
HAL Id: hal-00686309
https://hal.science/hal-00686309

Submitted on 11 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TEMPORAL ENVELOPE CORRECTION FOR
ATTACK RESTORATION IN LOW BIT-RATE

AUDIO CODING
Imen Samaali, Monia Turki-Hadj Alouane, Gaël Mahé

To cite this version:
Imen Samaali, Monia Turki-Hadj Alouane, Gaël Mahé. TEMPORAL ENVELOPE CORRECTION
FOR ATTACK RESTORATION IN LOW BIT-RATE AUDIO CODING. European Signal Processing
Conference, Aug 2009, glasgow, European Union. �hal-00686309�

https://hal.science/hal-00686309
https://hal.archives-ouvertes.fr


TEMPORAL ENVELOPE CORRECTION FOR ATTACK RESTORATION IN LOW
BIT-RATE AUDIO CODING

Imen Samaali1�2, Monia Turki-Hadj Alouane2, Gäel Mah́e1
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ABSTRACT
At reduced bit rates, the audio compression affects transient
parts of signals, which results in pre-echo and loss of attack
character. We propose in this paper an attacks restoration
method based on the correction of the temporal envelope of
the decoded signal, using a small set of coefficients transmit-
ted through an auxiliary channel. The proposed approach
is evaluated for single and multiple coding-decoding, using
objective perceptual measures. The experimental results for
MP3 and AAC coding exhibits an efficient restoration of the
attacks and a significant improvement of the audio quality.

1. INTRODUCTION

In perceptual coders at low bit-rates, variations in the mask-
ing threshold from one frame to the next leads to different
bit assignments. An artefact known as pre-echo may ap-
pear in signals with transients (see Figure 1). The silence
before an attack may be affected by a relatively high quan-
tization noise, since the masking threshold is computed us-
ing the part of the frame after the attack [1][2]. However,
if the pre-echo is short enough, it is post-masked by the at-
tack. The phenomenon of pre-echo is amplified by multiple
coding-decoding: the quantization noise piles up at each cy-
cle and may become audible.

Transient signals are affected by another artefact when
coding at low bit-rates. Only a small low-frequency band
of the signal is fully transmitted, whereas medium frequen-
cies are restored at the decoder without phase information
and higher frequencies are simply forgotten. This smoothes
attacks resulting in a reduce of the percussive quality of
sounds.

In order to reduce or eliminate pre-echo and enhance
the audio quality, some techniques with different complex-
ities are developed in the literature [1]. These techniques
are based on the use of an adaptive window selection algo-
rithm to switch between long and short transform window.
Long windows offer higher prediction gain, and better fre-
quency resolution, while short windows reduce the length of
pre-echo.

Another technology, the ”Temporal Noise Shaping”
(TNS) [3], used in the AAC coder, aims at resolving the
problem of Temporal Masking. This approach allows the en-
coder to control the temporal fine structure of the quantiza-
tion noise. In the same way as temporal predictive coders re-
shape the quantization noise spectrum, the principle of TNS,
is to replace the spectral coefficients to be quantized by the
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Figure 1: Original signal (top) and pre-echo (bottom) from
castanet (left) and triangle (right) coded at 56 kbps using
MP3 coder

coder with their frequency prediction residual (which flattens
the temporal envelope). In the decoder, the inverse prediction
filter is applied to the residual. As a consequence, the tempo-
ral shape of the quantization error is adapted to the temporal
shape of the audio signal. For the MP3 coder, a similar cor-
rection is performed by the ”Temporal Masking” (TM) tech-
nology [4].

Although these techniques reduce significantly the pre-
echo phenomenon, the problems of temporal masking and at-
tacks smoothing remain harmful for some transient signals,
such as castanet, glockenspiel, triangle or certain types of
speech signals. In this paper, we propose a novel method
aiming at restoring attacks in coded-decoded signals. The
idea is to perform a correction of the temporal envelope of the
coded-decoded signal, using a small set of parameters (de-
scribing the temporal envelope of the original signal) trans-
mitted over a very low bit-rate (� 1 kbps) auxiliary channel
which we suppose to have (an audio watermarking channel
for example).

This paper is structured as follows: in section 2, we
present the new approach dedicated to attack restoration for
the quality enhancement of audio decoded signals. Section 3
presents a performance evaluation of the proposed algorithm
in the case of simple and multiple successive encodings (cod-
ings in tandem).
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Figure 2: Block diagram of the proposed approach.

2. ENVELOPE CORRECTION

The proposed method is based on the correction of the tem-
poral envelope of the decoded signal. The restored audio
signal,x̂t , is given at timet by:

x̂	t 
 � x	t 
dec
ê	t 


ê	t 
dec � (1)

wherex	t 
dec is the decoded audio signal, ˆe	t 
 is an estimate
of the temporal envelope of the original signal, and ˆe	t 
dec is
the temporal envelope of the coded-decoded signal.

The correction approach constitutes a post-processing
performed at the decoder. For this purpose, crucial param-
eters required for the temporal envelope estimation are ex-
tracted by the encoder and transmitted to the decoder through
an auxiliary channel. Figure 2 illustrates the basic struc-
ture of the proposed approach. In addition to the standard
coder/decoder blocks, the proposed system includes several
components:
 Frame characterization/Transient localization: character-

izes the frame type as transient or not. In particular, for
the transient frames, a localization of the attack’s time
position is performed.
 Temporal envelope coding and vector quantization:
based on linear prediction in frequency domain.
 Audio signal correction: for the restoration of the audio
signal according to the relation presented in equation 1.

2.1 Transient detector

 Characterization of frame type:

To detect transient frames, we use the technique de-
scribed in [5]. After high-pass IIR filtering with the transfer

function

H 	z
 � 0�7548	z�1

z�0�5095 � (2)

each frame of 1024 samples is divided into 8 sub-blocks of
128 samples and the energy of each sub-block is computed
by summing up the squared samples. An attack is detected
if one of these sub-block energies exceeds a sliding average
of the previous energies by a constant factorattackRatioand
is greater than a constant energy levelminAttackNrg�10�3

[5].
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Figure 3: The audio signal (violon+castanet) and its corre-
sponding attack ratio coefficients

Figure 3 illustrates the efficiency of the proposed method.
The attack ratio coefficient corresponding to the transient
frame (Frame 2) exceeds the threshold fixed to 10 as in [5].
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 Transient localization:
The method used to detect the transient time position is

based on the stationarity index which corresponds to the Kol-
mogorov distance measured between the time frequency rep-
resentation (TFR) of the signal at different times [6]. The
stationarity index is given by:

SI	t 
 � � p

τ�0

� �∞

f��∞ �NI1	t;τ � f 
 �NI2	t;τ � f 
�d f dτ � (3)

NI1	t;τ � f 
 andNI2	t;τ � f 
 represent a normalization of re-
spectively subimagesI1	t;τ � f 
 andI2	t;τ � f 
:

I1	t;τ � f 
 �TFR	t �p�τ � f 
; (4)
I2	t;τ � f 
 �TFR	t �τ � f 
� (5)

The parameterp delimits the considered analysis dura-
tion at each instantt and allows the selectivity/sensivity con-
trol of the SIs: a high value ofp leads to smoother SIs. As in
[6], p is fixed to 20. As illustrated in Figure 4, the peak of SI
corresponds to the attack position.
 Attack position coding:

Since coding directly the transient position would require
a high bit-rate, we propose to code the difference between
the actual attack position given by the original frame and the
attack position computed from the coded/decoded frame. A
6 bits scalar quantization technique is used for this purpose.

2.2 Temporal envelope ARMA modeling

The reduced bit-rate of the auxiliary channel implies a com-
pact representation of the transmitted temporal envelope,
through a small set of coefficients for each frame. The pro-
posed coding approach is based on linear prediction in fre-
quency domain providing an approximation of the temporal
envelope of a signal, specifically the squared Hilbert enve-
lope [7]. The block diagrams of the temporal envelope esti-
mation is depicted in Figure 5.

The Discrete Cosine Transform ofx	t 
 is modeled by an
ARMA(p,q) model. The ARMA model was here preferred
to the classically used AR model, because it ensures an ac-
curate representation of the spectral envelope by means of a
reduced number of coefficients. The autoregressive param-
etersai � i � 1� ���p, of the ARMA(p,q) model are estimated
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Figure 4: Transient frame (top), its corresponding stationary
index (bottom)
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Figure 5: Block diagram of the temporal envelope estima-
tion.

by minimizing the mean square prediction error defined as
follows:

Epre	k
 �X 	k
� p

∑
i�1

aiX 	k�i
� (6)

whereX 	k
 �DCT 	x	t 

.
The moving average parametersbi � i � 1� ���q, are com-

puted by a Prony method.
An estimation of the temporal envelope ofx	t 
 is there-

fore given by:
ê	t 
 � �H 	ejwt 
�� (7)

where

H 	z
 � ∑q
i�0biz�i

1�∑p
i�1aiz�i

� Hb	z

Ha	z
 (8)

Each frame of 2048 samples is divided into two sub-
frames, each modeled with an ARMA(2,3). For non transient
frames, each sub-frames has 1024 samples. Transient frames
are divided according to the transient position.

Figure 6 illustrates similarity between the estimated en-
velope and the original one for a castanet sound sampled at
44.1 kHz.

2.3 ARMA to LSF transformation

After the ARMA parameters are estimated, they must be
coded and transmitted through the auxiliary communication
channel. The autoregressive coefficients (AR) are character-
ized by large dynamic range and would require many bits per
coefficient for accurate coding. In addition, small changesin
the AR coefficients may result in instability of the synthe-
sis filter. For these reasons, it is necessary to transform the
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Figure 6: The castanet signal and its corresponding temporal
envelope estimate
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AR coefficients into an equivalent representation which en-
sures the stability : the Line Spectral Frequency representa-
tion (LSF) are classically used in predictive coders.

The AR filterHa	z
 of orderp, given by equation 8, can
be represented by :

Ha	z
 � 1
2 �P	z
�Q	z
�� (9)

whereP	z
 andQ	z
 are even and odd symmetric filters re-
spectively. Their roots,zi � ejθi , lie on the unit circle [8].
The θi � i �1� ���N! represent the Line Spectrum Frequency
(LSF) coefficients.

To transform the Moving Average (MA) parameters into
the LSF coefficients, the MA filterHb	z
 (equation 8) must
be modified as follows

Hb	z
 �1� q

∑
i�1

b"iz�i � (10)

whereb"i � bi
b0

, i � 1� ���q. In the decoder, the value ofb0 is
estimated from the decoded signal.

2.4 Vector quantization

For each sub-frame, a vector grouping 5 LSF coefficients is
coded using a classical vector quantization technique. The
codebookC of a dimensionK #L, (K=256 and L=5 here), is
obtained by training on a database of approximately 100#K
vectors taken from various kinds of audio signals. It can be
computed by the Lloyd-Max algorithm [9].

For the proposed system, the LSF parameters are coded
on 8 bits for each sub-frame. We recall that for transient
frame, 6 bits are added to code the attack position. Conse-
quently, the auxiliary channel bit-rate varies between 344and
474 bps.

3. EXPERIMENTAL EVALUATION OF THE
PROPOSED APPROACH

The experiments aim at validating our approach and compar-
ing the restored audio signal to the original one. We used
the PEMO-Q software described in [10] as a tool to mea-
sure the Objective Difference Grade (ODG) and the instanta-
neous Perceptual Similarity Measure (PSMt). The ODG is a
perceptual audio quality measure, which rates the difference
between test and reference signals among a scale from 0 (im-
perceptible) to -4 (very annoying). The values of PSMt vary
in the interval [0,1], with 1 indicating the similarity between
the reference and the test signals, whereas smaller values cor-
respond to larger deviations between them. The perceptual
measures are correlated to the Subjective Difference Grade
(SDG) for audio quality.

At first, the audio quality is evaluated when a single cod-
ing is performed. For each experiment, the reference audio
signals are coded by MP3 and AAC coders at different bit-
rates varying from 24 to 96 kbps. The considered reference
audio signals for all the simulations are mono castanet and
triangle, which exhibit a remarkable transient character.

As illustration of the proposed approach, the 56 kbps
MP3 coded/decoded castanet and triangle signals and their
corrected versions are shown in Figure 7. It can be seen that
the MP3 coder introduces a pre-echo and smoothes attacks.
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Figure 7: Attack restoration for a castanet (left) and triangle
(right) signals coded by a MP3 coder at 56 kbps

In the reconstructed signal, the pre-echo is considerably re-
duced and the attack is restored.

Figures 8 and 9 compare the variations, over bit-rate, of
the ODG and PSMt for both coded/decoded signals and their
restored versions. As illustrated in Figures 8, for MP3 coder
even with TM, the proposed correction provides a significant
enhancement of the PSMt and ODG. With AAC coding (Fig-
ure 9), the improvement is slighter.
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signals (MP3 coder)

At a second stage, the perceived quality in multi-
encoding case is analyzed. Referring to the experimental re-
sults of Reiss [2] related to the stereo MP3 coder at 128 kbps,
the perceptual audio quality deteriorates with the increase of
encoding number. Similar results were obtained for mono
MP3 coder at 64 kbps for castanet and triangle sequences.

The variations of the perceptual audio quality
(PSM/ODG) with the number of encodings are shown
in Figures 10 and 11. Without correction, we observe a fast
deterioration. In fact, the quantization noise from each cycle
piles up, so that the pre-echo, which was post-masked by the
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0 1 2 3 4 5 6
0.8

0.85

0.9

0.95

1

 Number of encoding

P
S

M
t

0 1 2 3 4 5 6
−3

−2

−1

0

  Number of encoding

O
D

G

MP3 coder without TM
MP3 coder with TM
MP3 coder with TM+Correction

MP3 coder without TM
MP3 coder with TM
MP3 coder with TM+Correction

Figure 10: Effect of multiple encoding on audio quality for
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attack in the first encodings, is not masked anymore in the
next encodings and becomes annoying.

For the castanet signal, the temporal masking enhances
the quality, but the reference temporal envelope for thenth

coding is the deteriorated envelope of the signal from the	n �1
th coding-decoding. Thus, with only TM, the curve
converges towards that without TM, whereas with our cor-
rection (with always the same envelope), the quality remains
transparent.

4. CONCLUSION

Low-bit-rate coding-decodingwith standard coders AAC and
MP3 smoothes attacks in transients signals and increases
the pre-echo despite TNS/TM. We have proposed an attack
restoration method, based on temporal envelope correction,
using a small set of information transmitted through an aux-
iliary channel. Our method enhances significantly the audio
quality as measured by ODG and PSMt , and avoids the dra-
matic fall of quality caused by multiple coding-decoding. All
components of the proposed system have a reasonable com-
plexity, except of the transient localization: other methods
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Figure 11: Effect of multiple encoding on audio quality for
triangle signal (MP3 coder)

than computating stationarity indices should be considered.
Further study will aim at using the audio watermarking

as an auxiliary communication channel and evaluating the
influence of the watermark detection error on the proposed
system.
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