15^{rd} European Signal Processing Conference, 3 - 7, September 2007, Poznan, Poland.

Criteria to measure the quality of TVAR estimation for audio signals

Imen SAMAALI, Gaël MAHÉ and Monia TURKI

Signals and Systems Research Unit (U2S), ENIT, Tunisia CRIP5, University Paris Descartes, Paris, France

 $Audio \ signal = Correlation + Non-stationarity$

Classically

Audio signal is modelized by an AutoRegressive process (AR)

Advantage

To take account of the correlation of the signal

2 Drawback

Non stationary process

Recently

Generalization of the AR model to the non-stationary context: TVAR model (Time-Varying AutoRegressive)

 \Rightarrow How to evaluate the estimation of the TVAR model?

Audio signal = Correlation + Non-stationarity

Classically

Audio signal is modelized by an AutoRegressive process (AR)

4 Advantage

To take account of the correlation of the signal

2 Drawback

Non stationary process

Recently

Generalization of the AR model to the non-stationary context: TVAR model (Time-Varying AutoRegressive)

 \Rightarrow How to evaluate the estimation of the TVAR model?

• 日本 · 日本 · 日本

Audio signal = Correlation + Non-stationarity

Classically

Audio signal is modelized by an AutoRegressive process (AR)

4 Advantage

To take account of the correlation of the signal

2 Drawback

Non stationary process

Recently

Generalization of the AR model to the non-stationary context: TVAR model (Time-Varying AutoRegressive)

 \Rightarrow How to evaluate the estimation of the TVAR model?

A B K A B K

Audio signal = Correlation + Non-stationarity

Classically

Audio signal is modelized by an AutoRegressive process (AR)

4 Advantage

To take account of the correlation of the signal

2 Drawback

Non stationary process

Recently

Generalization of the AR model to the non-stationary context: TVAR model (Time-Varying AutoRegressive)

 \Rightarrow How to evaluate the estimation of the TVAR model?

.

• TVAR model and parameter estimation

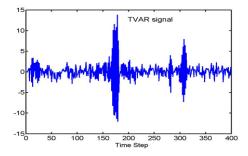
- TVAR model
- Parameter estimation
- Evaluation of the TVAR estimation
 - Cepstral distance
 - Signal to Noise Ration (SNR)
 - Classical statistical criteria
 - Proposed approach

Separation Experimentation validation

(4) E (4) E (4) E

Part I

TVAR model and parameter estimation

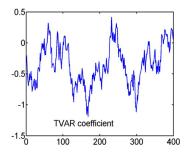

TVAR model

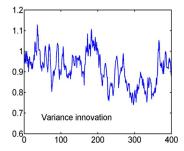
Definition

The output, x_t , of a p order TVAR process is:

$$x_t = \sum_{i=1}^p a_{i,t} x_{t-i} + \sigma_{e_t} e_t,$$

Example: Synthetic 2^{nd} order TVAR signal

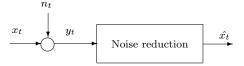



TVAR model Parameter estimation

TVAR model

- $a_{i,t}, \log \sigma_{e_t}^2$: first order Markov process
- Example: TVAR coefficient

• Example: Variance innovation



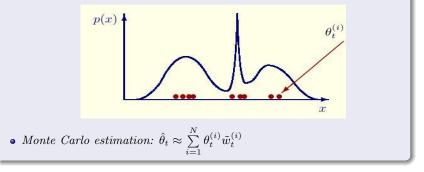
TVAR model and parameter estimation

TVAR model Parameter estimation

Adaptative estimation of audio signal

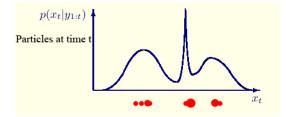
• <u>Problem</u>: Estimation of audio signal from noisy observation

• State System:


$$\begin{cases} x_t = A_t(\theta_t) X_{t-1} + E_t e_t \\ y_t = C_t(\theta_t) X_t + N_t n_t \end{cases}$$

 $\theta_t = (a_t, \log \sigma_{e_t}^2, \log \sigma_{n_t}^2)$

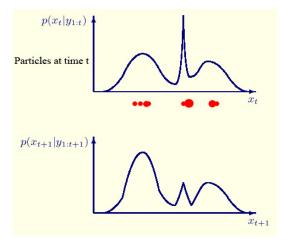
- Estimation objective:
 - **()** First stage: estimation of θ_t by Particle Filter
 - 2 Second stage: estimation of \hat{x} by Kalman Filter


Principle

• Suboptimal filters perform sequential Monte Carlo (SMC) estimation based on weighted particles.

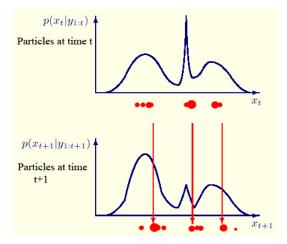
TVAR model Parameter estimation

Particle Filter

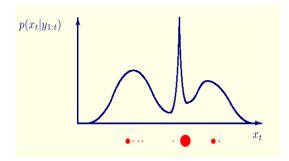


Imen SAMAALI, Gaël MAHÉ and Monia TURKI Criteria to measure the quality of TVAR estimation for a

< 2 > < 2 >

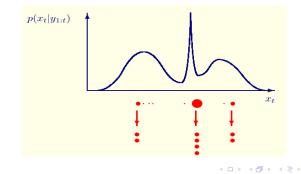

TVAR model Parameter estimation

Particle Filter


< 17 ×

→ 3 → 4 3

-


\Rightarrow After some iterations: particles degenerate

 \Rightarrow Divergence of the filter: resampling is needed

Resampling stage:

- \Rightarrow Duplicating the particles of strong weight
- \Rightarrow Eliminating the particles of weak weight

Part II

Evaluation of TVAR estimation

Imen SAMAALI, Gaël MAHÉ and Monia TURKI Criteria to measure the quality of TVAR estimation for a

▲御▶ ▲理▶ ▲理▶

Direct criteria: Cepstral distance

Comparison between the original and estimated parameters \Rightarrow Cepstral Distance

Definition

• Cepstrum coefficients

$$c_t(i) = -a_t(i) - \sum_{n=1}^{i-1} (1 - \frac{n}{i})a_t(n)c_t(i-n).$$

• Cepstral distance

$$d_t^{\mathcal{C}} = \sqrt{\sum_{i=1}^p (c_t(i) - \hat{c}_t(i))^2}.$$

Drawbacks

Not available for natural signals

\Rightarrow Undirect criteria

(日) (周) (日) (日)

Direct criteria: Cepstral distance

Comparison between the original and estimated parameters \Rightarrow Cepstral Distance

Definition

• Cepstrum coefficients

$$c_t(i) = -a_t(i) - \sum_{n=1}^{i-1} (1 - \frac{n}{i})a_t(n)c_t(i-n).$$

• Cepstral distance

$$d_t^{\mathcal{C}} = \sqrt{\sum_{i=1}^p (c_t(i) - \hat{c}_t(i))^2}.$$

Drawbacks

Not available for natural signals

\Rightarrow Undirect criteria

・ 同 ト ・ ヨ ト ・ ヨ ト

Direct criteria: Cepstral distance

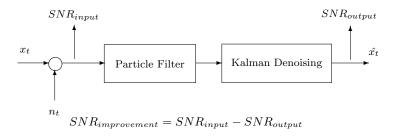
Comparison between the original and estimated parameters \Rightarrow Cepstral Distance

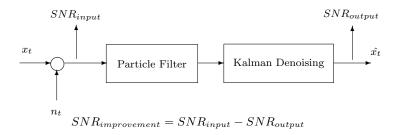
Definition

• Cepstrum coefficients

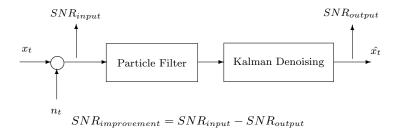
$$c_t(i) = -a_t(i) - \sum_{n=1}^{i-1} (1 - \frac{n}{i})a_t(n)c_t(i-n).$$

• Cepstral distance

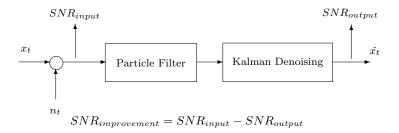

$$d_t^{\mathcal{C}} = \sqrt{\sum_{i=1}^p (c_t(i) - \hat{c}_t(i))^2}.$$

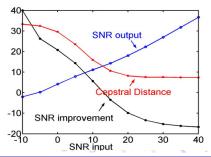

Drawbacks

Not available for natural signals


\Rightarrow Undirect criteria

(D) (A) (A)




+ Appropriate for denoising purposes

- + Appropriate for denoising purposes
- Depending on the denoising process

- + Appropriate for denoising purposes
- Depending on the denoising process
- Not relevant for strong input SNR

Undirect criteria: conventional statistical tests

Principle

• Test based on u_t :

$$u_t = p(Y_t \le y_t | y_{1:t-1})$$

• TVAR model is correct if $v_t = \phi^{-1}(u_t)$ is i.i.d according to $\mathcal{N}(0,1)$, ϕ is the standard normal cumulative distribution function.

• Statistical tests:

- Normality Index: Bowman-Shenton Test
- Whiteness Index: Ljung-Box Test

Undirect criteria: conventional statistical tests

Principle

• Test based on u_t :

$$u_t = p(Y_t \le y_t | y_{1:t-1})$$

• TVAR model is correct if $v_t = \phi^{-1}(u_t)$ is i.i.d according to $\mathcal{N}(0,1)$, ϕ is the standard normal cumulative distribution function.

• Statistical tests:

• Normality Index: Bowman-Shenton Test

• Whiteness Index: Ljung-Box Test

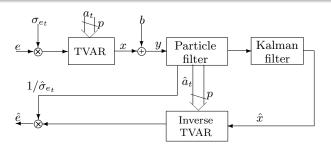
Undirect criteria: conventional statistical tests

Principle

• Test based on u_t :

$$u_t = p(Y_t \le y_t | y_{1:t-1})$$

• TVAR model is correct if $v_t = \phi^{-1}(u_t)$ is i.i.d according to $\mathcal{N}(0,1)$, ϕ is the standard normal cumulative distribution function.


• Statistical tests:

- Normality Index: Bowman-Shenton Test
- Whiteness Index: Ljung-Box Test

Proposed approach

Principle

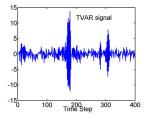
The estimation is good if there exists a stationary gaussian white noise that can produce x by exciting the estimated TVAR model

$$\hat{e}(t) = \frac{1}{\sigma_{\hat{e}_t}} \left(\hat{x}(t) - \sum_{i=1}^p \hat{a}_{i,t} \hat{x}(t-i) \right).$$

Tests validation: Whiteness, Normality, Stationarity

Part III

Experimental validation


Imen SAMAALI, Gaël MAHÉ and Monia TURKI Criteria to measure the quality of TVAR estimation for a

- ★ 臣 ▶ - ★ 臣

< 17 ×

Experimental validation: Simulation context

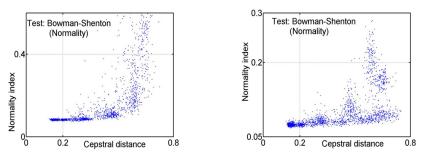
- Test signal:
- Synthetic TVAR signal of order 2.
- $\Delta_a = 10^{-2} I_2$ for the TVAR coefficients.
- $\delta_e^2 = \delta_n^2 = 10^{-3}$ for the log-variance.

<回と < 回と < 目と

- ② Experimental objectives:
 - Evaluating the correlation between whiteness/ normality/ stationarity indices and cepstral distance.
 - Compare these correlations for v_t and \hat{e}_t
- Experiment:

For various SNR (-10:2:40 dB) and for various number of particles (N = 10:10:150 particles), plot set of point $(d^{\mathcal{C}}, I)$ for v_t and \hat{e}_t .

 \Rightarrow Correlation analysis


Simulation context Results

• Residual time series: v

Experimental validation: Results

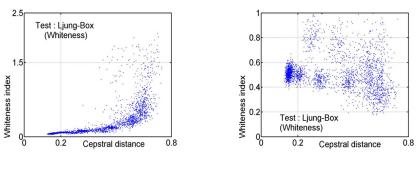
 \Rightarrow Normality index

• Estimate excitation: \hat{e}

Correlation coefficient: 0.6

Correlation coefficient: 0.8

each point $(d^{\mathcal{C}}, I) \sim 1$ experiment width a particular (SNR, N)


Simulation context Results

• Residual time series: v

Experimental validation: Results

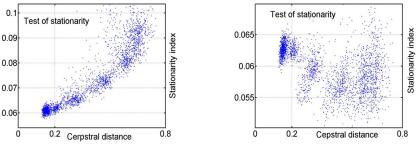
 \Rightarrow Whiteness index

• Estimate excitation: \hat{e}

Correlation coefficient: 0.9

Correlation coefficient: 0.06

each point $(d^{\mathcal{C}}, I) \sim 1$ experiment width a particular (SNR, N)


Simulation context Results

• Residual time series: v

Experimental validation: Results

 \Rightarrow Stationarity index

• Estimate excitation: \hat{e}

Correlation coefficient: 0.95

Correlation coefficient: 0.7

each point $(d^{\mathcal{C}}, I) \sim 1$ experiment width a particular (SNR, N)

• Statistical indices are well correlated to cepstral distance for \hat{e}

	Whiteness	Normality	Stationarity
\hat{e}	0.93	0.6	0.95
v	0.06	0.80	-0.7

- Less complex than classical method
- Not need any knowledge of the original model \rightarrow appropriate for natural signals

.

Part IV

Conclusion

Imen SAMAALI, Gaël MAHÉ and Monia TURKI Criteria to measure the quality of TVAR estimation for a

《曰》 《圖》 《圖》 《圖》

æ

Summary

- **4** A new evaluation method of TVAR estimation:
 - appropriate to natural signals: not need of the original model, neither of the original signal.
 - simple: just inverse the estimated TVAR system.
 - $\bullet \ \underline{\ better \ result \ than \ classical \ methods:}$ indices well correlated to cepstral distance.
- Ont aim at performing binary validation of TVAR model: quatitative measure of the quality of the TVAR model estimation

Further investigations

- What happen in case of undermodeling?
- ² Take into account the gaussian assumption of noise excitation.

(日本)

э.

Summary

- **4** A new evaluation method of TVAR estimation:
 - appropriate to natural signals: not need of the original model, neither of the original signal.
 - simple: just inverse the estimated TVAR system.
 - <u>better result than classical methods:</u> indices well correlated to cepstral distance.
- Ont aim at performing binary validation of TVAR model: quatitative measure of the quality of the TVAR model estimation

Further investigations

- What happen in case of undermodeling?
- ② Take into account the gaussian assumption of noise excitation.

(日本)

3

Summary

- **4** A new evaluation method of TVAR estimation:
 - appropriate to natural signals: not need of the original model, neither of the original signal.
 - simple: just inverse the estimated TVAR system.
 - $\bullet \ \underline{\ better \ result \ than \ classical \ methods:}$ indices well correlated to cepstral distance.
- Ont aim at performing binary validation of TVAR model: quatitative measure of the quality of the TVAR model estimation

Further investigations

- What happen in case of undermodeling?
- ² Take into account the gaussian assumption of noise excitation.