empty. On the other hand, if [[u]]µ is not empty and •r 6 µ − cost(u) then any
labeled causal net from K′ · r where K′ ∈ [[u]]µ is clearly a process of u.r from µ. Further
any process from [[u.r]]µ can be obtained in this way.

Given two multisets of places µ1, µ2 ∈ NP , the maximum max(µ1, µ2) collects the maximal
number of tokens in each place: max(µ1, µ2)(p) = max(µ1(p), µ2(p)) for each p ∈ P . We
will make use of the following requirement function req : R⋆ → NP .

Definition 3.4. The requirement of a rule sequence u ∈ R⋆ is the multiset of places
defined inductively as follows:
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– req(ε) = 0,
– req(u.a) = max(req(u), •a+ cost(u)) for all u ∈ R⋆ and all a ∈ R.

The next observation shows that the requirement of a rule sequence u is the minimal
marking µ such that u is firable from µ, i.e. [[u]]µ 6= ∅.

Proposition 3.5. Let u ∈ R⋆ and µ ∈ NP . Then [[u]]µ 6= ∅ if and only if µ > req(u).

Proof. We proceed by induction over the length of u. If u = ε then req(u) = 0 hence
µ > req(u). Moreover [[ε]]µ contains each labeled causal net with no event and with a set
of conditions representing the marking µ. Induction step: Let u ∈ R⋆ and a ∈ R. Assume
first that [[u.a]]µ 6= ∅. By Prop. 3.3, we have µ > •a+ cost(u). On the other hand, we have
[[u]]µ 6= ∅ hence µ > req(u) by induction hypothesis. Thus µ > max(req(u), •a+ cost(u)) =
req(u.a). Assume now that [[u.a]]µ = ∅. We distinguish two cases.

1. [[u]]µ = ∅. Then, by induction hypothesis, we have µ < req(u) 6 req(u.a).
2. [[u]]µ 6= ∅. Then, by Prop. 3.3, we have µ < •a+ cost(u) 6 max(req(u), •a + cost(u)) =

req(u.a).

Thus [[u.a]]µ 6= ∅ if and only if µ > req(u.a).
For each rule sequence u = r1...rn ∈ R⋆ firable from µin, we let µu denote the marking

reached by u from µin, i.e. µu = µin +
∑n

i=1(ri
•−•ri). Similarly for each transition sequence

s ∈ T ⋆
N

firable from the initial marking µ◦
in, µ

◦
s denotes the marking reached by s in S◦.

We shall use the following notion of partial computation: A partial computation is a
triple (u, v, w) ∈ R⋆ × R⋆ × R⋆ such that [[v.w]]µin

∩ [[u]]µin
6= ∅ and u ∈ CS(S). Then

[[v]]µin
6= ∅ hence the rule sequence v is firable from µin. A partial computation is used as

a witness for a process Ku of u and a prefix Kv of Ku with Kv ∈ [[v]]µin
. Note that v need

not to be a prefix of u, nor to be a computation sequence of S. Partial computations are
closely related to prefix-reachable markings, as the next basic observation shows.

Proposition 3.6. For each partial computation (u, v, w), the marking µv is prefix-reachable.
Conversely, for any prefix-reachable marking µ, there exists some partial computation
(u, v, w) such that µ = µv.

Proof. Let (u, v, w) be a partial computation: There exists some labeled causal net K
such that K ∈ [[v.w]]µin

∩ [[u]]µin
. By Prop. 3.3, K may be built from a causal net Kv ∈ [[v]]µin

by adding the sequence of rules w, one after the other. Thus Kv is a prefix of K and µv is
prefix-reachable.

Let K ∈ [[u]]µin
with u ∈ CS(S) and K′ be a prefix of K. Let v be a linear extension of

the partial order of rules occurring in K′. Then K′ ∈ [[v]]µin
and µv is the marking reached

by K′. Let w be a linear extension of the partial order of rules occurring in the suffix
K \ K′. Then v.w is a linear extension of the partial order of rules occurring in K hence
K ∈ [[v.w]]µin

. Therefore (u, v, w) is a partial computation.

Lemma 3.7. Let (u, v, w) be a partial computation and a ∈ R be a rule such that •a 6 µu.
If u.a ∈ CS(S) then (u.a, v, w.a) is a partial computation.
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Proof. Let K be a labeled causal net from [[v.w]]µin
∩ [[u]]µin

. Since •a 6 µu, the class
[[u.a]]µin

is not empty (Prop. 3.3). Moreover all causal nets from [[u.a]]µin
are obtained from

some causal net from [[u]]µin
by adding an occurrence of rule a. In particular we can add

an occurrence of rule a to K and get a causal net from [[u.a]]µin
. The latter is also a causal

net from [[v.w.a]]µin
since K ∈ [[v.w]]µin

.

The proof of Prop. 3.2 relies on the two next technical lemmas which can be established
by means of a bit tedious inductions. The first one asserts that for each firable computation
sequence u ∈ FCS(S) and each prefix Kv of each process Ku ∈ [[u]]µin

, the VASS S◦ can
be guided in order to simulate each rule of u in its sequential order so that the marking
reached by u is described by the current marking of Ppre ∪ Psuf while the marking reached
by Kv is described by the current marking of Ppre ∪ Pcut. Furthermore we have to make
sure that the state q ∈ Q reached by u is also reached by s in S◦ and to check that all
events from Ku that do not occur in Kv are performed by transitions from −→suf. To do
so, we have to guide S

◦ to transfer exactly the required number of tokens from Ppre to Psuf,
which corresponds to the marking of Pcut.

Lemma 3.8. Let (u, v, w) be a partial computation in S and q be some state such that
ı

u
−→ q in S. There exists some firable rule sequence s in S◦ which leads to the marking µ◦

s

such that

(a) π−1
cut(µ

◦
s|Pcut) + π−1

pre(µ
◦
s|Ppre) = µv,

(b) π−1
suf(µ

◦
s|Psuf) + π−1

pre(µ
◦
s|Ppre) = µu,

(c) π−1
cut(µ

◦
s|Pcut) = req(w),

(d) ı
s

−→ q in S◦.

Proof. We proceed by induction over the length of u. If |u| = 0 then u = ε, q = ı,
v = ε and w = ε. The empty firing sequence of S◦ satisfies the four above properties
because µ◦

in = πpre(µin). Induction step: We consider some partial computation (u′, v′, w′)

with |u′| = n + 1. We put u′ = u.a with |u| = n and ı
u

−→ q
a

−→ q′. Let Ku′, Kv′ and Kw′

be three labeled causal nets such that Ku′ ∈ [[u′]]µin
∩ [[v′.w′]]µin

, Kv′ ∈ [[v′]]µin
is a prefix of

Ku′ and Kw′ ∈ [[w′]]µv′
is the corresponding suffix. We know that Ku′ is obtained from some

process Ku ∈ [[u]]µin
by adding an event ea that corresponds to an occurrence of rule a. We

distinguish two cases.

1. Event ea occurs in Kw′. Then there is some rule sequence w such that Kw′ ∈ [[w.a]]µv′

and Ku ∈ [[v′.w]]µin
so (u, v′, w) is a partial computation of length n. By induction

hypothesis there exists some firable computation sequence s in S◦ such that the four
above properties are satisfied. In particular, π−1

cut(µ
◦
s|Pcut) = req(w). Moreover Prop. 3.5

ensures that req(w.a) 6 µv′ because Kw′ ∈ [[w.a]]µv′
. Furthermore we have on one

hand π−1
cut(µ

◦
s|Pcut) = req(w) 6 req(w.a); and on the other hand req(w.a) 6 µv′ i.e.

req(w.a) 6 π−1
cut(µ

◦
s|Pcut) + π−1

pre(µ
◦
s|Ppre). Therefore

π−1
cut(µ

◦

s|Pcut) 6 req(w.a) 6 π−1
cut(µ

◦

s|Pcut) + π−1
pre(µ

◦

s|Ppre)
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It follows that there is some multiset of places µ̂ ∈ NP such that π−1
cut(µ

◦
s|Pcut) + µ̂ =

req(w.a) with πpre(µ̂) 6 µ◦
s|Ppre. We consider a sequence of transitions A ∈−→⋆

cut in
S◦ which consumes the multiset of tokens πpre(µ̂) and produces the multiset of tokens
πsuf(µ̂). We have

•a+ µv − µu = •a+ cost(w) 6 max(req(w), •a + cost(w)) = req(w.a)

Hence µu − µv + req(w.a) > •a. On the other hand

µu−µv+req(w.a) = µu−µv+π
−1
cut(µ

◦

s|Pcut)+µ̂ = µu−π
−1
pre(µ

◦

s|Ppre)+µ̂ = π−1
suf(µ

◦

s|Psuf)+µ̂

Hence π−1
suf(µ

◦
s.A|Psuf) = π−1

suf(µ
◦
s|Psuf) + µ̂ > •a. It follows that s.A.τsuf(a) is a firable

computation sequence of S◦. The latter satisfies the required conditions:
(a) π−1

pre(µ
◦

s.A.τsuf(a)|Ppre) = π−1
pre(µ

◦
s|Ppre) − µ̂ and π−1

cut(µ
◦

s.A.τsuf(a)|Pcut) = π−1
cut(µ

◦
s|Pcut) + µ̂

hence π−1
pre(µ

◦

s.A.τsuf(a)|Ppre)+π
−1
cut(µ

◦

s.A.τsuf(a)|Pcut) = π−1
pre(µ

◦
s|Ppre)+π

−1
cut(µ

◦
s|Pcut) = µv′ .

(b) π−1
pre(µ

◦

s.A.τsuf(a)|Ppre) = π−1
pre(µ

◦
s|Ppre)−µ̂, π−1

suf(µ
◦

s.A.τsuf(a)|Psuf) = π−1
suf(µ

◦
s|Psuf)+µ̂−

•a+

a• therefore π−1
pre(µ

◦

s.A.τsuf(a)|Ppre)+π
−1
suf(µ

◦

s.A.τsuf(a)|Psuf) = π−1
pre(µ

◦
s|Ppre)+π

−1
suf(µ

◦
s|Psuf)−

•a + a• = µu.a = µu′.
(c) π−1

cut(µ
◦

s.A.τsuf(a)|Pcut) = π−1
cut(µ

◦
s|Pcut) + µ̂ = req(w.a).

(d) ı
s

−→ q
A

−→ q′′
τsuf(a)
−→ q′.

2. Event ea occurs in Kv′ . Then there exists some v such that Kv′ ∈ [[v.a]]µin
and Ku ∈

[[v.w′]]µin
. It follows that (u, v, w′) is a partial computation of length n. By induction

hypothesis, there exists some firable computation sequence s in S
◦ such that the four

above properties are satisfied. Then we have

•a 6 µv − req(w′) = π−1
cut(µ

◦

s|Pcut) + π−1
pre(µ

◦

s|Ppre) − π−1
cut(µ

◦

s|Pcut) = π−1
pre(µ

◦

s|Ppre).

Therefore τpre(a) can be fired from the marking µ◦
s and we get a new firable computation

sequence s.τpre(a). The latter fulfills the required properties.
(a) We have π−1

cut(µ
◦

s.τpre(a)|Pcut) = π−1
cut(µ

◦
s|Pcut) and π−1

pre(µ
◦

s.τpre(a)|Ppre) = π−1
pre(µ

◦
s|Ppre) −

•a + a•, hence π−1
cut(µ

◦

s.τpre(a)|Pcut) + π−1
pre(µ

◦

s.τpre(a)|Ppre) = µv.a.

(b) Since π−1
suf(µ

◦

s.τpre(a)|Psuf) = π−1
suf(µ

◦
s|Psuf) and π−1

pre(µ
◦

s.τpre(a)|Ppre) = π−1
pre(µ

◦
s|Ppre)−

•a+

a• we get π−1
suf(µ

◦

s.τpre(a)|Psuf) + π−1
pre(µ

◦

s.τpre(a)|Ppre) = µu.a = µu′.

(c) π−1
cut(µ

◦

s.τpre(a)|Pcut) = π−1
cut(µ

◦
s|Pcut) = req(w′).

(d) ı
s

−→ q
τpre(a)
−→ q′.

Lemma 3.9. Let (u, v, w) be a partial computation and a ∈ R be a rule such that •a +
req(w) 6 µv. If u.a ∈ CS(S) then (u.a, v.a, w) is a partial computation.

Proof. Let Ku ∈ [[u]]µin
and let Kv ∈ [[v]]µin

be a prefix of Ku. Since w is firable from
req(w), there exists some labeled causal net Kw ∈ [[w]]req(w). We can build a process K′

u
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of u which admits Kv as prefix and such that the suffix K′
u \ Kv corresponds to Kw. In

particular only req(w) tokens from the multiset µv reached by Kv are consumed by Kw.
Then we can add an occurrence of rule a to K′

u which consumes •a remaining tokens from
µv − req(w).

Conversely we need to show that the marking of Ppre ∪ Pcut reached after any firable
transition sequence s of S◦ corresponds to a prefix-reachable marking of S, i.e. to some
partial computation (u, v, w). To do so, we have to build a firable rule sequence u ∈ FCS(S),
a process Ku ∈ [[u]]µin

and a prefix Kv ∈ [[v]]µin
inductively from s. At each step the state

reached by s coincides with the state reached by u. When S◦ applies an additional labeled
arc a, the corresponding partial computation is either (u, v, w) if a ∈

r
−→cut; or (u.r, v, w.r)

if a ∈
r

−→suf; or (u.r, v.r, w) if a ∈
r

−→pre. In this last case, the rule r and the sequence of
rules w can be performed concurrently: Formally we shall establish that •r+ req(w) 6 µv.
This property follows actually from the fact that w can be fired from the marking obtained
by the tokens transferred from Ppre to Psuf, i.e. πcut(req(w)) 6 µ◦

s|Pcut.

Lemma 3.10. Let s be a firable rule sequence in S◦ leading to the state q and the marking
µ◦

s. There exists some partial computation (u, v, w) of S such that

(a) π−1
cut(µ

◦
s|Pcut) + π−1

pre(µ
◦
s|Ppre) = µv,

(b) π−1
suf(µ

◦
s|Psuf) + π−1

pre(µ
◦
s|Ppre) = µu,

(c) π−1
cut(µ

◦
s|Pcut) > req(w), and

(d) ı
u

−→ q in S.

Proof. We proceed by induction over the length of s. If |s| = 0 then s = ε; the empty par-
tial computation (ε, ε, ε) satisfies the four requirements because µ◦

in = πpre(µin). Induction
step: Let s.a be a firable computation sequence of length n + 1. By induction hypothesis,
there exists some partial computation (u, v, w) which fulfills the four above requirements.
We distinguish three cases:

1. q
a

−→cut q in S◦. Then we can check that (u, v, w) satisfies the four requirements for s.a.
(a) π−1

cut(µ
◦
s.a|Pcut) + π−1

pre(µ
◦
s.a|Ppre) = π−1

cut(µ
◦
s|Pcut) + π−1

pre(µ
◦
s|Ppre) = µv.

(b) π−1
suf(µ

◦
s.a|Psuf) + π−1

pre(µ
◦
s.a|Ppre) = π−1

suf(µ
◦
s|Psuf) + π−1

pre(µ
◦
s|Ppre) = µu.

(c) We have π−1
cut(µ

◦
s.a|Pcut) > π−1

cut(µ
◦
s|Pcut) > req(w).

(d) ı
u

−→ q by induction hypothesis.
2. q

a
−→suf q

′. Then τ−1
suf

(a) is an arc q
r

−→S q
′ in S and u.r is a computation sequence of

S. Moreover π−1
suf(

•a|Psuf) = •r and π−1
suf(a

•|Psuf) = r•. Furthermore •a 6 µ◦
s, hence •r 6

π−1
suf(µ

◦
s|Psuf) 6 µu. By Lemma 3.7 we know that (u.r, v, w.r) is a partial computation

of S. Moreover
(a) π−1

cut(µ
◦
s.a|Pcut) + π−1

pre(µ
◦
s.a|Ppre) = π−1

cut(µ
◦
s|Pcut) + π−1

pre(µ
◦
s|Ppre) = µv.

(b) π−1
suf(µ

◦
s.a|Psuf) + π−1

pre(µ
◦
s.a|Ppre) = π−1

suf(µ
◦
s|Psuf) + π−1

pre(µ
◦
s|Ppre) + π−1

suf(a
• − •a|Psuf) =

µu −
•r + r• = µu.r.

(c) We have µs.a|Pcut = µs|Pcut. Moreover •a 6 µ◦
s, hence

π−1
cut(µ

◦

s|Pcut) > π−1
cut(µ

◦

s|Pcut)+π
−1
suf(

•a−µ◦

s|Psuf) = π−1
suf(

•a|Psuf)+(µv−µu) = •r+cost(w)

Then π−1
cut(µ

◦
s.a|Pcut) = π−1

cut(µ
◦
s|Pcut) > max(req(w), •r + cost(w)) = req(w.r).
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(d) ı
u

−→ q
r

−→ q′ and ı
s

−→ q
a

−→ q′.

3. q
a

−→pre q
′. Then τ−1

pre(a) is an arc q
r

−→S q
′. Moreover π−1

pre(
•a|Ppre) = •r and π−1

pre(a
•|Ppre) =

r•. We observe first that

(a) π−1
cut(µ

◦
s.a|Pcut) + π−1

pre(µ
◦
s.a|Ppre) = µv − π−1

pre(
•a|Ppre) + π−1

pre(a
•|Ppre) = µv.r

(b) π−1
suf(µ

◦
s.a|Psuf) + π−1

pre(µ
◦
s.a|Ppre) = µu − π−1

pre(
•a|Ppre) + π−1

pre(a
•|Ppre) = µu.r

(c) π−1
cut(µ

◦
s.a|Pcut) = π−1

cut(µ
◦
s|Pcut) > req(w)

(d) q
r

−→ q′ in S.

Since µ◦
s > •a, we have π−1

pre(µ
◦
s|Ppre) > π−1

pre(
•a|Ppre). On the other hand, π−1

cut(µ
◦
s|Pcut) >

req(w), hence π−1
pre(µ

◦
s|Ppre)+π−1

cut(µ
◦
s|Pcut) > π−1

pre(
•a|Ppre)+req(w), i.e µv > •r+req(w).

By Lemma 3.9, (u.r, v.r, w) is a partial computation.

We are now ready to prove Prop. 3.2. Let µ be the marking reached by a prefix K′ of
a process K ∈ [[S]]. According to Prop. 3.6, there exists some partial computation (u, v, w)
such that µv = µ. By Lemma 3.8, there exists some firable rule sequence s in S◦ such that
π−1

cut(µ
◦
s|Pcut) + π−1

pre(µ
◦
s|Ppre) = µv = µ. Conversely if π−1

cut(µ
◦
s|Pcut) + π−1

pre(µ
◦
s|Ppre) = µ for

some firable rule sequence s in S◦ then Lemma 3.10 ensures that there exists some partial
computation (u, v, w) such that π−1

cut(µ
◦
s|Pcut) + π−1

pre(µ
◦
s|Ppre) = µv. Moreover Prop. 3.6

asserts that µv is the marking reached by some prefix K′ of some process K ∈ [[S]].

3.3 Analysis of prefix-reachable markings

At present we make use of the properties of the PNS S
◦, in particular Prop. 3.2, in order

to derive some techniques to analyse the set of prefix-reachable markings of S. First, the
prefix-boundedness problem asks whether the set of prefix-reachable markings of a given
PNS S is finite. It is easy to prove that the PNS S is prefix-bounded if and only if the PNS
S◦ is bounded, which can be checked by means of the usual linear simulation by a Petri
net. Moreover, prefix-boundedness is equivalent to boundedness in the particular case of
Petri nets because the set of processes of a Petri net is closed by prefixes. Thus,

Theorem 3.11. The prefix-boundedness problem of PNSs is computationally equivalent to
the boundedness problem of Petri nets.

Proof. It is clear from Prop. 3.2 that if S◦ is bounded then there are finitely many prefix-
reachable markings in S. Conversely, assume that S is prefix-bounded. Then there exists
some M ∈ N such that µv(p) 6 M and µu(p) 6 M for all partial computations (u, v, w)
of S and all places p ∈ P . Then Lemma 3.10 ensures that if a firable rule sequence of S

◦

leads to some marking µ then µ(p) 6 M for each place p ∈ PS◦ .
Second, the prefix-covering problem asks whether a given multiset of places µ ∈ NP is
covered by some prefix-reachable marking µ′ ∈ NP , i.e. µ(p) 6 µ′(p) for all p ∈ P . It is
easy to see that µ is prefix-covered in S if and only if the multiset of places πcut(µ) is
covered by some reachable marking of S

◦. Thus,

Theorem 3.12. The prefix-covering problem for PNSs is computationally equivalent to
the covering problem in Petri nets.
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Proof. The prefix-covering problem is equivalent to the covering problem in the particular
case of Petri nets. Thus the prefix-covering problem of PNSs is as difficult as the covering
problem of Petri nets. Moreover checking the coverability of a given marking by the reach-
able markings of a PNS can be checked by means of the linear simulation of a PNS by a
Petri net. Thus we need simply to show that a marking µ0 is prefix-covered in S if and
only if the multiset of places πcut(µ0) is covered by some reachable marking of S◦.

Let µ0 ∈ NP be a multiset of places. Assume first that µ0 is covered by some prefix-
reachable marking µ of S: µ0 6 µ. By Prop. 3.2, there exists some reachable marking µ◦

in S◦ such µ = π−1
pre(µ

◦|Ppre) + π−1
cut(µ

◦|Pcut). Due to the self-loop labeled arcs from −→cut

in S◦, we can assume that µ◦|Ppre = 0 hence πcut(µ) = µ◦|Pcut and πcut(µ0) 6 µ◦|Pcut.
Conversely, assume now that πcut(µ0) 6 µ◦ for some reachable marking µ◦ of S◦. Then,

by Lemma 3.10 and Prop. 3.6, µ0 6 π−1
cut(µ

◦|Pcut) 6 µ for some prefix-reachable marking µ
of S.

Last but not least, the prefix-reachability problem asks whether a given multiset of
places is prefix-reachable in S. Let us consider a slight modification S′ of S◦ where for each
place p ∈ Psuf, each state q ∈ S◦ is provided with an additional self-loop labeled arc which
carries a rule that consumes a token from p and produces nothing. Then a multiset µ of
places is prefix-reachable in S if and only if πcut(µ) is reachable in S′. Thus,

Theorem 3.13. The prefix-reachability problem of PNSs is computationally equivalent to
the reachability problem of Petri nets.

Proof. The prefix-reachability problem is equivalent to the reachability problem in the
particular case of Petri nets. Thus the prefix-reachability problem of PNSs is as difficult
as the reachability problem of Petri nets. Moreover checking the reachability of a given
marking in a PNS can be checked by means of the linear simulation of a PNS by a Petri
net. Thus we need simply to show that a multiset µ of places is prefix-reachable in S if and
only if πcut(µ) is reachable in S′.

Let µ ∈ NP be a multiset of places. Assume first that µ is prefix-reachable in S.
By Prop. 3.2, there exists some reachable marking µ◦ in S◦ such µ = π−1

pre(µ
◦|Ppre) +

π−1
cut(µ

◦|Pcut). Due to the self-loop labeled arcs from −→cut in S◦, we can assume that
µ◦|Ppre = 0 hence πcut(µ) = µ◦|Pcut. Then πcut(µ) is reachable in S′ because the additional
self-loop labeled arcs of S′ enable us to remove all tokens in all places from Psuf.

Conversely, assume that πcut(µ) is reachable in S′. Then there exists some reachable
marking µ◦ in S◦ such that πcut(µ) = µ′|Pcut and µ◦|Ppre = 0. It follows from Lemma 3.10
and Prop. 3.6 that µ is prefix-reachable in S.

4 Checking MSO properties of processes

In this section we show how to check effectively whether all processes of a given bounded
Petri net with states S satisfy a formula ψ expressed in monadic second-order (MSO) logic.
To the best of our knowledge, this model-checking problem has not been tackled yet, even
in the particular case of Petri nets. Our approach is rather simple and relies only on Büchi
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Theorem [5] which states the equivalence between the definability of a set of words by an
MSO formula and its recognizability by a finite word automaton.

In the rest of this section, we fix a bounded PNS S with an initial marking µin over the
finite set of places P and the finite set of rules R. In order to simplify the presentation of
our result, we consider in this section that the events of a process are labeled by a rule
instead of a rule name. The MSO logic we consider applies to the class of partial orders
whose nodes are labeled by letters from the disjoint union Σ = P ∪̇R, which includes in
particular the processes of each rule sequence s ∈ R⋆. Thus the models we consider here
are triples (N,4, λ) where N is a finite set of nodes, 4 is a partial order over N , and λ is
a mapping from N to Σ = P ∪̇R.

4.1 MSO logic over words and labeled partial orders

Formulae of the MSO logic that we consider involve first-order variables x, y, z... for
nodes and second-order variables X, Y, Z... for sets of nodes. They are built up from the
atomic formulae Pa(x) for a ∈ Σ (which stands for “the node x is labeled by the letter
a”), x 4 y, and x ∈ X by means of the Boolean connectives ¬,∨,∧,→,↔ and quantifiers
∃, ∀ (both for first order and for set variables). Formulae without free variables are called
sentences.

The satisfaction relation |= between a labeled partial order (N,4, λ) and a sentence is
defined canonically with the understanding that first order variables range over nodes of
N and second order variables over subsets of N . The class of labeled partial orders which
satisfy a sentence ϕ is denoted by Mod(ϕ). We say that a class of labeled partial orders L
is MSO-definable if there exists a sentence ϕ such that L = Mod(ϕ).

4.2 A technique to decide S |= ψ

Since S is bounded, we can compute and fix some natural number B such that each
reachable marking µ of S is B-bounded, that is, µ(p) 6 B for each p ∈ P . A rule sequence
s = r1...rm ∈ R⋆ firable from µin is said to be B-bounded if the marking reached by each
subsequence r1...rl is B-bounded. In particular any firable computation sequence of S is
B-bounded.

We fix a word win ∈ P ⋆ that is a linear extension of µin, i.e. |win|p = µin(p) for all p ∈ P .
Similarly, for each rule r ∈ R, we fix a word wr = r.w′

r where |w′
r|p = r•(p) for all p ∈ P .

Then for each rule sequence s = r1...rm ∈ R⋆, the sequence ws = win.wr1
...wrm

is called
the representative word of s. As usual, we will regard ws as a linearly ordered set of nodes
labeled by letters from Σ and we will write ws = (N,6, λ) where N is a set of nodes, 6

is a total order over N , and λ : N → Σ is a labeling. Nodes labeled by a place are called
place nodes whereas nodes labeled by a rule are called rule nodes. Interestingly, ws is a
linear extension of any process of s, where the place nodes following a rule node labeled
by r correspond to the multiset of tokens r• produced by this occurrence of r.

In order to recover a process of s from the representative word ws, we need to specify
which available tokens are consumed by each occurrence of rule. To do so, we use a coloring
of the place nodes of ws so that at each step all available tokens in a given place get distinct
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ws x y z p z x c y

C1 ✗ ✗ ✗

C2 ✗ ✗ ✗

Dx,1 ✗

Dy,2 ✗

Dz,2 ✗

;

x z

p

x

z

y

c

y

Fig. 16. A process coloring of ws = xyzpzxcy and the corresponding process

colors. Moreover we also provide rule nodes with a series of other colors in order to specify
which tokens are consumed at each step of s.

Definition 4.1. Let w = (N,6, λ) be a linear order of nodes labeled by Σ. A process
coloring of w consists of

– a partition C = {C1, ..., CB} of the set of place nodes; a place node n ∈ N is said to be
colored by k in place p if λ(n) = p and n ∈ Ck.

– for each place p ∈ P and each k ∈ [1..B], a subset of rule nodes Dp,k; we say that a rule
node n ∈ N consumes a token colored by k in place p if n ∈ Dp,k.

Moreover the three next conditions must be satisfied:

PC1: For each rule node n, for each place p ∈ P : #{k ∈ [1..B] | n ∈ Dp,k} = (•λ(n))(p);
PC2: For each place p ∈ P and each color k ∈ [1..B], any two place nodes colored by k

in place p are separated by some rule node which consumes a token colored by k in
place p;

PC3: For each rule node n which consumes a token colored by k in place p, there exists
some preceding place node n′ < n colored by k in place p such that no rule node
between n′ and n consumes a token colored by k in place p.

Intuitively a place node belongs to Ck if it describes a token colored by k in place λ(n) ∈ P .
A rule node n belongs to Dp,k if it describes an occurrence of the rule λ(n) ∈ R which
consumes a token colored by k in place p. Thus the condition PC1 asserts that n consumes
the appropriate multiset of tokens in each place, provided that these tokens have distinct
colors. Precisely PC2 guarantees that the colors given to new tokens produced by the
occurrence of a rule in a place differ from the colors used by available tokens in this place.
It ensures also that the tokens produced in some place by the occurrence of a rule get
distinct colors. Consequently, at each step all available tokens in a place have distinct
colors. In order to recover a process of s from a process coloring of ws, we have to make
sure that there are enough available tokens when each rule is applied. The last requirement
PC3 guarantees that for each rule node which consumes a token colored by k in place p,
some token of this kind occurred before the rule and has not been consumed in between.

We can show that the notion of process coloring characterizes the linear extensions of
processes and allows to recover a process from a word. This property is established by the
two next statements (Prop. 4.2 and 4.3). Consider for instance the rule sequence s = pc
from the initial marking µin = {x, y, z} where p : x ➝ x + z and c : y + z ➝ y. A process
coloring of ws = xyzpzxcy with B = 2 is given by the tabular on the left-hand side of
Fig. 16. The corresponding process is depicted on the right-hand side of Fig. 16.
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Proposition 4.2. Let ws = (N,6, λ) be a linear order of nodes labeled by Σ which cor-
responds to the representative word of a rule sequence s ∈ R⋆. Let C = (Ck)k∈[1..B] and
D = (Dp,k)p∈P,k∈[1..B] be a process coloring of ws. Let ·≺ be the binary relation over N such
that x ·≺ y if

– either x is a rule node and y is a following place node with no rule node in between
– or y is a rule node and x is a preceding place node colored by k in place p such that y

consumes a token colored with k in place p and no rule node between x and y consumes
a token colored with k in place p.

Let 4 be the reflexive and transitive closure of ·≺ . Then the labeled partial order (N,4, λ)
is a process of s firable from µin, denoted by KC,D(s). Moreover s is B-bounded.

Proof. We proceed by induction over the length of s. The base case where |s| = 0 is
trivial because ·≺ is empty and µin(p) 6 B for each p ∈ P . Induction step. Let s = r1...rm

be a rule sequence of length m > 1 and ws = (N,6, λ) be its representative word. Let
(C,D) be a process coloring of ws. We consider the subsequence s′ = r1...rm−1 and its
representative word ws′ = (N ′,6, λ) with N ′ ( N . It is easy to check that the restriction
of the process coloring (C,D) to the nodes from N ′ is a process coloring of ws′. Let ·≺ s′ be
the corresponding binary relation over N ′ and 4s′ be the corresponding partial order. By
induction hypothesis, (N ′,4s′, λ) is a process K′ of s′ and s′ is a rule sequence firable from
µin and B-bounded. Note that the binary relation ·≺ is acyclic. Moreover the restriction
of (N,4, λ) to nodes of N ′ is precisely the process K′ = (N ′,4s′ , λ) of s′. We need to check
that adding the nodes from N \N ′ to K′ according to ·≺ yields a process of s. To do so,
we check the three next properties:

1. For each place p ∈ P , the rule node n◦ ∈ N \ N ′ corresponding to rk covers at most
•rk(p) place nodes labeled by p, i.e. #{n ∈ N ′ | n ·≺ n◦ ∧ λ(n) = p} 6 •rk(p). This
follows from PC1 and PC2.

2. For each place p ∈ P , the rule node n◦ ∈ N \ N ′ corresponding to rk covers at least
•rk(p) place nodes labeled by p, i.e. #{n ∈ N ′ | n ·≺ n◦ ∧ λ(n) = p} > •rk(p). This
follows from PC1 and PC3.

3. The conditions do not branch, i.e. for each place node n ∈ N , if n ·≺ n1 and n ·≺ n2 then
n1 = n2. This is ensured by the definition of ·≺ itself.

It follows that the labeled partial order K = (N,4, λ) is a process of s. Thus s is firable
from µin. Finally for each place p and each color k, PC2 guarantees that at most one place
node colored by k in place p is not covered by a rule node. Therefore the marking µ reached
by the process K satisfies µ(p) 6 B for all p ∈ P . Thus s is B-bounded.

Thus each process coloring of ws yields a process from [[s]]µin
. Consequently s is firable

from µin as soon as it admits a process coloring. With no surprise s has to be B-bounded,
too. Conversely the next result asserts that each process of any rule sequence s firable from
µin can be obtained by some process coloring of ws, provided that s is B-bounded.

Proposition 4.3. Let s = r1...rm be a B-bounded rule sequence firable from µin and K
be a process of s. Then there exists a process coloring (C,D) of the representative word ws

such that KC,D(s) is isomorphic to K.
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Proof. We proceed by induction over the length of s. The base case where |s| = 0 is trivial
because µin is B-bounded. Induction step. Let K = (B∪E,F ∗, λ) be a process of s = r1...rm

of length m > 1 with set of conditions C and set of events E. We consider the subsequence
s′ = r1...rm−1 and the prefix K′ = (B′ ∪ E ′, F ∗, λ) of K in which the event e◦ ∈ E
corresponding to the last occurrence of rm and the subsequent conditions are removed.
Clearly K′ is a process of s′. By induction hypothesis, there exists a process coloring
(C ′, D′) of ws′ such that KC′,D′(s′) = (N ′,4C′,D′, λ) is isomorphic to K′ = (B′ ∪ E ′, F, λ).
We let σ : B′ ∪E ′ → N ′ denote an isomorphism from K′ to KC′,D′(s′), i.e. a bijection such
that

– x1F
∗x2 iff σ(x1) 4C′,D′ σ(x2) for all x1, x2 ∈ B′ ∪E ′ and

– λ(σ(x)) = λ(x) for all x ∈ B′ ∪ E ′.

We extend the bijection σ : B′ ∪ E ′ → N ′ to a bijection σ : B ∪ E → N such that

– σ(e◦) is the rule node from N \N ′, and
– each condition c from B\B′ maps to a place node σ(c) ∈ N\N ′ such that λ(σ(c)) = λ(c).

We extend also the process coloring (C ′, D′) to a process coloring (C,D) of ws in two steps:

1. For all places p ∈ P and for all colors k ∈ [1..B], the rule node σ(e◦) belongs to Dp,k if
the event e◦ covers a condition c such that the corresponding node σ(c) is labeled by p
and colored by k, i.e. λ(c) = p and σ(c) ∈ C ′

k.
2. The colors of the additionnal place nodes from N \N ′ are chosen arbitrarily such that

all maximal conditions of K labeled by the same place p have distinct colors. This is
possible because the marking reached by s is B-bounded.

We can check that the resulting coloring (C,D) is a process coloring.

PC1: Let p ∈ P and n◦ = σ(e◦). Since K is a process, #{k ∈ [1..B] | n◦ ∈ Dp,k} 6

(•λ(n◦))(p). We can check that all conditions labeled by p and covered by the event
e◦ have distinct colors, because of PC2. Thus #{k ∈ [1..B] | n◦ ∈ Dp,k} = (•λ(n◦))(p).

PC2: The required property holds for any two place nodes from ws′ because (C ′, D′) is a
process coloring. It holds also by construction for any two place nodes from N \N ′. It
holds also obviously if one place node belongs to N ′ and the other to N \N ′ because
the rule node n◦ occurs in between.

PC3: The required property holds for each rule node n ∈ N ′. Let p ∈ P and k ∈ [1..B] be
such that n◦ ∈ Dp,k. By definition of Dp,k the event e◦ covers a condition c such that
the corresponding node n = σ(c) is labeled by p and colored by k. Moreover there is
no rule node n′ between n and n◦ with n′ ∈ Dp,k. Otherwise the condition c would
be also covered by some event in K′, hence c would be a branching condition in K.

Recall that σ maps each condition from B \B′ to a place node from N \N ′ with the same
label. All these conditions cover e◦ and all these place nodes cover σ(e◦). To conclude, we
need to check that for each place node n ∈ N ′, we have n ·≺ C,Dn

◦ in KC,D(s) if and only
if σ−1(n)Fe◦ in K.
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Assume first that n ·≺ C,Dn
◦. Then there exists a place p ∈ P and a color k ∈ [1..B]

such that λ(n) = p, n ∈ Ck, and n◦ ∈ Dp,k. Further there exists some condition c in the
process K such that cFe◦, λ(c) = p and σ(c) ∈ Ck. Then σ(c) = n because of PC2. Hence
σ−1(n)Fe◦ in K.

Conversely, assume now that σ−1(n)Fe◦ in K. Let p = λ(n) and k be the color such
that n ∈ Ck. We have n◦ ∈ Dp,k according to the definition of Dp,k. No event in K′ covers
σ−1(n) so there exists no rule node in ws′ after n which is colored by Dp,k. It follows that
n ·≺ C,Dn

◦.
Thus the notion of process coloring characterizes the processes of any B-bounded rule
sequence firable from µin.

Following the easy part of Büchi Theorem, we can design an MSO formula φS which
defines the words w = (N,6, λ) over Σ which are representative words of a computation
sequence of S. We can also design a formula φpc(C,D) with B × (|P | + 1) second-order
free variables C = (Ck)k∈[1..B] and D = (Dk,p)k∈[1..B],p∈P which characterizes the notion of
a process coloring for a word w = (N,6, λ) over Σ. Moreover, by means of Prop. 4.2,
we can build a formula φ4(x, y, C,D) with two first-order free variables x and y and
B×(|P |+1) second-order free variables such that for any interpretation of C = (Ck)k∈[1..B]

and D = (Dk,p)k∈[1..B],p∈P and any interpretation of x and y, φ4(x, y, C,D) is satisfied if
and only if we have x 4 y in the process corresponding to the process coloring given by
the interpretation.

Let ψ be an MSO sentence for labeled partial orders over Σ. We consider the following
formula ψS for words over Σ:

ψS = φS ∧ ∃C, ∃D, (φpc(C,D) ∧ ¬ψ′(C,D))

where the formula ψ′(C,D) is obtained from ψ by replacing each occurrence of x 4 y by
φ4(x, y, C,D). Thus a word satisfies ψS if (and only if) it is a representative word of a
computation sequence s of S for which there exists a process coloring which describes a
process satisfying ¬ψ. In this way we get the main result of this section.

Theorem 4.4. Let S be a bounded PNS and ψ be an MSO sentence over causal nets. All
processes of S satisfy ψ if and only if the word sentence ψS is not satisfiable.

Thus the model-checking problem for a bounded PNS against an MSO-sentence is decid-
able. In practice, the unsatisfiability of ψS is reduced to the emptiness problem of a finite
automaton. It is of course more efficient not to include the sentence φS and to compare the
resulting automaton with the automaton that recognizes the representative words of com-
putation sequences of S. Noteworthy we could provide the PNS S with a subset of accepting
states and check alternatively that all processes derived from an accepting computation
sequence satisfy ψ.

4.3 Comparisons to related works

This result subsumes previous works in several extents. A cMSG is said to be safe if all
paths from the initial state to some fixed state lead to the same marking. Consequently,
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any safe PNS is bounded. This constraint is interesting because checking whether a PNS
is bounded and computing a bound is hard and requires exponential space [11]. Yet the
technique presented in this section allows us to check effectively MSO properties of the
processes derived from a bounded (non-safe) cMSG or more generally a bounded PNS.
Since MSO behaviours can be characterized by some MSO sentence, this result extends
the main result from [26] which asserts that the model-checking problem for safe cMSGs is
decidable (see also [13, Cor 6.1]). As opposed to [13, 26], we do not assume FIFO behaviours
and consequently we cannot make use of the notion of representative linearizations. The
fact is that, as already mentionned, a computation sequence can correspond to several non-
isomorphic processes depending on the order identical particles are consumed. Therefore
we need the notion of process coloring (Def. 4.1) to recover a process from a word. This
is the main difference with the setting of MSCs because these are completely specified
by any of their linearizations. Still, the FIFO restriction can be formalized in MSO logic
and our technique applies also in this special case. Second Petri nets and VASSs abstract
away from the notions of sites and channels in the setting of MSCs: A place can describe
the local state of a site, a communication channel, a shared-variable, etc. In particular
our approach applies to any bounded Petri net. To the best of our knowledge, the model
checking problem of bounded Petri nets against MSO formulae under the process semantics
has not been investigated so far in the literature. We show with an example below that
the process semantics of Petri nets can be used to model and check systems with specific
behavioural constraints, such as FIFO channels, causal communication, or private keys, as
soon as these restrictions can be formalized by an MSO sentence. Note finally that it may
be possible to encode a bounded Petri net with a safe cMSGs. However this requires to
represents each reachable marking by a distinct control state so the size of the resulting
cMSG would be exponential in the size of the Petri net even for 1-safe Petri nets.

5 Conclusion

We introduce a natural partial order semantics for vector addition systems with states
(and Petri nets with states) which extends the non-branching process semantics of Petri
nets and follows the asynchronous approach of message sequence charts. We show how
basic problems about the set of markings reached along concurrent executions, such as
boundedness, covering and reachability, can be solved similarly to the analogous problems
for Petri nets. We show also how to check effectively any MSO property of these partial
orders provided that the system is bounded. This result generalizes results known for
message sequence graphs and is new, even in the restricted case of Petri nets.

However vector addition systems with states are not always as easy as Petri nets to
handle. We have observed that vector addition systems with states are more expressive than
(pure) Petri nets under this process semantics. Moreover the synthesis problem of Petri nets
from prefix-bounded vector addition systems with states turns out to be undecidable. As
a consequence we have illustrated the gap between Petri nets and vector addition systems
with states as follows: It is undecidable whether two prefix-bounded vector addition systems
with states are semantically equivalent, contrary to Petri nets.
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Introduced as a formal model for the semantics of elementary Petri nets, Mazurkie-
wicz traces [27] are particular labeled partial orders that benefit from a rich and still
growing theory [7]. In particular we have made use of the undecidability of the universality
problem for rational trace languages to establish all undecidability results presented in this
paper. We have shown that Mazurkiewicz traces can be described as the processes of very
particular prefix-bounded systems. However Mazurkiewicz trace theory enjoys several nice
positive results for particular rational languages. Most of these results have been already
adapted to the setting of message sequence charts (see in particular [19]). Thus, this study
leads us to investigate an extension of Mazurkiewicz trace theory to the whole setting of
prefix-bounded Petri nets with states. Moreover some classes of Petri nets with states for
which realizability and prefix-realizability become decidable might arise from this study.
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