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Abstract In this article, we determine the integral transforms of several two-
boundary functionals for a difference of a compound Poisson process and a com-
pound renewal process. Another part of the article is devoted to studying the above-
mentioned process reflected at its infimum. We use the results obtained to study a
Gδ|Mκ |1|B system with batch arrivals and finite buffer in the case when δ ∼ ge(λ).
We derive the distributions of the main characteristics of the queuing system, such as
the busy period, the time of the first loss of a customer, the number of customers in
the system, the virtual waiting time in transient and stationary regimes. The advan-
tage is that these results are given in a closed form, namely, in terms of the resolvent
sequences of the process.

Keywords Busy period · Time of the first loss of the customer · First exit time ·
Value of the overshoot · Linear component · Resolvent sequence

Mathematics Subject Classification (2000) 60G40 · 60K20

1 Introduction

The queueing models with batch arrivals and a finite buffer of the Gδ|Mκ |1|B type
arise in telecommunication networks, transportation systems and manufacturing sys-
tems. One of the most important performance issues of the queue with finite buffer
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is losses which are caused due to the buffer overflow, see [1, 13]. In this article, we
address the problem of losses by determining the Laplace transforms of the time of
the first loss and the number of lost customers. In addition, we consider other per-
formance characteristics such as the busy period and the virtual waiting time. We
propose a probabilistic approach based on the solution of the boundary problems for
a two-component Markov process which governs functioning of the above-mentioned
queueing system.

Experience shows that finding the aforementioned characteristics is not an easy
task. So far, the embedded Markov chain approach has been widely used for their
analysis (see [4] and references therein). The idea to use embedded Markov chains
for studying queueing systems was introduced by Erlang in the 1930s. The main
disadvantage of this approach is that the analysis of the evolution of the system is
performed only on the states of the system which constitute a countable set. So far,
major efforts of the researches were focused on establishing the equivalence between
the stationary distribution of certain characteristics of the system and stationary dis-
tribution of the corresponding characteristics of the embedded Markov chain. It is
clear that many characteristics cannot be determined based only on the states which
constitute the countable set.

A two-component Markov process with continuous time appears naturally to
mathematically describe the evolution of a queueing system. The first component of
this process describes the phase state of the system, whereas the second component
ensures the Markov property of the process.

The evolution of the number of customers in such systems is described by a
process with two reflecting boundaries. In the general case, this process is a dif-
ference of two renewal processes. Reflections from the upper boundary are generated
by the supremum (infimum) of the process. Reflections from the lower boundary
govern the server’s behavior. In general, such processes are not Markovian, but by
adding a complementary linear component we obtain a Markov process which de-
scribes the functioning of the queueing system. Determining primary performance
characteristics of the queueing system translates to studying boundary functionals of
this governing process. We have followed this approach for the queueing systems
Gδ|Mκ |1|B with a finite buffer in the case when δ ∼ ge(λ).

For the queueing systems of Mκ |Gδ|1|B and Gδ|Mκ |1|B type, the governing
process is the difference of the compound Poisson process and the compound renewal
process complemented with a linear component. The main two-boundary character-
istic of this random process is the joint distribution of {χ,L,T }, i.e., of the first
exit time from the interval, the value of the overshoot and the value of the linear
component at this instant. Other two-boundary characteristics, such as the number of
intersections of the interval, the joint distribution of the supremum, infimum and the
position of the process, the sojourn time of staying inside the interval, the first entry
time into the interval and also boundary characteristics of the reflected process can
be derived in terms of this functional. In order to determine the Laplace transforms
of the main two-boundary characteristic for the difference of a compound Poisson
process and a compound renewal process [8, 9], we employ the method suggested
in [7] for general Lévy processes. The main contribution of this approach is that the
joint distribution of {χ,L,T } is derived in terms of more simple joint distributions
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of the one-boundary functionals of the process which are known. For an overview of
the existing results on the two-boundary problems, we refer to [5, 19]. For the state-
of-the-art in queueing systems with batch arrivals and finite buffer, see [16–18, 22]
and the references therein.

The rest of the article is structured as follows. In Sect. 1 we introduce the process
and necessary notations. In Sect. 2 we consider the lower and upper one-boundary
characteristics of the process. The main result is the solution of the two-sided exit
problem for the underlying process. Section 3 deals with the process reflected at its
infimum. We then consider the first passage time of the upper boundary, the dis-
tribution of the increments of the process and its asymptotic behavior. Finally, in
Sect. 4 we apply the results obtained in the previous sections to study primary perfor-
mance characteristics of the queueing system Gδ|Mκ |1|B, such as the busy period,
the time of the first loss of a customer, the number of the lost customers, the number
of customers in the system and the virtual waiting time in transient and stationary
regimes. In addition, we derive the above-mentioned characteristics for the partial
case of Gδ|Mκ |1|B, namely when P[δ = 1] = 1.

2 Preliminaries

Let κ, δ ∈ N = {1,2, . . . } be positive independent integer random variables, and
η ∈ (0,∞) be a positive random variable independent of κ, δ with the distribution
function F(x) = P[η ≤ x], x ≥ 0. We will assume that Eκ, Eδ, Eη < ∞. Introduce
the sequences {η,η′

n}, {κ,κ
′
n}, {δ, δ′

n}, n ∈ N, of i.i.d. (inside of each sequence)
variables and define the monotone sequences

η0(x) = 0, η1(x) = ηx,

ηn+1(x) = ηx + η′
1 + · · · + η′

n, n ∈ N,
(1)

κ0 = 0, κn = κ
′
1 + · · · + κ

′
n;

δ0 = 0, δn = δ′
1 + · · · + δ′

n; n ∈ N,

where ηx ∈ (0,∞) is a random variable with the following distribution function

Fx(u) = P[ηx ≤ u] = [
F(x + u) − F(x)

](
1 − F(x)

)−1
, u ≥ 0.

Denote by {π(t)}t≥0 ∈ Z
+ = {0,1, . . . } a compound Poisson process

E zπ(t) = etk(z), k(z) = μ
(
E zκ − 1

)
, |z| ≤ 1,

where μ > 0 is the intensity of the jumps and κ is a jump size. For all t ≥ 0 define a
renewal process generated by the random sequence {ηn(x)}n∈Z

+ :

Nx(t) = max
{
n ∈ Z

+ : ηn(x) ≤ t
} ∈ Z

+, x ≥ 0.

Introduce a right-continuous step process

Dx(t) = π(t) − δNx(t) ∈ Z = {0,±1, . . . }, t ≥ 0; Dx(0) = 0. (2)



178 Queueing Syst (2010) 65: 175–209

Note, that inter-arrival times of the positive jumps are exponentially distributed with
parameter μ, the positive jumps themselves are of a random size κ, and there occur
negative jumps of size δ′

n at time instants ηn(x), n ∈ N. We will call the process
{Dx(t)}t≥0 a difference of the compound Poisson process and a compound renewal
process. Observe, that this process is not a Markov process in general. For all t ≥ 0,

introduce a right-continuous linear component

η+
x (t) =

{
t + x, 0 ≤ t < ηx,

t − ηNx(t)(x), t ≥ ηx

∈ R+ = [0,∞), x ≥ 0. (3)

The process {η+
x (t)}t≥0 increases linearly on the intervals [ηn(x), ηn+1(x)), n ∈ Z

+,

it is killed to zero at the points ηn(x), n ∈ N, and the value of the process at the
instant t0 ≥ ηx is equal to the time elapsed from the moment of the last negative jump
of Process (2) until t0. We will call Process (3) a linear component. By adding this
linear component to the process {Dx(t)}t≥0, we obtain a right-continuous Markov
process

{Xt }t≥0 = {
Dx(t), η+

x (t)
}
t≥0 ∈ Z × R+,

(4)
X0 = {0, x}, x ≥ 0,

which governs the process {Dx(t)}t≥0. The process defined in (4) is a Markov
process. Note, that it is homogeneous with respect to the first component [6]. This
fact will be used constantly when setting up the equations.

For all x ∈ R+, |z| ≤ 1, denote

f̃x(s) = Ee−sηx , f̃ (s) = f̃0(s),

f̃x(s, z) = f̃x

(
s − k(z)

) = E
[
e−sηx zπ(ηx)

]
.

Lemma 1 (Kadankov et al. [10]) Let Dx(t), η+
x (t), t ≥ 0 be the random processes

defined by (2)–(3), and νs ∼ exp(s) be an exponential random variable independent
of these processes. Then for all x ∈ R+, s > 0, |z| = 1, p ≥ 0 the following equality
holds

D
s
x(z,p) = EzDx(νs)e−pη+

x (νs )

= se−px

s + p − k(z)

(
1 − f̃x(s + p, z)

)

+ s

s + p − k(z)
f̃x(s, z)Ez−δ 1 − f̃ (s + p, z)

1 − f̃ (s, z)Ez−δ
. (5)

In particular, for all x ∈ R+, s > 0, the following formulae are valid

D
s
x(z) = EzDx(νs) = s

s − k(z)
+ sf̃x(s, z)

s − k(z)

Ez−δ − 1

1 − f̃ (s, z)Ez−δ
, |z| = 1. (6)
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Here, and in the sequel, we will assume that the random variable δ ∈ N is geomet-
rically distributed with parameter λ ∈ [0,1):

P[δ = n] = (1 − λ)λn−1, n ∈ N,

Ezδ = z
1 − λ

1 − λz
, |z| ≤ 1.

This assumption means that the process {Dx(t)}t≥0 has geometrically distributed neg-
ative jumps which occur at time instants {ηn(x)}n∈N. Here, and in the sequel, we
will use the following short notation δ ∼ ge(λ). In this case, it is possible to obtain
closed-form solutions for the one- and the two-sided boundary problems. In order
to determine the main two-boundary characteristic of the process, we will require
the one-boundary functionals of the process. These are the Laplace transforms of the
joint distributions of the upper and lower one-boundary functionals of the process
{Xt }t≥0. In the sequel we will use the following result.

Lemma 2 Let f̃ (s) = Ee−sη. Then for s > 0 the equation

z − λ = (1 − λ)f̃
(
s − k(z)

)
, |z| < 1, λ ∈ [0,1) (7)

has a unique solution z = c(s) inside the circle |z| < 1. This solution is positive
and c(s) ∈ (λ,1). If E[κ],E[η] < ∞, ρ = μ(1 − λ)E[κ]E[η], then for ρ > 1,

lims→0 c(s) = c ∈ (λ,1); and for ρ ≤ 1, lims→0 c(s) = 1.

A detailed proof of an analogous proposition for semi-continuous random walks
can be found in the monograph of Spitzer [20]. The reasoning in that proof can be
also applied to (7) (see also Lemma 1, [9]).

3 One- and two-sided exit problems

Let X0 = {0, x}, x ∈ R+, k ∈ Z
+. Define

τk(x) = inf
{
t : Dx(t) < −k

}
,

Tk(x) = −Dx

(
τk(x)

) − k,

inf{∅} = ∞,

i.e., the first undershoot time of the negative level −k by the process {Dx(t)}t≥0. We
will use the convention that on the event {τk(x) = ∞} Tk(x) = ∞. Denote Bk(x) =
{τk(x) < ∞}. We define the lower one-boundary functional of the process as follows

fk(x,m, s) = E
[
e−sτk(x); Tk(x) = m,Bk(x)

]
, m ∈ N.

This functional is determined by means of the following lemma.

Lemma 3 (Kadankov and Kadankova [8]) Let {Dx(t)}t≥0 be the difference of a com-
pound Poisson process and a compound renewal process, δ ∼ ge(λ). Then
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(i) The Laplace transform of the joint distribution of {τk(x), Tk(x)}, k ∈ Z
+, x ≥ 0

satisfies the following equality for s > 0, m ∈ N

fk(x,m, s) = f̃x

(
s − k

(
c(s)

))
c(s)k(1 − λ)λm−1, (8)

where c(s) ∈ (λ,1) is the unique solution of (7) inside the circle |z| < 1, f̃x(s) =
E e−sηx , f̃ (s) = E e−sη = f̃0(s).

(ii) If ρ > 1, then P[τk(x) < ∞] = f̃x(−k(c)) ck < 1, and τk(x), for all k ∈ Z
+,

x ≥ 0, is a defective random variable; if ρ ≤ 1, then P[τk(x) < ∞] = 1, and
τk(x) is a proper variable for all k ∈ Z

+, x ≥ 0.

Note that the value of the overshoot Tk(x) does not depend on τk(x) for any k ∈
Z

+, and it is geometrically distributed: Tk(x) ∼ ge(λ).

We now introduce a sequence which will be used to obtain the results in the se-
quel. The idea to employ this sequence for semi-continuous random walks and semi-
continuous Lévy processes is due to Takács [21]. Since the function

f̃x

(
s − k(z)

) = E
[
e−sηx zπ(ηx)

]

=
∑

i∈Z
+
zi

∫ ∞

0
e−stP

[
ηx ∈ dt,π(t) = i

]
, |z| ≤ 1

is analytic inside the unit circle for all s, x ≥ 0, the function

Q
s
z(x) = (1 − λ)f̃x(s − k(z))

(1 − λ)f̃ (s − k(z)) + λ − z
, s, x ≥ 0, |z| < c(s) (9)

is analytic on the open set |z| < c(s). In this region, it can be represented as a power
series

Q
s
z(x) =

∑

k∈Z
+
zkQs

k(x), s, x ≥ 0, |z| < c(s).

The coefficients of this expansion can be calculated by means of the inversion formula

Qs
k(x) = 1

2πi

∮

|z|=α

1

zk+1

(1 − λ)f̃x(s − k(z))

(1 − λ)f̃ (s − k(z)) + λ − z
dz, α ∈ (

0, c(s)
)
. (10)

We will call the sequence {Qs
k(x)}k∈Z

+ , x ≥ 0, defined by Formula (10), the resolvent
sequence of the process {Dx(t)}t≥0.

We now explain a probabilistic meaning of this sequence. Introduce a random
sequence as follows (see [10]):

Y0(x) = 0, Y1(x) = π(ηx) − δ,

Yn+1(x) = Y1(x) +
n∑

i=1

Y ′
i , Yn = Xn(0),
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where Y = π(η) − δ ∈ Z, {Y,Y ′
n}, n ∈ N, is a sequence of i.i.d. random variables.

Define a right-continuous step process in the following way:

{
Rx(t)

}
t≥0 = {

YNx(t)(x)
}
t≥0 ∈ Z, Rx(0) = 0, x ∈ R+.

The sample paths of the process are constant on the time intervals [ηn(x), ηn+1(x)),

n ∈ Z
+ and they jump at the instants ηn(x), n ∈ N. These jumps have the same

distribution as Y
.= π(η)− δ, where n ∈ {2,3, . . . }, and Y1(x)

.= π(ηx)− δ for n = 1.

Here, and in the sequel, we will call the process {Rx(t)}t≥0 a semi-Markov random
walk generated by the sequences {ηn(x)}, {Yn(x)}, n ∈ Z

+. Let R+
t = supu≤t R0(u)

be the supremum of {R0(t)}t≥0. The generating function of R+
t was found in [10]:

EzR+
νs = 1 − λ

1 − c(s)

(1 − f̃ (s))(z − c(s))

z − λ − (1 − λ)f̃ (s − k(z))
, |z| ≤ 1,

where νs is an exponential variable with parameter s > 0, independent from the
process {Rx(t)}t≥0. It follows from (9) and from the latter formula that for |z| < c(s)

Q
s
z(x) = 1 − c(s)

1 − f̃ (s)

f̃x(s − k(z))

c(s) − z
EzR+

νs , |z| < c(s).

Comparing the coefficients of zk, k ∈ Z
+, on both sides yields

Qs
k(x) = 1 − c(s)

1 − f̃ (s)

k∑

i=0

c(s)i−k−1
i∑

j=0

E
[
e−sηx ,π(ηx) = j

]
P
[
R+

νs
= i − j

]
.

Denote by πs(ηx) ∈ Z
+, s > 0, a random variable given by its distribution:

P
[
πs(ηx) = k

] = 1

f̃x(s)
E

[
e−sηx ,π(ηx) = k

]
, k ∈ Z

+.

Then the previous equality implies that

Qs
k(x) = f̃x(s)

1 − f̃ (s)

1 − c(s)

c(s)k+1

k∑

i=0

c(s)iP
[
πs(ηx) + R+

νs
= i

]
, k ∈ Z

+,

which explains the probabilistic meaning of the resolvent sequence. Asymptotically,
one has that Qs

k(x) ∼ c(s)−k as k → ∞.

Let X0 = {0, x}, x ≥ 0, k ∈ Z
+, and introduce the upper one-boundary functionals

of the process {Xt }t≥0:

τ k(x) = inf
{
t : Dx(t) > k

}
,

T k(x) = Dx

(
τ k(x)

) − k,

ηk(x) = η+
x

(
τ k(x)

)
,
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i.e., the instant of the first crossing of the level k by the process {Dx(t)}t≥0, the
value of the overshoot across the upper level and the value of the linear component
η+

x (·) at the instant of the first crossing (time since the last renewal). Denote Bk(x) =
{τ k(x) < ∞},

f k(x, dl,m, s) = E
[
e−sτ k(x); ηk(x) ∈ dl, T k(x) = m,Bk(x)

]
, m ∈ N.

We will now determine the Laplace transforms of the upper one-boundary functionals
of the process {Dx(t)}t≥0. Let k ∈ Z

+ and τ̃ k = inf{t : π(t) > k}, T̃ k = π(τ̃ k) − k

be the first crossing time through the upper level k by the compound Poisson process
{π(t)}t≥0 and the value of the overshoot at this instant. Denote by

ρk(t) = P[π(t) = k],
∞∑

k=0

zkρk(t) = Ezπ(t) = etk(z), |z| ≤ 1,

pm
k (dt) = P

[
τ̃ k ∈ dt, T̃ k = m

] = μ

k∑

i=0

ρi(t)P[κ = k − i + m]dt, m ∈ N.

Lemma 4 (Kadankov and Kadankova [8]) Let {Qs
k(x)}k∈Z

+ be the resolvent se-
quence of the process {Dx(t)}t≥0 given by (10), k ∈ Z

+, s, x ≥ 0. The following
equalities hold:

f k(x, dl,m, s) = e−s(l−x) 1 − F(l)

1 − F(x)
I{l > x}pm

k

(
d(l − x)

)

+ Φs
λ(0, dl,m)Qs

k(x) − e−sl
[
1 − F(l)

] k∑

i=0

Qs
i (x)pm

k−i (dl), (11)

where Φs
λ(0, dl,m) = e−sl[1 − F(l)]∑∞

k=0 c(s)kpm
k (dl);

f k(x, s) = Ee−sτ k(x) = 1 − Ak
x(s) − s

s − k(c(s))

Qs
k(x)

1 − λ
, (12)

and Ak
x(s) = ∑k

i=0 ρ̃i (s)[1 − Qs
k−i (x)(1 − λ)−1], ρ̃k(s) = s

∫ ∞
0 e−stρk(t) dt.

For E[κ], E[η] < ∞ and ρ < 1, τ k(x) is a defective random variable and

P
[
τ k(x) < ∞] = 1 − (1 − ρ)(1 − λ)−1Qk(x) < 1,

where {Qk(x)}k∈Z
+ , x ≥ 0 is the resolvent sequence of the process {Dx(t)}t≥0 given

by (10) for s = 0:

Qk(x) = 1

2πi

∮

|z|=α

dz

zk+1

(1 − λ)f̃x(−k(z))

(1 − λ)f̃ (−k(z)) + λ − z
, α ∈ (

0, c(0)
); (13)

if ρ ≥ 1 then, for all k ∈ Z
+ and x ≥ 0, τ k(x) is a proper random variable.
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Along with Expression (13) there exists another way to calculate Qk(x), which
is more applicable from a practical point of view. We will now derive the recurrence
formula for Qk(x). It follows from (9) for s, z = 0 that

Q0(x) = (1 − λ)
(
λ + (1 − λ)f0

)−1
f0(x),

where, for all k ∈ Z
+, fk(x) = P[π(ηx) = k] = ∫ ∞

0 P[ηx ∈ dt, π(t) = k], fk =
fk(0). Again, it follows from (9) for s = 0 that

(1 − λ)f̃x

(−k(z)
) = (1 − λ)f̃

(−k(z)
)
Qz(x) + (λ − z)Qz(x).

Comparing the coefficients of zk, k ∈ N, on both sides implies that

(1 − λ)fk(x) = (1 − λ)

k∑

i=0

Qi(x)fk−i + λQk(x) − Qk−1(x).

Combining similar terms yields

(
λ + (1 − λ)f0

)
Qk(x) = (1 − λ)fk(x) + Qk−1(x) − (1 − λ)

k−1∑

i=0

Qi(x)fk−i .

The latter formula is a recurrence relation which allows to calculate successively the
terms Qk(x) given the previous terms Q0(x), . . . ,Qk−1(x). For instance, given the
expression for Q0(x) one finds that

Q1(x) = 1 − λ

λ + (1 − λ)f0

[
f1(x) + 1 − (1 − λ)f0

λ + (1 − λ)f0
f0(x)

]
.

Denote by D−
x (t) = inf[0,t] Dx(·) the running infimum of the process on [0, t].

Theorem 1 Let r ∈ Z
+, E−

r (x, z, s) = E[zDx(νs);D−
x (νs) ≥ −r], |z| ≤ 1 be the gen-

erating function of the joint distribution of {Dx(νs),D
−
x (νs)}. Then

(i) The generating function E−
r (x, z, s) is such that

E−
r (x, z, s) = (1 − z)Az

x(s) + (1 − z)fr(x, s)
1 − λ

λ − z
A

z
0(s)z

−r , (14)

where fr(x, s) = E[e−sτr (x);Br (x)] = cx(s)c(s)
r , cx(s) = f̃x(s − k(c(s)),

A
z
x(s) =

∑

k∈Z+
zkAk

x(s) = s

s − k(z)

(
1

1 − z
− 1

1 − λ
Q

s
z(x)

)
.

(ii) The joint distribution E
−
r (x,u, s) = P[Dx(νs) ≥ u,D−

x (νs) ≥ −r], u ∈ [−r,∞)

satisfies the following equality

E
−
r (x,u, s) = 1 − Au−1

x (s) − fr(x, s)
(
1 − EAu+r+δ−1

0 (s)
)
, (15)

where EAk+δ
x (s) = (1 − λ)

∑
i∈N

λi−1Ak+i
x (s), Au

x(s) = 0 for u < 0.
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(iii) Under Condition (A), namely,

ρ = (1 − λ)μEηEκ = 1,
(A)

σ 2 = μ

[
Eκ(κ − 1) + EκEη2

(1 − λ)(Eη)2

]
< ∞,

the following limiting equality holds as B → ∞, r > 0,

P
[
Dx

(
tB2) ≥ [uB],D−

x

(
tB2) ≥ [−rB]] → 1

σ
√

2πt

∫ u+2r

u

e−v2/2σ 2t dv,

where [a] is the integer part of the number a, u ∈ [−r,∞).

Proof In accordance with the total probability law and Markov property of τr(x) for
all r ∈ Z

+, we derive the following equation

EzDx(νs) = E
[
zDx(νs);D−

x (νs) ≥ −r
] + fr(x, s)

1 − λ

z − λ
z−rEzD0(νs ), |z| = 1.

To write this equation, we used the path decomposition principle. It means that the
increments of the process Dx(νs) on the interval [0, νs] are realized either on the sam-
ple paths which do not cross the negative level −r, or on the sample paths which do
intersect the level −r, and further evolution of the process is its probabilistic replica
on [0, νs]. From the latter equation, we find that

E−
r (x, z, s) = D

s
x(z) − fr(x, s)

1 − λ

z − λ
z−r

D
s
0(z).

Observe that the function which enters the left-hand side of the equation is analytic in
{z : |z| ≤ 1}. Therefore, the right-hand side is also an analytic function for all |z| ≤ 1.

Employing (6) and the definition of the resolvent (9), we get

E−
r (x, z, s) = (1 − z)Az

x(s) + (1 − z)fr(x, s)
1 − λ

λ − z
A

z
0(s)z

−r , |z| ≤ 1.

It is not difficult to establish the following equality

∞∑

u=−r

zu
E

−
r (x,u, s) = 1 − fr(x, s)

1 − z
z−r − z

1 − z
E−

r (x, z, s), |z| ≤ 1.

In view of the latter and the previous equality, we find that

∞∑

u=−r

zu
E

−
r (x,u, s) = 1 − fr(x, s)

1 − z
z−r − zAz

x(s) − fr(x, s)
1 − λ

λ − z
A

z
0(s)z

−r+1.

Comparing the coefficients of zu, u ∈ [−r,∞), and taking into account that
A

λ
x(s) = 0, we obtain (15).



Queueing Syst (2010) 65: 175–209 185

Denote ẽt
r (x, u,B) = P[Dx(tB

2) ≥ [uB],D−
x (tB2) ≥ [−rB]], r > 0, u ≥ −r. It

is clear that

lim
B→∞

∫ ∞

0
e−st ẽt

k(x,u,B)dt = 1

s
lim

B→∞ E
s/B2

[kB]
(
x, [uB]).

To be able to perform asymptotic analysis and verify the third statement of the theo-
rem we will use the following equalities (see [10] where they were derived)

c
(
s/B2) = 1 − B−1

√
2s/σ + o

(
B−1),

lim
B→∞B−1Q

s/B2

[kB] (x) = 2 sinh(k
√

2s/σ )

σ
√

2sEη
= lim

B→∞B−1EQ
s/B2

δ+[kB], (16)

lim
B→∞A[kB]

x

(
s/B2) = 1 − cosh(k

√
2s/σ ) = lim

B→∞ EA
δ+[kB]
0

(
s/B2).

Employing these equalities and also (15), we find that

lim
B→∞

∫ ∞

0
e−st ẽt

k(x,u,B)dt

= s−1I{u>0}
(
e−u

√
2s/σ /2 − e−(2r+u)

√
2s/σ /2

)

+ s−1I{u∈[−r,0]}
(
1 − eu

√
2s/σ /2 − e−(2r+u)

√
2s/σ /2

)
, u ≥ −r.

Denote by w{t≥0} the symmetric Wiener process with dispersion σ. Let τa = inf{t :
wt ≥ a} be the first passage time of the level a ∈ R+. The Lévy identity P[τ ≤ t] =
2P[wt ≥ a] implies the following relation for the Laplace transforms

1

s
e−a

√
2s/σ = 2

∫ ∞

0
e−stP[wt ≥ a]dt.

Using this formula to invert the Laplace transforms in the previous equality, we obtain
the limiting equality of the theorem. �

We will now consider the two-sided exit problem for the underlying process (2).
Let B ∈ Z

+ be fixed, k ∈ [0,B], r = B − k, X0 = {0, x}, x ≥ 0, and introduce the
random variable

χB
r (x) = inf

{
t : Dx(t) /∈ [−r, k]} def= χ

as the first exit time from the interval [−r, k] by the process {Dx(t)}t≥0. This random
variable takes values from a countable set {ξn, n ∈ N} ∪ {ηn(x), n ∈ N}, and it is
a Markov time of the process {Xt }t≥0. (Here ξn, n ∈ N, is a sequence of the jump
times of the compound Poisson process.) Observe that exit from the interval can occur
either through the upper boundary k, or through the lower boundary −r. In view of
this remark, we introduce the events: Ak = {Dx(χ) > k}, i.e., the process {Dx(t)}t≥0
exits the interval [−r, k] through the upper boundary k; Ar = {Dx(χ) < −r}, i.e., the
process {Dx(t)}t≥0 exits the interval [−r, k] through the lower boundary −r.
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Denote by

T = (
Dx(χ) − k

)
IAk + (−Dx(χ) − r

)
IAr

,

L = η+
x (χ)IAk + 0 · IAr

,

P
[
A

k + Ar

] = 1

the value of the overshoot through the boundaries of the interval [−r, k] by the
process {Dx(t)}t≥0 and the value of the linear component at the instant of the first
exit. Here IA = IA(ω) is the indicator function of the event A. Denote

V k(x, dl,m, s) = E
[
e−sχ ;L ∈ dl, T = m,Ak

]
,

Vr(x,m, s) = E
[
e−sχ ;T = m,Ar

]
.

Theorem 2 (Kadankov and Kadankova [8]) Let {Dx(t)}t≥0 be the difference of the

compound Poisson process and the renewal process (2), δ ∼ ge(λ), Qs
k

def= Qs
k(0).

Then

(i) The Laplace transforms of the joint distribution of {χ,L,T } satisfy the following
equalities for all x, s ≥ 0, m ∈ N,

Vr(x,m, s) = Qs
k(x)

EQs
δ+B

(1 − λ)λm−1,

(17)

V k(x, dl,m, s) = f k(x, dl,m, s) − Qs
k(x)

EQs
δ+B

Ef δ+B(0, dl,m, s),

where the function f k(x, dl,m, s) is given by (11),

EQs
δ+B =

∑

k∈N

(1 − λ)λk−1Qs
k+B,

Ef δ+B(0, dl,m, s) =
∑

k∈N

(1 − λ)λk−1f k+B(0, dl,m, s).

(ii) For the Laplace transforms of the first exit time χ , the following formulae hold

E
[
e−sχ ;Ar

] = Qs
k(x)

EQs
δ+B

,

(18)

E
[
e−sχ ;Ak

] = 1 − Ak
x(s) − Qs

k(x)

EQs
δ+B

(
1 − EAδ+B

0 (s)
)
,

where EAδ+B
0 (s) = ∑

k∈N
(1 − λ)λk−1Ak+B

0 (s).

It is worth noting that the Laplace transforms Vr(x,m, s), V k(x, dl,m, s) were
determined in [8] for the case when δ ∈ N is a positive arbitrarily distributed random
variable. The results of Theorem 1 were obtained as a corollary for δ ∼ ge(λ). In
the following section we will employ this joint distribution to study the boundary
characteristics of the process reflected from the boundaries.
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4 Reflections from the boundary

Denote by Dr
x(t) = r + Dx(t), t ≥ 0, the process starting from r ∈ Z when η+

x (0) =
x ≥ 0. Let r ∈ Z

+, and for all t ≥ 0 we define a right-continuous process reflected at
the boundary 0 as follows:

Dr
0(x, t) = Dr

x(t) − min
{

0, inf[0,t]D
r
x(·)

}
∈ Z

+,
(19)

D0
r (x,0) = r.

The reflection from the lower boundary 0 is generated by the infimum of the process
Dr

x(t). Observe that the first hitting of 0 by the process Dr
0(x, t) occurs at time

τr (x). Subsequent time periods between the hitting times have the same distribution
as τ0(0).

Note that reflections from the boundaries generated by the infimum (supremum)
were introduced by Lévy for a standard Wiener process. Applying the symmetry
principle and the mirror reflection principle, Lévy determined the distributions of the
boundary functionals of the reflected standard Wiener process. It appears that these
distributions are the limit distributions for the reflected process after an appropriate
scaling of time and space.

4.1 Passage of the upper boundary

We will now determine the one-boundary functionals for Process (19). For B ∈ Z
+,

r ∈ [0,B], denote by

τB
r (x) = inf

{
t : Dr

0(x, t) > B
} def= τ ,

T k
r (x) = D0

r (τ ) − B, Lk
r (x) = η+

x (τ )

the first crossing time of the upper level B by the process Dr
0(x, t), the value of the

overshoot and the value of the linear component at this instant.
Note that these boundary functionals were studied in [14] for the reflected Lévy

processes generated by the infimum (supremum). The reflected spectrally one-sided
Lévy processes generated by the infimum (supremum) of the process were considered
in [2, 15]. An interesting application in queueing theory for the spectrally one-sided
Lévy process reflected by its infimum was given in [3].

Lemma 5 Let Dr
0(x, t){t≥0} be the process reflected by infimum (19). Then

(i) The Laplace transform vr
x(dl,m, s) = E[e−sτB

r (x);L ∈ dl, T = m] of the joint
distribution of {τB

r (x),L,T } satisfies the following equality for s > 0

vr
x(dl,m, s) = V k(x, dl,m, s) + Vr(x, s)

1 − V0(0, s)
V B(0, dl,m, s), (20)
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where k = B − r, Vr(x, s) = ∑∞
m∈N

Vr(x,m, s), and the functions
V k(x, dl,m, s), Vr(x,m, s) are determined by (17); in particular,

vr
x(s) = Ee−sτB

r (x) = 1 − Ak
x(s) + Qs

k(x)
EAδ+B

0 (s) − AB
0 (s)

EQs
δ+B − Qs

B

. (21)

(ii) Under Condition (A), the following equality is valid

lim
B→∞ P

[
τB

rB(x)/B2 > t
] = 4

π

∑

n∈Z
+

e− t
2 (π(n+ 1

2 )σ )2

2n + 1
sin

(
k(2n + 1)π/2

)
,

where r ∈ (0,1), k = 1 − r .
(iii) The random variable τB

r (x) is proper (P[τB
r (x) < ∞] = 1) and

EτB
r (x) = Ak

x + Qk(x)
EAδ+B

0 − AB
0

EQδ+B − QB(0)
< ∞,

where Qk(x) = Q0
k(x), EQδ+B = EQ0

δ+B,

Ak
x =

k∑

i=0

ρi

[
1 − (1 − λ)−1Qk−i (x)

]
,

ρi =
∫ ∞

0
P
[
π(t) = i

]
dt < ∞.

Let us verify Formula (20). It follows from the definition of the process Dr
0(x, t)

(see (19)), the total probability law and the Markov property of χ that the following
equation is valid:

vr
x(dl,m, s) = V k(x, dl,m, s) + Vr(x, s)v0

0(dl,m, s).

Letting x = r = 0 in this equation, we find that

v0
0(dl,m, s) = V B(0, dl,m, s)

(
1 − V0(0, s)

)−1
.

Substituting the expression for the function v0
0(dl, du, s) into the previous equation,

we get Formula (20). Formula (21) follows from (20) and (18).

Lemma 6 Under Condition (A) and for k > 0 the next limiting equalities hold

lim
B→∞B−2S

s/B2

[kB] (x) = 1

sEη

(
cosh(k

√
2s/σ ) − 1

) = lim
B→∞B−2ES

s/B2

δ+[kB],

lim
B→∞

[
EQ

s/B2

[δ+kB] − Q
s/B2

[kB]
] = 2μEκ

σ 2
cosh(k

√
2s/σ ), (22)

lim
B→∞B

[
A

[kB]
0

(
s/B2) − EA

[δ+kB]
0

(
s/B2)] =

√
2s

(1 − λ)σ
sinh(k

√
2s/σ ),

where Ss
k(x) = ∑k

i=0 Qs
i (x), Ss

k(x) = 0 for k < 0.
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The proof of the lemma can be found in the Appendix. Formulae (21), (16) and
the latter equalities imply, for B → ∞, k ∈ (0,1), r = 1 − k, that

Ee−s τB
rB(x)/B2 → cosh(k

√
2s/σ ) − 2 sinh(k

√
2s/σ )

σ
√

2sEη

√
2s

(1 − λ)σ

× sinh(
√

2s/σ )
σ 2

2μκ

/ cosh(
√

2s/σ )

= cosh(r
√

2s/σ )

cosh(
√

2s/σ )
.

It is obvious that

∫ ∞

0
e−st lim

B→∞ P
[
τB

rB(x)/B2 > t
]
dt = 1

s
− 1

s

cosh(r
√

2s/σ )

cosh(
√

2s/σ )
.

Inverting the Laplace transforms on both sides of the latter equality, we get the limit-
ing equality of the theorem.

4.2 Increments of the process reflected at its infimum

Let r ∈ Z
+, and denote by D0−r (x, t) = Dx(t)−min{0, inf[0,t] Dx(·)+ r} ∈ [−r,∞),

the process reflected from the lower boundary −r. The reflections are generated by
its infimum. Introduce

P s
r(x, z) = EzD0−r (x,νs ), |z| ≤ 1,

ps

r
(x,u) = P

[
D0−r (x, νs) ≥ u

]
, u ∈ [−r,∞),

i.e., the generating function and the distribution function of the increments of the
process sampled at the exponential time νs. The following statement holds.

Theorem 3 Let {D0−r (x, t)}t≥0 be the process reflected at the lower boundary. Then

(i) The following equalities are valid for r ∈ Z
+, x ≥ 0, u ∈ [−r,∞),

P s
r (x, z) = (1 − z)

[
A

z
x(s) + z−rfr (x, s)

1 − λ

1 − c(s)

1 − z

λ − z
A

z
0(s)

]
,

(23)
ps

r
(x,u) = 1 − Au−1

x (s) − 1 − λ

1 − c(s)
fr(x, s)

[
Au+r−1

0 (s) − EAδ+u+r−1
0 (s)

]
,

where Au
x(s) = 0, for u < 0.

(ii) Under Condition (A), for r > 0, u ≥ −r,

lim
B→∞ P

[
D0

[−rB]
(
x, tB2) ≥ [uB]] = 1 − 1

σ
√

2πt

∫ u+2r

−u

e−v2/2σ 2t dv. (24)
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(iii) If ρ = (1 − λ)μEηEκ < 1, then the ergodic distribution

p
r
(u) = lim

t→∞ P
[
D0−r (x, t) ≥ u

]

exists, and the limiting equality

p
r
(u) = 1 − 1 − ρ

Eη

[
Au+r−1

0 − EAδ+u+r−1
0

]

holds, where Ak
x = ∑k

i=0 ρi[1 − (1 − λ)−1Qk−i (x)], ρi = ∫ ∞
0 P[π(t) = i]dt.

Proof In view of the total probability law, Markov property of τr (x) and homogeneity
property of the process with respect to the first component, we can write the following
equation for the function P s

r(x, z):

P s
r(x, z) = E−

r (x, z, s) + sfr(x, s)z−r

s + μ

+ μfr(x, s)z−r

1 − f̃ (s + μ)

∫ ∞

0

∑

i∈N

ai(dl)P s
i (l, z)z

i , (25)

ai(dl) = e−l(s+μ)
[
1 − F(l)

]
P[κ = i]dl,

where the generating function E−
r (x, z, s) = E[zDx(νs);D−

x (νs) ≥ −r], |z| ≤ 1, is
determined by (14).

This equation reflects the following fact. The increments of the process {D0−r (x, t)}
can take place either on the sample paths which do not hit the lower boundary −r,

(the first term on the right-hand side), or on the sample paths which hit the lower
boundary −r and stay there (the second term), or finally, on the sample paths which
hit the boundary −r and then are reflected from the boundary (the third term). Denote

X(s, z) = μ

1 − f̃ (s + μ)

∫ ∞

0

∑

i∈N

ai(dl)P s
i (l, z)z

i .

Setting x = 0 in (25) and performing necessary calculations, we get

X(s, z) = 1 − λ

1 − c(s)

[
μ

∫ ∞

0

∑

r∈N

ar(dx)E−
r (x, z, s)zr + s

1 − f̃ (s + μ)

s + μ

]
− s

s + μ
.

Inserting this expression for the function X(s, z) into (25) yields

P s
r(x, z) = E−

r (x, z, s)

+ fr(x, s)z−r 1 − λ

1 − c(s)

[
μ

∫ ∞

0

∑

r∈N

ar(dx)E−
r (x, z, s)zr

+ s
1 − f̃ (s + μ)

s + μ

]
.
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Inserting Expression (14) for the function E−
r (x, z, s) into the latter equality and

performing necessary calculations, we find that

P s
r(x, z) = (1 − z)

[
A

z
x(s) + z−rfr (x, s)

1 − λ

1 − c(s)

1 − z

λ − z
A

z
0(s)

]
.

It is not difficult to derive the following relation

p̂s
r (x, z) =

∞∑

u=−r

zups

r
(x,u) = z−r

1 − z
− z

1 − z
P s

r (x, z), |z| ≤ 1.

The latter and the previous equality imply that

p̂s
r (x, z) = z−r

1 − z
− zAz

x(s) − z−r+1fr(x, s)
1 − λ

1 − c(s)

1 − z

λ − z
A

z
0(s).

Comparing the coefficients of zu, u ∈ [−r,∞), we get the second formula of (23).
We now verify (24). The first formula of (23) and (8) imply that

lim
B→∞f[rB]

(
x, s/B2) = e−r

√
2s/σ , r > 0.

Denote p̃t
r (x, u,B) = P[D0[−rB](x, tB2) ≥ [uB]], r > 0, u ≥ −r. It is obvious that

lim
B→∞

∫ ∞

0
e−st p̃t

k(x,u,B)dt = 1

s
lim

B→∞ps/B2

[rB]
(
x, [uB]).

Employing (16) and Lemma 6, we obtain

lim
B→∞

∫ ∞

0
e−st p̃t

k(x,u,B)dt

= s−1I{u>0}
(
e−u

√
2s/σ /2 + e−(2r+u)

√
2s/σ /2

)

+ s−1I{u∈[−r,0]}
(
1 − eu

√
2s/σ /2 + e−(2r+u)

√
2s/σ /2

)
, u ≥ −r.

In view of the formula s−1 e−a
√

2s/σ = 2
∫ ∞

0 e−stP[wt ≥ a]dt, we invert the Laplace
transforms on the right-hand side of this equality, which yields the limiting equality
of the theorem. For ρ < 1 the mathematical expectation of τr (x) is finite. It follows
from (8) that

Eτr (x) = [
Eηx + r(1 − λ)Eη

]
(1 − ρ)−1 < ∞.

Moreover, the process D0−r (x, t) is of regenerative type [12]. The instants of the
passages of the lower boundary are the regeneration times. Due to this property (see
[12]) there exists an ergodic distribution of the process pk(u) = limt→∞ P[Dk

0(x, t)

≤ u]. To determine this distribution it suffices to apply the Tauberian theorem to
Formula (23). Here pk(u) = lims→0 ps

k
(x,u). �
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Let {D0−r (x, t)}t≥0 be the process reflected from the lower boundary −r,

r, k ∈ Z
+. Introduce the following random variables

τ r,k(x) = inf
{
t : D0−r (x, t) > k

} = τ ,

T r,k(x) = D0−r (x, τ ) − k, Lr,k(x) = η+
x (τ ),

i.e., the first exit time from the interval [−r, k] by the process D0−r (x, t), the value
of the overshoot through the upper boundary k and the value of the linear compo-
nent at this instant. Since the process Xt is homogeneous with respect to the first
component, then the random variables {τ r,k(x), T r,k(x),Lr,k(x)} have the same dis-
tributions as {τB

r (x), T B
r (x),Lr(x)}, B = k + r. And hence their joint distribution is

given by (20).

Theorem 4 Let {D0−r (x, t)}t≥0 be the process reflected from the lower boundary −r.

Denote by ps
r,k

(x,u) = P[D0−r (x, νs) ≤ u; τ r,k(x) > νs], u ∈ [−r, k], the distribu-
tion of the increments of the process sampled at the exponential time νs, s > 0, given
that the event {τ r,k(x) > νs} takes place. Then

(i) The following equality is valid for r, k ∈ Z
+, u ∈ [−r, k],

ps

r,k
(x,u) = Au

x(s) − Qs
k(x)

EAδ+u+r
0 (s) − Au+r

0 (s)

EQs
B+δ − Qs

B

. (26)

(ii) Under Condition (A), the limiting equality

lim
B→∞ P

[
D[kB]

x

(
tB2) ≤ [uB]; τ [rB],[kB](x) > tB2]

def= p(t) = 4

π

∑

n∈Z
+

e− t
2 (π(n+ 1

2 )σ )2

2n + 1

× sin

(
(r + u)

(
n + 1

2

)
π

)
cos

(
r

(
n + 1

2

)
π

)
(27)

holds, where r ∈ (0,1), k = 1 − r, u ∈ [−r, k].

Proof Introduce the generating function

P s
r,k(x, z) = E

[
zD0−r (x,νs ); τ r,k(x) > νs

]
.

According to the total probability law, the homogeneity property of the process Xt

with respect to the first component, Markov property of τ r,k(x), and properties of the
exponential variable νs , we can write the following equation

P s
r(x, z) = P s

r,k(x, z) +
∫ ∞

0

∑

m∈N

vr
x(dl,m, s)P s

m+B(l, z)zm+k, |z| ≤ 1,
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where vr
x(dl,m, s) = E[e−sτB

r (x);L ∈ dl, T = m] is determined by (20), and

P s
r(x, z) = E[zD0−r (x,νs )] is found in Theorem 3 by (23). This equation is written

using the path decomposition principle. In other words, the increments of the process
D0−r (x, νs) can be realized on one of the following self-excluding events: (1) the
sample paths do not cross the upper boundary k, (2) the sample paths do intersect the
upper boundary and then the evolution of the process is just a probabilistic replica
of the process on [0, νs]. Inserting Expression (23) for the function P s

r(x, z) into the
latter equation, we find that

1

1 − z
P s

r,k(x, z) = A
z
x(s) − zk

∫ ∞

0
ṽr
x(dl, z, s)Az

l (s)

+ z−r
A

z
0(s)

1 − λ

1 − c(s)

1 − z

λ − z

×
[
fr(x, s) −

∑

m∈N

∫ ∞

0
vr

x(dl,m, s)fm+B(l, s)

]
, (28)

where ṽr
x(dl, z, s) = E[e−sτB

r (x)zT ;L ∈ dl]. Performing necessary calculations and
taking into account (8) and (20) yields

∑

m∈N

∫ ∞

0
vr

x(dl,m, s)fm+B(l, s) = fr(x, s) − 1 − c(s)

1 − λ

Qs
k(x)

EQs
B+δ − Qs

B

.

In view of this equality and (28), we find that

P s
r,k(x, z) − zk+1(1 − vr

x(s))

1 − z

= A
z
x(s) − zk

∫ ∞

0
ṽr
x(dl, z, s)Az

l (s)

− zk+1(1 − vr
x(s))

1 − z
+ z−r

A
z
0(s)

1 − z

λ − z

Qs
k(x)

EQs
B+δ − Qs

B

, |z| ≤ 1, (29)

where ṽr
x(s) = E[e−sτB

r (x)]. Then it is easily verified that

1

1 − z
P s

r,k(x, z) − zk+1

1 − z

(
1 − vr

x(s)
) =

k∑

u=−r

zups

r,k
(x,u).

Comparing the coefficients of zu, u ∈ [−r, k], on both sides of (29), we obtain (26).
For r ∈ (0,1), k = 1 − r, u ∈ [−r, k], denote

pt
r,k(x,u,B) = P

[
D[kB]

x

(
tB2) ≤ [uB]; τ [rB],[kB](x) > tB2].

Employing Formula (26) and the limiting equality of Lemma 6, we find that
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1

s
lim

B→∞ps/B2

[rB],[kB]
(
x, [uB]) = lim

B→∞

∫ ∞

0
e−stpt

r,k(x,u,B)dt

= 1 − cosh(u+√
2s/σ )

s

+ 1

s

sinh(k
√

2s/σ )

cosh(
√

2s/σ )
sinh

(
(u + r)

√
2s/σ

)

def= p∗(s), (30)

where u+ = max{0, u}. When u ∈ [−r,0], we derive from this formula that

p∗(s) = 1

s

sinh(k
√

2s/σ )

cosh(
√

2s/σ )
sinh

(
(u + r)

√
2s/σ

)
, u ∈ [−r,0].

It is clear that s = 0 is not a singular point (pole or point of branching) of the function
p∗(s). On the half-plane (s) < 0, this function has simple poles at

sn = −1

2
σ 2π2

(
n + 1

2

)2

, n ∈ Z
+,

and it is analytic on the whole plane apart from these points. Hence, for α > 0,

p(t) = 1

2πi

∫ α+i∞

α−i∞
estp∗(s) ds =

∑

n∈Z
+

Ress=snp
∗(s).

Calculating the residues of the function p∗(s) at sn, we obtain the right-hand side of
Formula (27) for u ∈ [−r,0]. On can see that for u ∈ (0, k] the first term on the right-
hand side of (30) is analytic on the entire plane. Applying the inversion formula, we
find that the contour integral of this term is equal to zero. The second term of (30) is
the same also for u ∈ [−r,0]. Thus, Formula (27) holds for u ∈ [−r, k]. �

5 Applications for the Gδ|Mκ|1|B system

Before considering the queueing system of interest, we stress the following facts.

Remark 1 Let B ∈ Z
+ be fixed, k ∈ [0,B], r = B − k. Introduce the process

D
B+1
k+1 (x, t) = −D0−r (x, t) + k + 1 ∈ [−∞,B + 1],

(31)
D

B+1
k+1 (x,0) = k + 1.

This process is reflected at the upper boundary B + 1, due to the infimum of the
process Dx(t). Introduce the following random variable:
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τ k+1(x) = inf
{
t : DB+1

k+1 (x, t) < 1
} = inf

{
t : D0−r (x, t) > k

}

= inf
{
t : Dr

0(x, t) > B
} = τB

r (x).

This defining chain of stochastic equalities implies that τ k+1(x) and τB
r (x) are iden-

tically distributed. And hence, by (21),

vk
x(s) = Ee−sτ k(x) = 1 − Ak−1

x (s) + Qs
k−1(x)

EAδ+B
0 (s) − AB

0 (s)

EQs
δ+B − Qs

B

, k ∈ [1,B + 1].

Remark 2 Denote by ps
k+1,x(u) = P[DB+1

k+1 (x, νs) ≥ u; τ k+1(x) > νs], u ∈
[1,B + 1], the Laplace transform of the increments of the process D

B+1
k+1 (x, t) on

the event {τ k+1(x) > t}. The definition of the process and Remark 1 imply that

P
[
D

B+1
k+1 (x, νs) ≥ u; τ k+1(x) > νs

]

= P
[
D0−r (x, νs) ≤ k + 1 − u; τB

r (x) > νs

]
.

It follows from the latter equality and from (26) that for k,u ∈ [1,B + 1]

ps
k,x(u) = Ak−u

x (s) − Qs
k−1(x)

EAδ+B+1−u
0 (s) − AB+1−u

0 (s)

EQs
B+δ − Qs

B

. (32)

We now introduce the process describing the functioning of the queueing system.
Let B ∈ Z

+, k ∈ [0,B + 1], x ≥ 0. Define the Markov process

Yk,x(t) = {
dk,x(t), η

+
x (t)

} ∈ [0,B + 1] × R+, Yk,x(0) = (k, x)

by means of the following stochastic recurrences

Yk,x(t) =
{

(D
B+1
k (x, t), η+

x (t)), 0 ≤ t < τk(x),

Y0,η+
x (τ k(x))(t − τ k(x)), t ≥ τ k(x),

k ∈ [1,B + 1],

Y0,x(t) =

⎧
⎪⎨

⎪⎩

(0, η+
x (t)), 0 ≤ t < ηx,

Yk,0(t − ηx) with probability (1 − λ)λk−1, k = [1,B], t ≥ ηx,

YB+1,0(t − ηx) with probability λB, t ≥ ηx.

The process Yk,x(t){t≥0} serves as a mathematical model of the functioning of the
Gδ|Mκ |1|B system with (δ ∼ ge(λ)). Let us describe how this system works.

(i) Customers arrive into the system in batches according to the renewal process
Nx(t){t≥0}. The number of customers in every batch is a random variable iden-
tically distributed as δ ∼ ge(λ) ∈ N.

(ii) The system has a finite buffer whose size is equal to B + 1 < ∞. Suppose that
upon arrival of a new customer of size δ, there are k ∈ [0,B +1] occupied places
in the waiting room. Then min{r, δ} customers join the queue, and loss of size
max{0, δ − r} occurs, where r = B + 1 − k is the size of the empty space in the
buffer;
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(iii) The duration of service completion is exponentially distributed with parameter
μ > 0. Suppose that at time t the service cycle is accomplished. Then the oc-
cupied space in the buffer is reduced by min{k,κ}, where k ∈ [1,B + 1] is the
number of the occupied places in the waiting room at time t − 0. If at the instant
of the service completion k − min{k,κ} > 0, then a new service cycle starts. If
at the instant of the service completion k − min{k,κ} = 0, then the new service
cycle starts upon arrival of a new customer (batch of customers).

For all t ≥ 0, the event {Yk,x(t) = (i, y)}, i ∈ [1,B + 1], y ≥ 0, means that at time
t there are i customers in the buffer and that time y has elapsed since the last arrival
up to time t. We assume that (k, x) is an initial state of the system.

The event {Yk,x(t) = (0, y)} means that at time t the buffer is empty and the system
is idle, and time y has elapsed since the last customer’s arrival (up to time t). Hence,
ηy is the duration of the idle period (state (0, y)).

Thus, dk,x(t) is the number of customers in the buffer at time t, η+
x (t) is the time

elapsed since the last arrival of the batch up to time t. Note that the definition of the
process Yk,x(t) (homogeneity of the process Xt with respect to the first component)
implies that the linear component η+

x (t) does not depend on k.

In the next part of this paper, we will determine the Laplace transforms of the main
performance characteristics of the system. The Laplace transform of the busy period
of the system is the subject of the next subsection.

5.1 Busy period of the system

Suppose that the system starts functioning at time t0 = 0 from the state (k, x), where
k ∈ [1,B + 1] is the number of customers in the buffer, x ≥ 0 is the time elapsed
since the last arrival up to time t0 = 0. Denote by

bk(x) = inf
{
t : dk,x(t) = 0

}
, η(x) = η+

x

(
bk(x)

)

the instant at which the system becomes empty for the first time and the value of the
linear component at time bk(x), respectively. Hence, the interval [0, bk(x)] is a busy
period of the (k, x)-type.

Corollary 1 Let bs
k(x) = E[e−sbk(x);bk(x) < ∞] be the Laplace transform of the

busy period of the (k, x)-type. Then

(i) The following equality holds

bs
k(x) = 1 − Ak−1

x (s) + Qs
k−1(x)

EAδ+B
0 (s) − AB

0 (s)

EQs
δ+B − Qs

B

, k ∈ [1,B + 1], (33)

the random variable bk(x) is proper (P[bk(x) < ∞] = 1), and it has a finite
mathematical expectation given by

Ebk(x) = Ak−1
x − Qk−1(x)

EAδ+B
0 − AB

0

EQδ+B − QB

< ∞. (34)
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(ii) The Laplace transform bs
k(x, dy) = E[e−sbk(x); η(x) ∈ dy] of the joint distribu-

tion of {bk(x), η(x)} is such that for k ∈ [1,B + 1]

bs
k(x, dy) = f k−1(x, dy, s) − Qs

k−1(x)
Ef δ+B(0, dy, s) − f B(0, dy, s)

EQs
δ+B − Qs

B

, (35)

where the function f k(x, dy, s) = E[e−sτ k(x); T k(x) ∈ dy,Bk(x)], k ∈ Z
+, is

determined by (26).

Proof Formula (33) follows straightforwardly from (21) and Remark 1. Equalities
(20) and (17) imply (35). �

5.2 Time of the first loss of a customer

Suppose that the initial state of the system is (k, x), k ∈ [0,B + 1], x ≥ 0. Introduce
lk(x) as time of the first loss of a customer (group of customers); ik,x(t) as the number
of the lost customers on the time interval [0, t]; and ik,x = ik,x(lk(x)) as the number
of the lost customers at time lk(x).

Corollary 2 Let lsk(x) = E[e−slk(x); lk(x) < ∞] be the Laplace transform of lk(x).

Then the following relations hold

lsk(x) = f̃x(s) + (1 − f̃ (s))Ss
k−1(x)

f̃ (s) + (1 − f̃ (s))ESs
δ+B

, k ∈ [0,B + 1],
(36)

lsk(x,m) = E
[
e−slk(x); ik,x = m

] = lsk(x)(1 − λ)λm−1, m ∈ N,

where Ss
k(x) = ∑k

i=0 Qs
i (x), Ss

k(x) = 0 for k < 0. The random variable lk(x) is
proper with a finite mathematical expectation

Elk(x) = Eηx − Eη + Eη
[
ESδ+B − Sk−1(x)

]
< ∞,

where Sk(x) = S0
k (x), ESδ+B = ES0

δ+B.

Proof The functions lsk(x), k ∈ [1,B + 1], ls0(y) obey the following system of equa-
tions:

lsk(x) = VB+1−k(x, s) +
∫ ∞

0
V k−1(x, dy, s)ls0(y),

(37)

ls0(y) = f̃y(s)λ
B+1 + f̃y(s)

B+1∑

k=1

(1 − λ)λk−1lsk(0),

where the functions Vr(x, s), V k(x, dy, s) are given by (17) and (18). Substituting
the expression for the function ls0(y) from the second equation into the first, we get

lsk(x) = VB+1−k(x, s) + λB+1
∫ ∞

0
V k−1(x, dy, s)f̃y(s)
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+
∫ ∞

0
V k−1(x, dy, s)f̃y(s)

B+1∑

k=1

(1 − λ)λk−1lsk(0).

Letting x = 0 in the latter equation, we find for the function X(s) = ∑B+1
k=1 (1 −

λ)λk−1lsk(0) that

X(s) + λB+1 = λB+1 + V̌B(λ, s)

1 − ∫ ∞
0 V̌ B(λ, dy, s)f̃y(s)

, (38)

where V̌B(λ, s) = (1 − λ)
∑B+1

k=1 λk−1VB+1−k(0, s),

V̌ B(λ, dy, s) = (1 − λ)

B+1∑

k=1

λk−1V k−1(0, dy, s).

Employing Formulae (11), (17), (18) and performing necessary calculations, we ob-
tain

λB+1 + V̌B(λ, s) = (1 − λ)
(
EQs

δ+B

)−1
,

1 −
∫ ∞

0
V̌ B(λ, dy, s)f̃y(s) = (1 − λ)SB(λ, s)

(
EQs

δ+B

)−1
,

where SB(λ, s) = f̃ (s) + (1 − f̃ (s))ESs
δ+B. These equalities, Formula (38) and the

second equality of (37) imply that

ls0(y) = f̃y(s)SB(λ, s)−1.

Inserting the right-hand side of this equality into the second equality of (37), we get

lsk(x) = Qs
k−1(x)

EQs
δ+B

+ SB(λ, s)−1
∫ ∞

0
V k−1(x, dy, s)f̃y(s), k ∈ [1,B + 1].

In view of (11), (17) and (18), we find that
∫ ∞

0
V k−1(x, dy, s)f̃y(s) = f̃x(s) + (

1 − f̃ (s)
)
Ss

k−1(x) − Qs
k−1(x)

EQs
δ+B

SB(λ, s).

The latter and the previous equality imply the first equality of (36). We now verify
the second equality. Observe that ik,x ∼ ge(λ). This can be formally derived from the
first formula of (17) and from the following system of equations

lsk(x,m) = VB+1−k(x, s)(1 − λ)λm−1 +
∫ ∞

0
V k−1(x, dy, s)ls0(y,m),

ls0(y,m) = f̃y(s)(1 − λ)λB+m + f̃y(s)

B+1∑

k=1

(1 − λ)λk−1lsk(0,m).

To solve this system, one can apply a similar reasoning as for the system (37). �
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Corollary 3 Let νs ∼ exp(s) be an independent from the process Yk,x(t) exponential
variable with parameter s > 0. Denote by I s

k,x(n) = P[ik,x(νs) = n], n ∈ Z
+, the

distribution of the number of the lost customers on the time interval [0, νs]. For all
k ∈ [1,B + 1], x ≥ 0, the following equalities are valid

I s
k,x(0) = 1 − lsk(x),

(39)
I s
k,x(n) = lsk(x)(1 − λ)

(
1 − lsB+1(0)

)(
λ + (1 − λ)lsB+1(0)

)n−1
, n ∈ N.

Proof Let Ĩ s
k,x(z) = E[zik,x (νs )], |z| ≤ 1, be the generating function of the distribution

of the number of the lost customers. Then it obeys the equation

Ĩ s
k,x(z) = 1 − lsk(x) + L̃s

k,x(z)Ĩ
s
B+1,0(z), (40)

where (see (36))

L̃s
k,x(z) = E

[
e−slk(x)zik,x

] = lsk(x)z
1 − λ

1 − zλ
.

Letting k = B + 1, x = 0 in (40), we find that

Ĩ s
B+1,0(z) = (

1 − lsB+1(0)
)(

1 − L̃s
B+1,0(z)

)−1
.

Inserting the right-hand side of this equality into (40) implies

Ĩ s
k,x(z) = 1 − lsk(x)

1 − z

1 − zλ − z(1 − λ)lsB+1(0)
.

Comparing the coefficients of zn, n ∈ Z
+, we obtain (40) of the corollary. �

5.3 Number of customers in the system

Let νs ∼ exp(s) be an exponential r.v. with parameter s > 0. Introduce the transient
probabilities of the process dk,x(t){t≥0}, k ∈ [0,B + 1], x ≥ 0,

qs
k,x(0) = P

[
dk,x(νs) = 0

]
, qs

k,x(u) = P
[
dk,x(νs) ≥ u

]
, u ∈ [1,B + 1].

Theorem 5 The distribution of the number of customers in the system sampled at the
exponential time νs is such that

qs
k,x(0) = 1 − Ak−1

x (s) − (
AB

0 (s) − EAδ+B
0 (s)

) 1 − λ

EQs
δ+B

Cs
k−1(x),

(41)
qs
k,x(u) = Ak−u

x (s) + (
AB+1−u

0 (s) − EAδ+B+1−u
0 (s)

) 1 − λ

EQs
δ+B

Cs
k−1(x),

where Ak
x(s) = Ss

k(x) = 0 for k < 0,

Cs
k(x) = f̃x(s)

(
1 − f̃ (s)

)−1 + Ss
k(x).
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Under Condition (A), the following limiting equality holds

lim
B→∞ P

[
d[kB],x

(
tB2) ≥ [uB]]

def= q(t) = 1 − u − 2

π

∑

n∈N

e− t
2 (πσn)2

n
sin(kπn) sin(uπn), k,u ∈ (0,1). (42)

Corollary 4 Let q0 = limt→∞ P[d(·)(t) = 0], qu = limt→∞ P[d(·)(t) ≥ u], u ∈
[1,B + 1], be the stationary distribution of the number of customers. Then

q0 = 1 − 1 − λ

Eη

(
AB

0 − EAδ+B
0

)
(EQδ+B)−1,

qu = 1 − λ

Eη

(
AB+1−u

0 − EAδ+B+1−u
0

)
(EQδ+B)−1,

where ρi = lims→0 s−1ρ̃i (s) = ∫ ∞
0 P[π(t) = i]dt < ∞, Qk = Q0

k,

Au
0 = lim

s→0

1

s
Au

0(s) =
u∑

i=0

ρi

[
1 − Qu−i

1 − λ

]
.

Proof In view of the definition of the process Yk,x(t) and Remark 2, we can write the
following equations for the function qs

k,x(u), qs
0,x(u) for u ∈ [1,B + 1]

qs
k,x(u) = ps

k,x(u) +
∫ ∞

0
bs
k(x, dy)qs

0,y(u), k ∈ [1,B + 1],
(43)

qs
0,y(u) = f̃y(s)

[

λBqs
B+1,0(u) + (1 − λ)

B∑

k=1

λk−1qs
k,0(u)

]

,

where the function bs
k(x, dy) = E[e−sbk(x); η(x) ∈ dy] is given by (35). Inserting the

right-hand side of the second equation into the first, we get

qs
k,x(u) = ps

k,x(u) +
∫ ∞

0
bs
k(x, dy)f̃y(s)q

s
B(λ,u),

where qs
B(λ,u) = λBqs

B+1,0(u) + (1 − λ)
∑B

k=1 λk−1qs
k,0(u). After some manipula-

tions, we get

qs
B(λ,u) = ps

B(λ,u)
(
1 − b̃(s, λ)

)−1
,

where ps
B(λ,u) = λBps

B+1,0(u) + (1 − λ)
∑B

k=1 λk−1ps
k,0(u),

b̃(s, λ) = λB

∫ ∞

0
bs
B+1(0, dy)f̃y(s) + (1 − λ)

B∑

k=1

λk−1
∫ ∞

0
bs
k(0, dy)f̃y(s).
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Employing (11), (32), (35) and performing necessary calculations, we obtain

∫ ∞

0
bs
k(x, dy)f̃y(s) = (

1 − f̃ (s)
)
(

Cs
k−1(x) − Qs

k−1(x)

1 − λ

EQs
δ+B

EQs
δ+B − Qs

B

)
,

1 − b̃(s, λ) = (
1 − f̃ (s)

) EQδ+B

EQs
δ+B − Qs

B

,

ps
B(λ,u) = (1 − λ)

AB+1−u
0 (s) − EAδ+B+1−u

0 (s)

EQs
δ+B − Qs

B

,

qs
B(λ,u) = 1 − λ

1 − f̃ (s)

(
AB+1−u

0 (s) − EAδ+B+1−u
0 (s)

)(
EQs

δ+B

)−1
.

In view of these equalities and the equations of the system (43), we derive the sec-
ond formula of (41). Taking into account the definition of the process Yk,x(t) and
Remark 2, we find for the functions qs

k,x(0), qs
0,x(0) that

qs
k,x(0) =

∫ ∞

0
bs
k(x, dy)qs

0,y(0),

(44)

qs
0,y(0) = 1 − f̃y(s) + f̃y(s)

[

λBqs
B+1,0(0) + (1 − λ)

B∑

k=1

λk−1qs
k,0(0)

]

.

Inserting the right-hand side of the second equation into the first, we get

qs
k,x(0) =

∫ ∞

0
bs
k(x, dy)

(
1 − f̃y(s)

) +
∫ ∞

0
bs
k(x, dy)f̃y(s)q

s
B(λ), (45)

where qs
B(λ) = λBqs

B+1,0(0) + (1 − λ)
∑B

k=1 λk−1qs
k,0(0). After some transforma-

tions of the latter equation, we obtain

qs
B(λ) = 1 − (

1 − b(s, λ)
)(

1 − b̃(s, λ)
)−1

,

where

b(s, λ) = λBbs
B+1(0) + (1 − λ)

B∑

k=1

λk−1bs
k(0)

= 1 − (1 − λ)
AB

0 (s) − EAB+δ
0 (s)

EQs
δ+B − Qs

B

.

The latter and the previous equality imply that

qs
B(λ) = 1 − 1 − λ

1 − f̃ (s)

(
AB+

0 (s) − EAδ+B
0 (s)

)(
EQs

δ+B

)−1
.

Inserting the right-hand side of this equality into (45) yields the first equality of (41).
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For k,u ∈ (0,1), denote qt
k(x,u,B) = P[d[kB],x(tB2) ≥ [uB]]. Employing (41),

the limiting equality (16), as well as (22), we find that

1

s
lim

B→∞q
s/B2

[kB],x
([uB]) = lim

B→∞

∫ ∞

0
e−st qt

k(x,u,B)dt

= 1 − cosh((k − u)+
√

2s/σ )

s

+ 1

s

cosh(k
√

2s/σ )

sinh(
√

2s/σ )
sinh

(
(1 − u)

√
2s/σ

) def= q∗(s), (46)

where u+ = max{0, u}. When u ∈ [k,1), we derive from this formula that

q∗(s) = 1

s

cosh(k
√

2s/σ )

sinh(
√

2s/σ )
sinh

(
(1 − u)

√
2s/σ

)
, u ∈ [k,1).

It is clear that s0 = 0 is a simple pole of the function q∗(s). On the half-plane
(s) < 0, this function has simple poles at sn = − 1

2 (σπn)2, n ∈ N, and it is an-
alytic on the entire plane apart from these points. Hence, for α > 0,

q(t) = 1

2πi

∫ α+i∞

α−i∞
estq∗(s) ds =

∑

n∈Z
+

Ress=snq
∗(s).

Calculating the residues of the function q∗(s) in sn, we obtain the right-hand side of
Formula (42) for u ∈ [k,1). One can see that for u ∈ (0, k] the first term on the right-
hand side of (46) is analytic on the whole plane. Applying the inversion formula, we
find that the contour integral of this term is equal to zero. The second term of (46) is
the same also for u ∈ [k,1). Thus, Formula (42) holds for u ∈ (0,1).

Observe that lims→0 Au
x(s) = lims→0 EAδ+u

0 (s) = 0, lims→0 bs
k(x) = 1. It follows

from (41) and the properties of Laplace transforms that

lim
s→0

qs
k,x(u) = lim

s→0
qs

0,x(u) = qu = lim
t→∞ P

[
d(·)(t) ≥ u

]
, u ∈ [1,B + 1],

lim
s→0

qs
k,x(0) = lim

s→0
qs

0,x(0) = q0 = lim
t→∞ P

[
d(·)(t) = 0

]
.

Calculating the limits on the right-hand sides of (41) as s → 0 yields the equalities of
Corollary 4. �

5.4 Virtual waiting time

Suppose that at time t0 = 0 the system is at the state (k, x), k ∈ [0,B + 1], x ≥ 0.

Denote by Wk,x(t) time required to serve the customers present in the system at
time t. Formally, this random variable can be determined in the following way. Let
τ̃ (k) = inf{t : π(t) ≥ k}, k ∈ Z

+. Then



Queueing Syst (2010) 65: 175–209 203

Wk,x(t) = τ̃
(
dk,x(t)

)
,

Ee−pWk,x(t) =
B+1∑

i=0

P
[
dk,x(t) = i

]
Ee−pτ̃ (i), p > 0.

Corollary 5 Let k ∈ [0,B + 1], x ≥ 0. The following equality holds

P
[
Wk,x(νs) ≤ v

] = 1 −
B∑

i=0

P
[
π(v) = i

]
qs
k,x(i + 1),

lim
t→∞ P

[
Wk,x(t) ≤ v

] = 1 −
B∑

i=0

P
[
π(v) = i

]
qi+1,

where the distributions qs
k,x(u), qu, u ∈ [0,B + 1] are given by (41) and (42).

Proof It is clear that P[τ̃ (k) > t] = P[π(t) < k]. Hence,

Ee−pτ̃ (k) = 1 − P
[
π(νp) < k

] = 1 −
k−1∑

i=0

ρ̃i (p),

where ρ̃i (p) = p
∫ ∞

0 e−pvP[π(v) = i]dv. Then

Ee−pWk,x(νs ) = 1 −
B+1∑

i=0

P
[
dk,x(νs) = i

] i−1∑

j=0

ρ̃j (p)

= 1 −
B∑

i=0

ρ̃i (p)qs
k,x(i + 1).

The right-hand side of this equality implies the formulae of Corollary 5. �

5.5 G|Mκ |1|B system

In this subsection, we consider a partial case of the Gδ|Mκ |1|B system, namely when
P[δ = 1] = 1. This translates to the queueing system where the customers are served
one by one. Technically, one has to set the parameter λ = 0 for the geometrical dis-
tribution: P[δ = n] = (1 − λ)λn−1, n ∈ N, λ ∈ [0,1) of the random variable δ. In
other words, it means that the process {Dx(t)}t≥0 has unit negative jumps at the time
instants {ηn(x)}n∈N and δNx(t) = Nx(t). Then, it follows from (2) that

Dx(t) = π(t) − Nx(t) ∈ Z, t ≥ 0. (47)

We will call this process a difference of a compound Poisson process and a simple
renewal process. Setting the parameter λ = 0 in the statements of Lemma 2 leads to
the following result.
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Lemma 7 For s > 0 the equation z = f̃ (s − k(z)) has a unique solution c(s)

inside the circle |z| < 1. This solution is positive, c(s) ∈ (0,1). If E[κ],E[η] <

∞, ρ = μE[κ]E[η], then for ρ > 1, lims→0 c(s) = c ∈ (0,1); and for ρ ≤ 1,

lims→0 c(s) = 1.

Statements of the lemmas and theorems derived in the previous subsections can
be reformulated in a similar way. Letting λ = 0 in the defining Formula (10) for all
s, x ≥ 0, we get

Qs
k(x) = 1

2πi

∮

|z|=α

1

zk+1

f̃x(s − k(z))

f̃ (s − k(z)) − z
dz, α ∈ (

0, c(s)
)
, (48)

which is a resolvent sequence of the process {Dx(t)}t≥0 defined by (47). This resol-
vent sequence was introduced in [11]. Setting λ = 0 in (11) and (12), we obtain

f k(x, dl,m, s) = e−s(l−x) 1 − F(l)

1 − F(x)
I{l > x}pm

k

(
d(l − x)

)

+ Φs
0(dl,m)Qs

k(x) − e−sl
[
1 − F(l)

] k∑

i=0

Qs
i (x)pm

k−i (dl), (49)

Ee−sτ k(x) = 1 − s

s − k(c(s))
Qs

k(x) − Ak
x(s),

i.e., the Laplace transforms of the upper one-boundary functionals of the process
{Dx(t)}t≥0 in (47), where ρ̃i (s) = s

∫ ∞
0 e−stP[π(t) = i]dt,

Ak
x(s) =

k∑

i=0

ρ̃i (s)
[
1 − Qs

k−i (x)
]
,

Φs
0(dl,m) = e−sl

[
1 − F(l)

] ∑

k∈Z
+
c(s)kpm

k (dl).

We have introduced the auxiliary functions and the resolvent sequence of the process
(47); therefore, we can state the following result.

Corollary 6 Let {Dx(t)}t≥0 be the difference of the compound Poisson process and
the renewal process (see (47)), let {Qs

k(x)}k∈Z
+ , x ≥ 0, be the resolvent sequence

of the process given by (48) with Qs
k

def= Qs
k(0). The Laplace transforms V x

r (m, s),

V k
x (dl,m, s) of the joint distribution of {χ,L,T } satisfy the following equalities for

all x, s ≥ 0, m ∈ N,

Vr(x, i, s) = Qs
k(x)

Qs
B+1

δi1,

V k(x, dl, i, s) = f k(x, dl, i, s) − Qs
k(x)

Qs
B+1

f B+1(0, dl, i, s),

where δij is the Kronecker symbol and f k(x, dl,m, s) is given by (49).
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For the Laplace transforms of the first exit time χ from the interval by the process
{Dx(t)}t≥0, the following formulae hold

E
[
e−sχ ;Ar

] = Qs
k(x)

Qs
B+1

,

E
[
e−sχ ;Ak

] = 1 − Ak
x(s) + Qs

k(x)

Qs
B+1

(
1 − AB+1

0 (s)
)
.

In order to prove the corollary, one has to put λ = 0 in the statements of Theorem 1.
We now illustrate how the results obtained in Corollaries 1–5 can be applied for
studying the queueing system G|Mκ |1|B (P[δ = 1] = 1) with a finite buffer.

Corollary 7 Let bs
k(x) = E[e−sbr (x);br(x) < ∞] be the Laplace transform of the

busy period of (k, x) type of the G|Mκ |1|B system. Then

(i) The following equality holds

bs
k(x) = 1 − Ak−1

x (s) + Qs
k−1(x)

AB+1
0 (s) − AB

0 (s)

Qs
B+1 − Qs

B

, k ∈ [1,B + 1],

the random variable bk(x) is proper with a finite mathematical expectation

Ebk(x) = Ak−1
x − Qk−1(x)

AB+1
0 − AB

0

QB+1 − QB

< ∞.

(ii) The Laplace transform bs
k(x, dy) = E[e−sbk(x); η(x) ∈ dy] of the joint distribu-

tion of {bk(x), η(x)} is such that for k ∈ [1,B + 1]

bs
k(x, dy) = f k−1(x, dy, s) − Qs

k−1(x)
f B+1(0, dy, s) − f B(0, dy, s)

Qs
B+1 − Qs

B

.

Corollary 8 Let lk(x) be the time of the first loss of a customer in the G|Mκ |1|B
system, ik,x(νs) be the number of the lost customers on the time interval [0, νs]. Then

(i) The Laplace transform lsk(x) = E[e−slk(x); lk(x) < ∞] of lk(x) is such that

lsk(x) = f̃x(s) + (1 − f̃ (s))Ss
k−1(x)

f̃ (s) + (1 − f̃ (s))Ss
B+1

, k ∈ [0,B + 1],

where Ss
k(x) = ∑k

i=0 Qs
i (x), Ss

k(x) = 0 for k < 0. The random variable lk(x) is
proper with a finite mathematical expectation Elk(x) = Eηx − Eη + Eη[SB+1 −
Sk−1(x)] < ∞.

(ii) The distribution I s
k,x(n) = P[ik,x(νs) = n], n ∈ Z

+ of the number of the lost
customers on the time interval [0, νs] obeys the equality

I s
k,x(n) = I{n=0}

(
1 − lsk(x)

) + I{n∈N}lsk(x)
(
1 − lsB+1(0)

)(
lsB+1(0)

)n−1
.
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Corollary 9 The distribution of the number of customers in the system G|Mκ |1|B at
time νs is such that

qs
k,x(0) = 1 − Ak−1

x (s) − (
AB

0 (s) − AB+1
0 (s)

)
Cs

k−1(x)/Qs
B+1,

qs
k,x(u) = Ak−u

x (s) + (
AB+1−u

0 (s) − AB+2−u
0 (s)

)
Cs

k−1(x)/Qs
B+1,

where Ak
x(s) = Ss

k(x) = 0 for k < 0, Cs
k(x) = f̃x(s)(1 − f̃ (s))−1 + Ss

k(x). Let q0 =
limt→∞ P[d(·)(t) = 0], qu = limt→∞ P[d(·)(t) ≥ u], u ∈ [1,B + 1] be the stationary
distribution of the number of customers in the G|Mκ |1|B system. Then

q0 = 1 − 1

Eη

(
AB

0 − AB+1
0

)
/QB+1,

qu = 1

Eη

(
AB+1−u

0 − AB+2−u
0

)
/QB+1,

lim
t→∞ P

[
Wk,x(t) ≤ v

] = 1 − 1

Eη

B∑

i=0

P
[
π(v) = i

](
AB−i

0 − AB+1−i
0

)
/QB+1,

where ρi = lims→0 s−1ρ̃i (s) = ∫ ∞
0 P[π(t) = i]dt < ∞, Qk = Q0

k,

Au
0 = lim

s→0

1

s
Au

0(s) =
u∑

i=0

ρi[1 − Qu−i].

In order to prove Corollaries 7–9, it suffices to set λ = 0 in the formulae of Theo-
rem 5 and of Corollaries 1–5. The resolvent coefficients Qk, k ∈ Z

+, can be obtained
form the following recurrence relation

Q0 = 1, Qk = 1

f0

(

fk + Qk−1 −
k−1∑

i=0

Qifk−i

)

, k ∈ N,

where fk = P[π(η) = k] = ∫ ∞
0 P[η ∈ dt]P[π(t) = k]. For the system G|M|1|B,

P[κ = 1] = 1, so that P[π(t) = k] = (μt)ke−μt/k!.

Appendix

Let us verify Equalities (22) of Lemma 6. Suppose that Condition (A) is satisfied.
Then for s,p → 0 the following expansions hold

f̃x(s) = 1 − sEηx + 1

2
s2Eη2

x + o
(
s2), x ≥ 0,

(50)
Ee−pκ = 1 − pEκ + 1

2
p2Eκ

2 + o
(
p2).
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We now derive the asymptotic expansions for the function S
s/B2

[kB] (x) as B → ∞. The
generating function

S
s
θ (x) =

∑

k∈Z
+
θk

k∑

i=0

Qs
i (x)

= 1

1 − θ

(1 − λ)f̃x(s − k(θ))

(1 − λ)f̃ (s − k(θ)) + λ − θ
, θ ∈ (

0, c(s)
)
,

is such that for θ = e−p, p > − ln c(s),

S
s
θ (x) =

∑

k∈Z
+
θkSs

k(x)
∣∣
θ=e−p =

∫ ∞

0
e−p[k]Ss

[k](x) dk

=
∫ ∞

0
e{k}pe−pkSs

[k](x) dk = S
s
e−p (x), p > − ln c(s),

where {a} is the fractional part of the number a. By Ss
p(x) = ∫ ∞

0 e−pkSs
[k](x) dk,

p > − ln c(s), we denote the Laplace transform of the function Ss
[k](x). It is clear

that

S
s
p(x) ≤ S

s
e−p (x) ≤ ep

S
s
p(x). (51)

Employing the limiting equalities (50) and the definition of the function S
s
θ (x), we

obtain

lim
B→∞ S

s/B2

e−p/B (x)B−3 = lim
B→∞

B−3

1 − e−p/B

(1 − λ)f̃x(s/B
2 − k(e−p/B))

(1 − λ)f̃ (s/B2 − k(e−p/B)) + λ − e−p/B

= 1

spEη

1
1
2p2σ 2 − s

, p >
√

2s/σ.

It follows from the chain (51) that

lim
B→∞

1

B3
S

s/B2

p/B (x) = lim
B→∞

1

B3
S

s/B2

e−p/B (x) = 1

sp Eη

1
1
2p2σ 2 − s

. (52)

Inverting the Laplace transforms (with respect to p) on both sides, we obtain

lim
B→∞

1

B2
S

s/B2

[kB] (x) = 1

sEη
cosh(k

√
2s/σ − 1).

In order to invert the Laplace transforms, we have calculated the residues on the
right-hand side of (52) at the simple poles p = 0,±√

2s/σ. The second part of the
first equality (22) can be verified analogously:

lim
B→∞B−2ES

s/B2

δ+[kB] = 1

sEη
cosh(k

√
2s/σ − 1).
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We will now verify the second formula of (22). Denote qs
k = EQs

δ+k − Qs
k, k ∈ Z

+.

Employing (9) and (10), we determine the generating function of this sequence:

q̃s
θ =

∑

k∈Z
+
θkqs

k = (1 − λ)(1 − f̃ (s − k(θ)))

(1 − λ)f̃ (s − k(θ)) + λ − θ
, θ ∈ (

0, c(s)
)
.

This generating function is such that for θ = e−p, p > − ln c(s),

q̃s
e−p =

∫ ∞

0
e−p[k]qs

[k] dk =
∫ ∞

0
e{k}pe−pkqs

[k] dk.

By qs
p = ∫ ∞

0 e−pkqs
[k] dk, p > − ln c(s), we denote the Laplace transform of the

function qs
[k]. It is clear that

q
s
p ≤ q̃s

e−p ≤ ep
q
s
p. (53)

In view of the limiting equalities (50) and the definition of the function q̃s
θ , we find

lim
B→∞ q̃

s/B2

e−p/B B−1 = lim
B→∞

(1 − λ)(1 − f̃ (s/B2 − k(e−p/B)))B−1

(1 − λ)f̃ (s/B2 − k(e−p/B)) + λ − e−p/B

= pμEκ

1
2p2σ 2 − s

.

It follows from the chain (53) that

lim
B→∞

1

B
q
s/B2

p/B = lim
B→∞

1

B
q̃

s/B2

e−p/B = p μEκ

1
2p2σ 2 − s

.

Inverting the Laplace transforms (with respect to p) on both sides, we obtain

lim
B→∞q

s/B2

[kB] = lim
B→∞

[
EQ

s/B2

[δ+kB] − Q
s/B2

[kB]
] = μEκ

σ 2
cosh(k

√
2s/σ ).

The third formula of (22) can be verified analogously.
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