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Abstract

Lower and upper bounds for the Rayleigh conductivity of a perforation in a thick plate
are usually derived from intuitive approximations and by physical reasoning. This paper
addresses a mathematical justification of these approaches. As a byproduct of the rigorous
handling of these issues, some improvements to previous bounds for axisymmetric holes
are given as well as new estimates for inclined perforations. The main techniques are a
proper use of the variational principles of Dirichlet and Kelvin in the context of Beppo-
Levi spaces. The derivations are validated by numerical experiments in the two-dimensional
axisymmetric case and the full three-dimensional one.

1 Introduction

1.1 Effective impedance boundary conditions

The Rayleigh conductivity is a key ingredient in the construction of effective conditions making it possible to
easily account for the transmission and the reflection of an acoustic wave by a plate with small perforations
in any easy way. This parameter is involved in most of the models governing the interaction of sound with a
perforation: the plain acoustic linear system [14, 25], Howe [7, 8, 9], and Melling models [16]. Contrary to the
former model that completely neglects the absorption of acoustic energy by the perforation, the two later ones
account for it by means of an aeroacoustic effect and a pure viscosity dissipation respectively. However, numer-
ically computing the Rayleigh conductivity is generally a non trivial task. This problem is three dimensional in
general. Its numerical solution thus may become rapidly hard to carry out due to the large size of the problem
to be solved. Another difficulty is related to the fact that this problem is set on an unbouded domain so that its
numerical solution should be tackled either by a boundary element code [23] or by deriving a radiation condition
incorporating the behavior of the solution at infinity in an accurate way (see, e.g., [5, 11]).

To overcome these technical difficulties, many authors proposed to approximate the Rayleigh conductivity
by close formulas [1, 7, 10, 19], derived either analytically or by intuitive approaches. In these papers, it is hard
to distinguish among the approximations which are heuristic and which can be subject of a rigorous approach.
On the one hand, the objective of this paper is to provide a rigorous background for the derivation of such
approximations. On the other hand, many studies were devoted to the comparison of these models to acoustic
experiments [2, 10, 12, 18, 20]. However, due to the various approximations carried out to derive the models, it
is almost impossible to distinguish the modeling errors coming from the approximate estimates of the Rayleigh
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conductivity to those induced by the choice of a specific model. Another objective of this paper is to make this
point as clear as possible.
1.2 Definition of the Rayleigh conductivity

Let P be a straight plate with a finite thickness h > 0 with one perforation ) as depicted in Figure 1. Thus,
the plate coincides with

P={xeR?x[s_,s;]and x ¢ Q}, (1)

with s —s_ =h, Q C R? x [s_,s,] a simply connected domain and z3 in [s_, s;]. The domain filled by the
fluid is D = R3\P, and can hence be seen as the domain admitting as a non overlapping decomposition € and
the following two half-spaces

Dy={xeD|az3>s;} andD_={xeD|a3<s_}. (2)
We denote by I'; and I'_ the lower and upper apertures of the perforation €2, i.e.,
'y = {XE@Q|JE3=S¢}.

The lateral part of the boundary of Q is ¥ = Q N P, hence 90 can be expressed also in terms of its non
overlapping decomposition in I'_, I} and X.

Figure 1: Schematic representation of the domains

The Rayleigh conductivity Kp relates the pressure differentiel from one to the other side of the perforation

to the volume flux Q = / v3ds = / vsds through the aperture
r_ Iy

Po Ot Q
Kr=—""—"— 3
R P _ P+a ( )
with pg the density of the fluid at rest, v3 the component along zs-axis of the velocity v, P™ and P~ the
pressures on the upper and lower side of the perforated plate. The Rayleigh conductivity has the dimension of
length, and Eq. (3) is the analogue of Ohm’s law.

In several models (cf., e.g., [8, 9, 15, 17]), the Rayleigh conductivity is used as an effective length



where A is the area of the aperture, which expresses the part of the acoustic impedance in the inertial effect of
the fluid. The governing equations yielding the Rayleigh conductivity can be expressed in terms of the following
boundary-value problem set in the unbounded domain D (cf. [9]):

po0yv + Vp =0, in D,

V.-v=0, in D,
Onp =0, on 0P, (4)
lim p(x) = P¥,
|x|—+o00
so that )
Kp=——-— 15; dsx. )
n=prp | ) )

To compute Kp, we introduce the change of unknowns u = (p — (P+ + P_) /2) / (P+ — P_) that yields the
following expression for K

Kp = / Oau ds. (6)
ry

Another feature of this change of unknown is that the time derivative in problem (4) can be removed leading
to:

Au(x) =0 in D,

Opu(x) =0 on OP, (7)
lim wu(x)=+1/2 on Dx.

|z|—+oc0

1.3 Contents of the paper

The present paper is organized as follows. In section 2, some links between Beppo Levi function spaces and
the space of functions with square integrable gradients are brought out and made clearer. In section 3, we
introduce the Dirichlet and Kelvin dual principles which are the main ingredients for deriving bounds of the
Rayleigh conductivity. Section 4 is devoted to the derivation of closed analytical expressions for the bounds
for cylindrical, conical and inclined apertures. In Section 5, the obtained formulas are illustrated by numerical
experiments. The computations are carried out for the two-dimensional case for an axi-symmetric perforation
and with the full three-dimensional library CESC of CERFACS for a general shape.

2 Functions with square integrable gradient

The classical functional setting for solving Laplace problems posed on three-dimensional unbounded domains
is the Beppo-Levi space, the space of functions that "weakly tend to zero at infinity” whose gradient is square
integrable. Unfortunately, this space is not adapted for the solution of problem (7) whose solution has to be
sought in

H(D) = {v e HL (D) | Vo e LQ(D)},

where H (D) is the space of functions v defined almost everywhere in D such as pv € H*(D) for all ¢ € D(R?).
In this section, we clarify the relation between H and the Beppo-Levi space in dimension 3. To prove that problem
(7) is well-posed, we first derive a Green formula involving elements in H and vector fields in

W(D) = {a€L*D)|diva=0inDand q-n=0onaD}. (8)



Domain A refers either D, D_ or to D,. The Beppo-Levi space BL(A) is defined as the closure of D(A) =
{ula | © € D(R3)} with respect to the H' semi-norm

1

[vlBLa) = </A Vo (x)|? dx> ’

It is shown in [6] that BL(A) can be characterized as a Hilbert space and coincides with the weighted Sobolev
space

BL(A) — {v € HL (A)| Vv € L2(A) and gt € L2(A)}. 9)

The following proposition collects some usefull properties of functions with square integrable gradients.
Proposition 2.1. Let v € H.

(i) The mean values of v respectively on the hemisphere I't = {x € R | x5 > s; and |x — c4| = R} and
' ={xeR?® |23 <s_ and |x — c_| = R}, with cx = (0,0, 5+), converge as R — +oo0, i.c.,

v4 = lim

1
o /FQ v(x)dsx.
(i) The restrictions of v to D_ and Dy satisfy v|p, — v+ € BL(D4).
(iii) The usual Beppo-Levi space BL(D) can be characterized as BL(D) = {v €EH|v_=0and vy = O}.
(iv) The space H is a Hilbert space when equipped with the inner product

(u,v)n = /DVu(x) -Vo(x)dx + uy vy + u_ v_. (10)

Proof. To prove point (i), we start by denoting (ri,0, ) the spherical coordinates with origin at s, =
(0’ 0, S+)
1 =714 sinfy cospy, o =r4 sinfy sinp, and w3 =sy +ry cosfy,

and the associated metrics
dox =sinf; dfydpy and dvx =sinf; dfydeydry.

We denote by 7(R) the mean value of v over the half-sphere I'ff

1 1 /2 27 '
U(R) = by /FR v(x)dox = o/, /0 v(R,04,04) sinfy diido. (11)
i

Let us prove that T(R) satisfies the Cauchy criterion for convergence as R tends to infinity. We have

/FR (v (R') —v(R))dax

Applying the Cauchy-Schwartz inequality, we get

) 1/2 . 1/2

_ _ 2

|'U(R/) f’U(R)| S 27 / |8T+’U(T+70+,SD+>| 7"_2|_de / —dex .
m TEx[R,R'] MEx[R,R] T+

This hence establishes the existence of v, since

1 1
= — <7
2w

W(R) — E(R)‘ <o

/ 8T+U(T+79+7@+)dux .
fo[R,R’]

1 1

[W(R') - 5(R) L

| < L\VU|L2(D ) —
- V2 + R,R'—+o00



The convergence to v_ is obtained in exactly the same way.

Now, we carry out the proof of point (ii). In view of definition (9) of BL(D.), it is sufficient to show that
(vlp, —v4) /4/1+ 7% € L*(Dy) or equivalently (vlp, —vy) /4/1+72 € L*(D4 1) with

Di1= {xe Dy |ry > 1}.

This amounts to prove that (v|p, (x) —o(ry)) //1+7% € L*(Dy 1) and (0(ry) —vy) /4/1+72 € L*(D41).

To prove that (v[p, —v(ry)) /4/1+7% € L*(D4 1), we observe that

vlp, —B(rs)
(1472)%

2 —v(r ’
- /S ( o, (+)) ri dvxg/ (v(r+,9+,<p+)—i(r+))2dvx,

2
L2(Dg 1) 1+T+ Sy

with Sy the part of the unit sphere S such that x5 > 0. Using Poincare inequality on the unit sphere, we get

2
2 D, v
< et :
= ¢ S+ <(69+U) i (Sin9+) )dvx
1

2 2
Since |Vo|* = (Or,v)? + (:83+U) + (3 v) , we obtain
+

rysinf; °F

2
U‘D+ —5(7“4_)
(1+72)2

L2(D4,1)

2
vlp, —7(ry)

(1+7r2)z

< C/ IVol*r? dve < C|Vulias,) < +00.
L2(s) >+

Then, we seek to prove that (v(ry) —vy) /1/14r% € L?(Sy). Since

_ 2
[ Gy,
S+

1+72

o(ry) —vi
(1+73)7

L2(D4,1)

taking R = r, and letting R’ tend to infinity in Eq. (12), we get

~ 1 1
[(re) —vi| < 7ﬁ2W|VU|L2(D+)E,
and thus
o(ry) — vyt 1 2 1 Lo,
1 < oIVolizp,) | 77 dox < <[Vl < 400
A% |,y 27 s MR 8

Similarly, we have v|p_ —v_ € BL(D_-).

To prove point (iii), we first establish that Jv € H | v— = 0 and vy = 0} C BL(D). Let v € H such as

v_ = vy = 0. Tt follows from (ii) that v € BL(D_) and v € BL(D.). Characterization (9) of BL in terms of
weighted Sobolev space yields v € BL(D).

Conversely, we prove that BL(D) C {v €H|]v_=0and vy = O}. If w € BL(D), it follows from (ii) that
u—us € BL(D4) and that u — u_ € BL(D_). Therefore, uy belongs to BL(D4). This is impossible except if



ug = 0 since / 1/ (14 |z?) dx = +cc.
D+

This brings us to point (iv). Clearly, (u,v) — (u,v)n is a scalar product on H. It first remains to establish
that it is an Hilbert space. Let (v,) be a Cauchy sequence in H. Denoting by £+ two cut-off functions such as
£+(x) =11in D4 and &4 (x) = 0 in D4, we consider the function

W = vy — (Vn) 1§+ — (V) -,

that belongs to BL(D) as established in (ii). We first remark that (w,,) is a Cauchy sequence of BL(D) equipped
with its natural norm |v|g (p) = |V|r2(py since Vo, is a Cauchy sequence in L?(D) and (vn)4, (vn)— are
convergent,

(vn)+ — U4 and  (v,)- — -  with vy, v_ €R. (13)

It follows from the completeness of BL(D) that w,, converges to w € BL(D)
Vw, — Vw in L*(D).

The function v = w+£,7, +£_70_ belongs to H and satisfies v =74, v_ = T_. To complete the proof, it just
remains to establish that v, converges to v in H

IV(on = )20y < |V(wn —w)+ ((Un)+ - 5Jr)er + ((Un)f - 57)§7|L2(D)
< (Vs —w)| + ()~ Tl + ()= ~T)E ] = 0 (1)

|(Un)+ — v ] = |(vn)+ — U+| — 0 when n — +oo.

The following lemma establishes the above mentioned Green’s formula involving a function v in H and a scalar
field q in W.

Lemma 2.1. For allv € H and g € W, the following Green’s formula holds true

[ 060 ax)ix = (i = o) [ an) e

+

Proof. Let A=D, Dy or D_. For w € BL(A) and q € W defined in Eq. (8), Green’s formula yields ([6])

[ vl - axix - /8 () afx) - ds

where dsy is the elemental area on JA. The integral I = / Vou(x) - q(x)dx is decomposed into three parts

D
which are separately expressed by means of a Green’s formula because v|p, — v+ € BL(D4).

/ Vv(x)~q(x)dx:/ V(v(x)fvi) Cq(x)dx = ;/ (v(x)fvi>Q3(x)dsx,
D DL Ty (1)
/QVU(X) -q(x)dx = /F+ v(x)g3(x)dsx — / v(x)qs(x)dsx.

Since / q3(x) dsx = / q3(x) dsx, we sum the above conditions to obtain I = (v; —v_) / q3(x) dsx.
Ly

Lemma 2.2. There exists a unique solution v € H to problem (7) characterized by u € Hy/ and Vu € W,
where Hy /5 is the affine space

Hipp = {v eHlvy=1/2 and v_ = —1/2}.



Proof. Let us first recall a similar result in BL(D) [6]. For f € D(D) and g € D(9D), there exists one and only
one u € BL(D) such that
Au=finD and Oyu=gon dD. (16)

We first start establishing the uniqueness of the solution. If u; € H and us € H are two solutions to (7),
w = uy — ug belongs to BL(D) and satisfies Aw = 0in D and d,w = 0 on 9dD. Property (16) directly yields
that w = 0.
We now move on to seeking a solution. Let us define w € BL(D) by

A£+ Af_ _ 8n§+ ang—

Ay = ——T 4 —— = )
w 2+2and8nw 2—!—2

Function u = w+ &, /2 —§_ /2 € Hy /5 and satisfies

Au(x) =0in D and 9,u(x) =0 on 9D.

It remains to prove that lim wu(x) =1/2on Dy and lim wu(x) = —1/2 on D_. This last point is easily
|z|—+o00 |z]|—+o00
obtained by a separation of variables. Y

3 The Dirichlet and Kelvin principles

The Dirichlet and Kelvin principles' are two variational principles, dual each to the other. This theory, which
takes its roots in Lagrangian and Hamiltonian mechanics, is of great importance in several areas, particularly in
mathematical modeling [4, Chap 4, Sect 9] to obtain lower and upper bounds for potential and kinetic energies,
in optimization [13] to derive the dual formulations, and in numerical analysis [22, Chap 1] for assessing the
validity or the accuracy of a numerical solution.

In this paper, these dual variational principles offer an ad-hoc framework to derive lower and upper bounds
of the Rayleigh conductivity Kg.

Proposition 3.1. The Rayleigh conductivity K can be obtained equivalently in one of the following ways:

2

Dirichlet principle: Kr = min Ji(v) with Ji(v) = / ‘Vv(x)’ dx
v 1/2 D

(17)

Kelvin principle: Kp = max Jo(q) with Ja2(q) = 2/ q3(x) dsx—/ la(x)|? dx.
qe D

Proof. Let J: H x L?(D) — R* be the functional

Jo,q) = /D la(x) — Vo) dx.

We first prove that (u, Vu) is the unique element of H; /5 x W where J reachs its minimum. Lemma 2.2 gives
that the solution to problem (7) satisfies

J(u,Vu) =0, wecHyp VueW.

Thus (u, Vu) is a point where J reaches its minimum on Hy » x W. On the other hand, every (v,q) € Hy /o x W
satisfying J(v,q) = 0 is such that Vv = q. Lemma 2.2 directly yields v = v and q = Vu. The above claim is
thus proved.

n the context of electrostatics, the Kelvin principle is also called the Thompson principle. William Thompson is the name at
birth of Lord Kelvin.



We now show that J; reachs its minimum at v and Jy its maximum at Vu. Lemma (2.1) gives that, for all
v€EH;and qeW

[ 9060 atix = (v =) [ a0 dse = [ ) dse (18)

It follows that J(v,q) = Ji(v) —J2(q) thus establishing that J;(u) < Ji(v) for all v € Hy /5 and Ji(q) < J1(Vu)
for all g € W.

Finally we prove that Kp = J;(u) = J2(Vu). Since J(u, Vu) = J1(u) — J2(Vu) = 0, we have J; (u) = Jo(Vu).
To conclude, it remains to prove that Ji(u) = Kg. Substituting u for v and Vu for q in (18), we readily get

Ji(u) = /D|Vu(x)|2 dx = / Opyu(x) dsxy = Kg. X

4 Bounds for the Rayleigh conductivity of some usual perforations

Proposition 3.1 is used to get upper and lower bounds for the Rayleigh conductivity for usual perforations. We
consider axi-symmetric geometries, related to cylindrical and conical apertures, as well as perforations which
give rise to a full three-dimensional problem.

4.1 Cylindrical apertures
Here, we consider a cylindrical perforation 2 = {(ml,xg,xg) € R3 | (z1,22) € Sg and a3 € [s_,s+]} with

circular section S = {(xl,xg) eR? |22 +2i< R} (see Figure 2 below).

T1

T2

Tr3 = S_ I3 = S1

Figure 2: Cylindrical aperture of radius R

Theorem 4.1. For a cylindrical perforation, we have the following bounds for its Rayleigh conductivity:

_ n . _ T R? L T R?
KR,Cyl S KRJ:yl S KR,Cyl with KR,Cyl = m and KR,Cyl = m (19)

Proof. As established above, the Dirichlet principle allows us to obtain the upper bound
KRyt < Ji(v) for all v € Hyjs. (20)
We first consider the following problem
Awg(x) =0 for z3 # 0,
Opswr(T1,22,0) =0 for 2 + 23 > R?, (21)

wg(z1,72,0) =1/2  for 2 + 23 < R?,



whose solution wr € BL(R?) can be expressed analytically by (|24, §3.4, pp 72])
) = - 1 dsy
F 22 Jgp VR2 — [y]2 X =Yl

with Br = {(y1,2,y3) € R® | ¥? + y2 < R? and y3 = 0}. For a = (ay,a_) € R? a pair of real numbers, we
denote by v, : D — C the function defined by

for z3 # 0, (22)

1/2 — (1 = 2a4) wr(z1, 2,23 — S4) for z3 > sy,
va(xX) =< a_+(ay —a_)(zg—s_)/h for s_ <3 < s4,
—1/24+ (1 +2a_)wgr(z1,22,23 —s—) for xzg < s_.

Proposition 2.1 gives that v, € H;/p. Lemma A.1 in Appendix A then yields
/ |Vwg(z1, 22, 23 — si)|2dx = R.
Dt
Hence,

Jl(va)z/D\vua(x)Fdx:/D |Vva(x)|2dx+/9|Vva(x)|2dx+/D (Vo (3|2 dx
=R(1- 2a+)2 + (ay —a_)?7R*/h+ R(1+20_)>. (23)

Solving this elementary minimization problem, we get «_ = ay = h/ (7R + 2h) and J;(vy) = 7R?/ (h + ©R/2).

The lower bound is obtained from the Kelvin principle

Kpcy > J2(q) for all g in W. (24)
We consider the problem
Azgr(x) =0 for x5 # 0,
Ons2r(21,22,0) =0 for 2% + 23 > R?, (25)

Owy2r(21,79,04) = £1/2  for 2% + 23 < R?,

whose solution zp € BL(R3) can be expressed in terms of the following integral [23]

1 1
ZR(X) = % /BR Hdsy for T3 # 0. (26)

This defines qg € W, up to a multiplicative constant 5 € R, such that
BVzr(x1, 22,23 — $4) / 7R%  for 23 > s,
qs(x) =4 Bey/TR? for s_ < x5 < sy,
—BVzr(x1, 12,23 — 5_) /7TR2 for 3 < s_.

Using the non overlapping decomposition of D in Dy, D_ and 2, we can express J2(qg) as follows

J2(QB):2/ QB(X)'eBde_/ lqs|dx =28 — (/ |Qﬁ|2dx+/ |OIB|2dx+/ Iq5|2d><)
r D D4 D_ Q

i ([ vt [ e sien) 2 ()
=20 — Vzg|“dx + Vzrlfdx+nR*h | =20—(—+h | —.
7 R\ Ja, 0 V2] 23<0 IVarl 3 mR2




Integral / ‘VZR(X)’2 dx = 8R?/3 is calculated in Appendix A (Lemma A.1). Maximizing this expression
+x3>0

TR? TR?

T hence Jo(qp) = ——t X
h T 16k 3 tenee J2(ds) = g eR s

Remark 4.1. Estimate (19) was stated by Rayleigh [21], then Howe [9, section 5.3] and mostly obtained by
physical reasoning. Here, the actual new feature of this approach is to rely on rigorous arguments only.

in 8, we obtain 8 =

4.2 Conical apertures

We consider now a conical aperture of the following form
Q= {x €R®| (1,22) € Sp(zs) and x5 € [5_,54]}

where the radius R(s) is linearly varying from R_ to R (see Figure 3 below)

R(s)=R_ + %(R+ —R )=R_+(s—s_)tanp with Ry > R_. (27)
I
1 : 1
I
@ \R_ ' R(x) L o
) I ! |

Figure 3: Conical aperture of radius R(x3).

Theorem 4.2. The following bounds of a conical aperture holds true

Klg,con S KR»COH S KE,COH’ (28)
with R_R R_R
K]; con — 8 iR +1 and Kgcon = ;’r — )
’ 2 il _ 2 ' h+—(R-+R
ht oo (R +Ry) + o (R — Ry) + o (B-+ Ry)
or equivalently
K _ 7TR_(R_ + h tangp) and  KE _ TR (R_ + h tangp) .
scon 16R_ 8 1 9 scon TR_ s
7+h(1+ftang0+ — tan go) 7+h(1+ftan<p)

37 37 2 2 4

Proof. We follow the same approach as in theorem 4.1.
To establish the upper bound, we consider v, € H; /o depending on two real constants o and

1/2 = (1 =20y ) wpg, (w1, 22,23 — 54) for x3 > sy,
/13 d.’Eg
s mR2(x3)
/s+ dl‘g
s TR2(x3)

—1/24+ (1 +20_)wr_(21,22,23 —s_) forzg < s_,

va(X) =9 a0+ (a+ — a,) for s_ <3 < s4,

10



where wg, is the function wg defined in (21) with R = Ry. Similarily as in the proof of theorem 4.1, we get

Ji1(va) = / Ve (x)[? dx+/ Ve (x)]? dx
D.UD_ Q
=R_(14+20_) +Ry(1-204)° + (ap —a_)> 7Ry R_/h.
As above, we minimize J;(v,) in « to get

1 R~m
=4 +
TS T TRy + Ro) + 4h

47TR+R_
7T(R+ + R,) +4h

and so  Ji(ve) =

To obtain the lower bound, we consider the vector field qg € W, with 8 € R, given by

T ii Vzr, (x1,22,23 — 54) for x3 > sy,
B r Ry—R_
qs(x) = ™ R2(23) (63 + R(zs) 5 eT) for s_ < x3 < s4,
_$ VZR—(xlvaaxl’)_sf) for r3 < S_,

with zp the function defined in (25). Proceeding as in the proof of theorem 4.1, we get

aas) =2 [ o) -eadse— ([ lasPax+ [ lasPax+ [ lasfax)
r_ D D_ Q

+

32 / ) 2/ 2 (Ry—R_\?\ dxs
b= agr [, IVereldxt T | {0 o h R¥(x3)
8 Ry+R_ h 1 /Ry —R_\?
=28 -p% [ — ==& 14— .
b-F (37r2 RiR_ +WRR+<+2< R )))

1
It is then easy to maximize Jo(qg) in S to get Jo(qg) = TR_Ry / (h + %(R+ +R_)+ %(R+ - R_)2>. X

Remark 4.2. Bounds (28) of Theorem 4.2 have to be compared with the following estimates obtained by Howe
[9, page 859, section 5.3]:

h (1 a1 h (Re-R)P 8 (11
T R_ R+ 4 \ R_ R+ - KR T rmTR_ R+ TR_ R+ h 3’/T2 R_ R+ '

Putting them in the same form as (28), we get

R_R R_R
d ~ and KE,Howe = i ~

1 T ’
(R-+Ry)+ (R — Ry)? h+ 7(B-+ Ry)

KI;,Howe = 8
h+ —
3m

There is a missed factor 2 in the last term in the denominator of the fraction expressing Kp y,y, which seems
to be a mistyping.

4.3 Inclined cylinder

We are now investigating the case where the aperture is cylindrical and inclined with an angle 6 :

Q= {x € R? | (#1(x),22) € Sg and 3 € [s_, 54| with Z1(x) = 21 — (z3 — 5_) tan@}.

11



The perforation was chosen in such a way that its section along the normal to the plate is circular with a radius
linearly varying from R_ = R(s_) to Ry = R(s+) (see Figure 4 below).

T
R
Z‘gg : \\J

T3 = S— T3 = S4

Figure 4: Cylindrical aperture inclined with angle 6 with respect to the zs axis

Theorem 4.3. The following bounds hold true for an inclined perforation

Klg,inc < KR,inc < KE,inc’ (29)
with R2 2
_ ™ n T
Krwe = 1657 ™ Erme = 77 16R -1
= KL (1 + ——sin? 9)
3 cos2 6 2 cos2 6 3mh

Proof. As above, we start with the upper bound. We consider v, € H;/, depending, here too, on two real
constants a_ and a:

Lo SINO
aTtR(xl,xg,m—er) for x3 > s,
Mo

Va(X) = —a+7<(:z:3—s_) cosf + x1 sinﬁ) for s_ < x3 < sy,

1/2 — (1 — 204) wR(il,xQ,xg - S+)

Lo SINO

—1/24+ (1 — 2a) wg(T1, w2, 23 —s_) + . tr(T1, w0, 23 —s_) forzz <s_,

with f1, = 2 cos @, wg given in (22) and tr € BL(R?) defined by

Atgr(x) =0, for 23 # 0,
a{I:BtR(x17$2, 0) = O7 for J?% + Jj% > R2, (30)
tr(r1,22,0) =21,  foraf +a3 < R

Using Copson’s method [24, §3.4, pp 72], an explicit integral expression can be given for ¢pg:

2 Y1 dsy
w2 Sr V R? — |Y|2 |X - y‘

Making use of the calculations carried out in Appendix A, it follows:

tR(X) =

for x5 # 0. (31)

hiwa) = [ VoGP dx= [ (VG v x| vuGoP i

2 G2 3 2
:2<R(1—2a)2+”a — 98R>

Ha 2
— . 2
W2 3 + 2 TR*h (32)

12



As above, we maximize J;(v,) in o and obtain o = 4R/ (SR +4cos?0/h* (16R? sin® /3 + mRh) ),

1
R? (1 + 6—R sin? 6)
J1(v ) — 3rh
Vo_h TR (1 4 16R 2 9) .
cos? 0 2 3rh
We now establish the lower bound. Let us consider the vector field qg € W, with 8 € R, given by
%;2 Vzr(Z1,x2,23 — 1) for x3 > sy,
qp(x) = B (e3 +tanéd e1> for s_ < x3 < 54,
T R2
T Vzr(T1,x0,23 —s—) for a3 < s_.

with zp the function defined in (25). We have

2 B* (16R® 2 2
Ja(gp) =2 qp(x) - esdsx — las|“dx =28 — 51 +7R*h (1 + tan 0) .
r_ D, UD_UQ TR 3
We maximize Jz(qg) in 3 to get Jo(qg) = 7R? / (h/cos®>6 + 16R / 3m). X

Remark 4.3. Bounds (29) of Theorem 4.3 seem to be completely new. They have not been previously obtained
even heuristically by physical reasoning. This result is especially important in applications related to combustion
in turboengines. Indeed, in order to ensure the cooling of the combustion chamber, its wall is perforated by
inclined holes. As seen above, the angle of the perforation axis with the plate has a great influence on its
Rayleigh conductivity hence on its acoustic properties.

4.4 Numerical experiments

This section is devoted to a numerical consolidation of the above theoretical bounds obtained for the Rayleigh

conductivity in theorems 4.1, 4.2 and 4.3. A numerical approximation KRt of the Rayleigh conductivity

obtained by a direct numerical simulation of problem (7) is compared with Kj , and K;y* for h/R € [0, 10].
We have considered two angles ¢ = 5° and ¢ = 10° for a conical perforation and § = 15° and 6 = 30° for an
inclined one. The results for straight cylindrical perforations, conical perforations, and inclined perforations are

num

collected in Figures 5, 6 and 7. It is worth mentionning that K , < K" < KE,* in all cases.

Lower bound - Kelvin princjple
1.8 + 3D L.E simulation H
Upper bound - Dirichlet principle

I I L L Al

0.2l . . . . .
0 1 2 3 4 6 7 8 9 10
h/R

Figure 5: Lower and upper bounds and numerical approximation of the Rayleigh conductivity for a cylindrical
perforation
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T T T T y 2 T T T T T T T T
— Lower bound - Kelvin principle —— Lower bound - Kelvin principle
+ 3D |.E simulation | + 3D LE simulation

Upper bound - Dirfehlet principle 18 Upper bound - Dirichlet principle ||

0.6 i

0.4l . . . . .
0 1 2 3 4 6 7 8 9 10
h/R

Figure 6: Lower and upper bounds and numerical approximation of the Rayleigh conductivity for a conical perforation
with ¢ = 5% and ¢ = 15°

2 T T T T T y 2 T T T T T T T T
—— Lower bound - Kelvin principle —— Lower bound - Kelvin principle
1.8 + 30 |E simulation H 1.8 + 3D E simulation H
Upper bound - Dirfehlet principle Upper bound - Dirichlet principle

0.2l I I | I | !
0 1 2 3 4 6 7 8 9 10 0 1 2 3 4 6 7 8 9 10
h/R h/R

Figure 7: Lower and upper bounds and numerical approximation of the Rayleigh conductivity for an inclined
perforation with § = 15° and 6 = 30°

5 Approximate Rayleigh conductivity and corresponding error

5.1 Approximate Rayleigh conductivity

It is quite natural to take the mean value of the above lower and upper bounds for approximating the Rayleigh

conductivity:

K+ Ky
2

The relative error induced by this approximation is defined as

| Kg— KPP
g = KR

KPP — (33)

app

A lower script as Kp’j, .

or £cy1 can be added for mentionning the case being considered.
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5.2 Theoretical bound on the error
Since K, < Kg < KE, the error can be bounded as follows:
1 (K — K5
e< = (R_R> . (34)
2\ Kjp

These inequalities are not optimal but give a good idea on the magnitude of the error. The right-hand sides of
(34) are depicted in Figure 8 for a conical perforation and in Figure 9 for an inclined perforation. The results
for a straight cylindrical perforation are reported in Figure 8 for ¢ = 0 or in Figure 9 for § = 0.

4.00% 10 4.00%
3.50% 3.50%
F 13.00% F 43.00%
n® -
F 12.50% — 2.50%
R
F 12.00% +2.00%
1.50% 1.50%
1.00% 1.00%
0
0° 1° ©2° 3° 4° 5o g@go 7o go go {Q° 0° 1° ©D2° 3o 4° 5o g@go 7o 8o go 10°
Values of the angle ¢ in degrees Values of the angle 6 in degrees
. KR con—K#P . KR inc— KPP
Figure 8: Upper bound of gcon = W Figure 9: Upper bound of €inc = %
s Jinc

Errors for ¢ < 10° and 6 < 10° are less than 5%. For small values of h the error is below 5%. For larger
values of h, the bound for the error is lower and mostly less than 2%.

5.3 Numerical study of the error

In this section, we compare a numerical approximation K3"™ of the Rayleigh conductivity to its analytical

approximation K. For cylindrical and conical perforations, we have considered several configurations each
of them corresponding to a set of values for i and ¢ given in the form of a grid of points with step-sizes ¢ and
0h (see Figure 3)

» €[0,10], h/R_€1]0,10] with steps dp = 0.1 and 6h / R_ = .2.

The values of ¢ and dyp are given in degrees. For these axi-symmetric cases, the discret problem to be solved is
of small-size. It was hence possible to carry out the computations related to these configurations on a laptop.
The geometries for ¢ = 0 corresponds to the cylindrical case. The results for a conical perforation are collected
in Figure 10.

For inclined perforations, the various configurations are similarly described by means of a grid of points 6
and h given by
0 €10,10], h/Re€][0,10] with steps 66 =0.1 and 6h /R =.5.

Here too, the values of 6 and 06 are given in degrees. The geometry is not axi-symmetric. A three dimensional
solver was required to perform the computations. To lower the discretization error at a level where it has
no significant incidence on the result, we have used very refined meshes. The largest computations involved

15



Nyof := 1.5 10° degrees of freedom requiring to solve square dense linear systems of Ngof X Ngor unknowns. The
computations were carried out on high performence platform with 400 cores. They took 12 hours of elapsed
CPU time. The numerical results for an inclined perforation are collected in Figure 11.

Comparing these figures with Figures 8 and 9, we remark that, for large values of h, inequalities (34) predict
too large errors. More precisely, the error is below 1% for h/R > 1. This clearly shows that the proposed
approximation of the Rayleigh conductivity can advantageously replace the direct computation.

10 3.50 % 10

3.00 %
8 8
B 2.50 % 12.50 %
6 6
E 12.00 % L? 12.00 %
R R
) )l oo
4 11.50 % 4 1.50 %
1.00 %
2 2
0.50 %
0.25% ] =
[¢] [¢] - e
0° 25 4° 6° 8° 10° 0° 2° 4° 6° 8° 10° 12° 14° 16° 18° 20°
Values of the angle ¢ in degrees Values of the angle 6 in degrees
KPP _ prnum KAPP  _ prnum
3 R, 3 . s R,
Figure 10: The error gcon = ‘W Figure 11: The error ginc = ‘%
R,con R,inc

In Figures 12 and 13 we compute the barycentric coefficients A, € [0, 1] of K . with respect to Kﬁ*

KRﬁcon - (1 - )\COl’l) K,

R,con

+ )\COH K+

R,con

and KR,inc = (1 - /\inc) Ky

R,inc

+ )\inc Kg,inc'

The best approximation of K is K5 for A € [0,1/4], K3P for A € [1/4,3/4], and K}; for A € [3/4,1]. It can
be observed that for small ratio of /R, the best approximation of Kg is given by KE, whereas for larger h/R,
it is given by K7'". These maps also indicate that the approximation defined in (33) is very accurate in most
configurations.
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1
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Figure 12: The barycentric coordinate Acon Figure 13: The barycentric coordinate Acyi
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A Appendix: calculation of some integrals

Let us recall that wg, tgr, zr are defined in (21), (30) and (25), are given by

1

dsy
= — B f
fR(X) o0 ARpr(y)|x_y or x37é07

with fr = wg, tg or zr and the single layer potential pf, defined on Br = {(y1,42,y3) € R3 | y + 43 <
R? and y3 = 0} by

=11 =2 W0 and (x) =1
Pwr T R2 — |y|23 Ptr T R2 — |y|2) Pzr .
The following lemma collects three of the integrals involved in the bounds of the Rayleigh conductivity.

Lemma A.1. The following formulas hold true

I
=

(i) />O|VwR(x)|2dx - /<O|VwR(x)|2dx
(ii) / Vi r ()| dx :/ Vir(x)?dx = 8R%/3,

z3>0 x3<0
(iii) / |V2r(x)|*dx :/ [Vzr(x)|%dx = 8R%/3.
x3>0 x3<0

Proof. Due to symmetry, we have for fr = wg, zg or tg

2 2
Iy, = /z3<o ’VfR(X)‘ dx = /m3>0 |VfR(x)| dx.
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Since fr € BL({z3 > 0}) and Afgr = 0, we get, from Green’s formula and the integral representations of the
solution to the related boundary value problems [23]

Jﬁ/wthﬁkt/w%MMMMWcAf%®h®@x (35)

(i) From (21), we set wr = 1/2 on Bg. This leads to

R
—— —dsy
Br T/ 122 — |Y‘2 2
(ii) Similarly, from (30), we have tr(x) = x1 on Bg. In spherical coordinates, integral (35) takes the form, with
y1 = p cos(h), y2 = p sin(f) cos(P), and ys = p sin(f) sin(p),

4 Y1 / /27r p cos(f ~ ~
I, = ———— y1dsy, cos(f) p dpdb 36
R

4 R 3 27 N _9R2 SR3
S —— mﬂmw:_qug | %L (37
0 —p

Ly

R:

A

p=0

(iii) In this case, we do not know explicitly the value of zr on Bgr. However, I, is given by

L. :i/ / dsydsx _ R"/ / dsydsx.
fo2n Br /Br ly — x| 2m JB, JB, ly — x|

To evaluate this integral, we use Copson’s formula [3]

/ dsy / /m"‘@v” pdp dt
B |X_Y| t V(p? —2)(r2 —¢2)

Separating the cases r < p and p < r, this leads to

I _2}33/ / /mlnp'r‘ pdpdt dS
- T JB t V(P2 —2)(r2 — 12) *
min(p,r)
_ 4R3/ / / rpdrdpdt (38)
- V=B =)

= 4R3/ / Tpdrdpdt + 4R3 /1 /T /p Tpd’l"dpdt .
r=0Jp=r Ji=0 \/(p? — t2)(r2 — 2) v=0Jp=0 Jimo /(P2 = 2) (12 — 2)

Taking into account symmetry and commuting the integrals, we get

L, —8R3/ / rpdrdpdt 8R3/ / ! rpdrdpdt .
r=0 t()\//)—t2 r? — 2) =0 J o=t Jr=p \/(p* — t2)(r2 — t2)

Evaluating successively the integrals, we get

_2 _ 42
m—wﬂ‘/[ t]xWﬁ:wﬂ‘/<&zt>mw,
t=0 B 0
r=p

1 2
:8R3/ [\/1—#\/ } dt = 8R3 (1 L A X
t=0 p=t

2 2
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