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ABSTRACT. In this paper, we present some aspects relative to the types of uncertainties, the vari-
ability of real systems, the types of probabilistic approaches and of the representations for the
probabilistic models of uncertainties, the construction of the probabilistic models using the
maximum entropy principle. We then present the nonparametric probabilistic approach of un-
certainties for elliptic problems, for 3D continuous dynamical systems with geometrical nonlin-
earities induced by large displacements and for low- and medium-frequency vibroacoustics of a
complex system with experimental validations. Finally, a generalized probabilistic approach of
uncertainties in computational dynamics using the random matrix theory and polynomial chaos
decompositions is presented.

RÉSUMÉ. Dans cet article, on introduit les types d’incertitudes, la variabilité des systèmes réels,
les types d’approches probabilistes, les types de représentation des modèles probabilistes des
incertitudes, la construction des modèles probabilistes en utilisant le principe du maximum
d’entropie. On présente ensuite l’approche probabiliste non paramétrique des incertitudes pour
les problèmes elliptiques, pour l’élastodynamique 3D avec non-linéarités géométriques induites
par les grands déplacements et la vibroacoustique basse et moyenne fréquence d’un système
complexe avec validation expérimentale. Finalement, on présente une approche probabiliste
généralisée des incertitudes pour en dynamique numérique en utilisant la théorie des matrices
aléatoires et les décompositions sur les chaos polynômiaux.

KEYWORDS: Uncertainties, probabilistic modeling, uncertainties quantification, propagation of
uncertainties, inverse problems, identification
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1. Introduction concerning the probabilistic modeling of uncertainties

1.1. Uncertainties and variability

The designed system is used to manufacture the real system and to construct the

nominal computational model (also called the mean model) using a mathematical-

mechanical modeling process for which the main objective is the prediction of the

responses of the real system in its environment. The real system, submitted to a given

environment, can exhibit a variability in its responses due to fluctuations in the man-

ufacturing process and due to small variations of the configuration around a nominal

configuration associated with the designed system. The mean model which results

from a mathematical-mechanical modeling process of the design system, has param-

eters which can be uncertain. In this case, there are model-parameter uncertainties.
In an other hand, the modeling process induces some modeling errors defined as the

model uncertainties. It is important to take into account both the model-parameter un-
certainties and model uncertainties to improve the predictions of computational mod-

els in order to use such a computational model to carry out robust optimization, robust

design and robust updating with respect to uncertainties. Today, it is well understood

that, as soon as the probability theory can be used, then the probabilistic approach of

uncertainties is certainly the most powerful, efficient and effective tool for modeling

and for solving direct and inverse uncertain problem. The developments presented in

this paper are limited to the probabilistic approaches.

1.2. Types of approach for probabilistic modeling of uncertainties

The parametric probabilistic approach consists in modeling the uncertain parame-
ters of the mean model by random variables and then in constructing the probabilistic

model of these random variables using the available information. Such an approach

is very well adapted and very efficient to take into account model-parameter uncer-

tainties as soon as the probability theory can be used. Many works have been pub-

lished in this field and a state-of-the-art can be found for instance in (Deodatis et
al., 2008; Mace et al., 2005; Schueller, 2005a; Schueller, 2005b)). Nevertheless, the
parametric probabilistic approach does not allow model uncertainties to be taken into

account (see for instance (Beck et al., 1998)). A possible way to solve this diffi-

cult problem is the nonparametric probabilistic approach which has been introduced

by (Soize, 2000; Soize, 2001) and for which extensions and developments have been

presented in (Soize, 2003; Soize, 2005). This approach consists in replacing the ma-

trices of the finite approximations of the operators of the boundary value problem

by random matrices for which the mean values are equal to the corresponding ma-

trices of the mean model and for which the probability distributions are constructed

using only the available information. The nonparametric probabilistic approach then

uses the random matrix theory (see for instance (Mehta, 1991)) and has required to

introduce new ensembles of random matrices adapted to computational mechanics

modeling (Soize, 2000; Soize, 2001; Soize, 2005; Mignolet et al., 2008a) and which
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have been constructed using the maximum entropy principle under the constraints

defined by the available information (see Section 1.4). This approach has been ap-

plied and validated for direct problems of predictions, stochastic inverse problems of

identification and robust optimization problems (Arnst et al., 2006; Capiez-Lernout et
al., 2006; Chen et al., 2006; Cottereau et al., 2007; Capiez-Lernout et al., 2008; De-
sceliers et al., 2008; Durand et al., 2008; Pellissetti et al., 2008; Soize et al., 2008; Ba-
tou et al., 2009) for many situations, often with experimental validations. Extensions
have been proposed, particularly in dynamic substructuring and in nonlinear dynamics

(Chebli et al., 2004; Capiez-Lernout et al., 2005; Desceliers et al., 2004; Duchereau
et al., 2006; Sampaio et al., 2007; Mignolet et al., 2008b; Batou et al., 2009). Very re-
cently, a generalized probabilistic approach of uncertainties in computational dynam-

ics using random matrices and polynomial chaos decompositions has been proposed

(Soize, 2010).

1.3. Types of representation for probabilistic modeling of uncertainties

A fundamental question is the construction of prior probability models of un-

certainties. Such a prior probability model can then be used to study the propa-

gation of uncertainties through the mechanical system which is analyzed. If ex-

perimental measures are available for the mechanical system, then these measures

can be used (1) to identify the parameters of the prior probability model (see for

instance (Soize et al., 2008)) using, for instance, the maximum likelihood method

(Serfling, 1980; Spall, 2003) or (2) to construct a posterior probability model (see for

instance (Beck et al., 1998)) using, for instance, the Bayesian methods (see for in-

stance (Bernardo et al., 2000; Kaipio et al., 2005; Spall, 2003; Congdon, 2007; Carlin
et al., 2009)). Two methods can be used to construct the prior probability model of a
random vectorA belonging to the space L2

N of all the second-order random variables

defined on a probability space and with values in R
N (this random vector can result

from a finite dimension approximation of a stochastic process or of a random field).

(i)- The first method is a direct approachwhich consists in directly constructing the
probability distribution PA(da) on R

N in using, for instance, the maximum entropy

principle (see Section 1.4).

(ii)- The second method is an indirect approach which consists in introducing a

representation A = g(X) for which A ∈ L2
N is the transformation by a determin-

istic nonlinear mapping g (which has to be constructed) of a R
ν-valued random vari-

ableX = (X1, . . . , Xν) whose probability distribution PX(dx) is given and then is
known. Then PA is the transformation of PX by the mapping g. Two main types of

methods can be used.

(ii.1)- The first one corresponds to the spectral methods such as the Poly-

nomial Chaos representations (Wiener, 1938; Ghanem et al., 1991; Ghanem et
al., 1996; LeMaitre et al., 2004; Soize et al., 2004; Nouy, 2007; Das et al., 2008; Arnst
et al., 2008; Nouy et al., 2009; Soize et al., 2009) which can also be applied in infi-
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nite dimension for stochastic processes and random fields, which allow the effective

construction of mapping g to be carried out and which allow any random variableA

in L2
N , to be written as

A = Σ+∞
j1=0 . . .Σ

+∞
jν=0 a

j1,...,jν ψj1(X1) × . . .× ψjν
(Xν) ,

in which ψj are given real polynomials and where a
j1,...,jν are vectors in R

N which

completely define mapping g. The construction of g then consists in identifying the

vector-valued coefficients aj1,...,jν . If X is Gaussian, then the polynomials are the

normalized Hermite polynomials. Today, many applications of such an approach have

been carried out for direct and inverse problems, see for instance (Ghanem et al.,
2005; Berveiller et al., 2006; Desceliers et al., 2006; Faverjon et al., 2006; Desceliers
et al., 2007; LeMaitre et al., 2007; Arnst et al., 2008; Guilleminot et al., 2008)).

(ii.2)- The second one consists in introducing a prior algebraic representationA =
g̃(X ,w) in whichw is a parameter with small dimension which has to be identified,

whereX id a vector-valued random variable with probability distribution PX , where

g̃ is a given nonlinear mapping and where the vector-valued parameter w must be

identified. For instance, tensor-valued random fields representations constructed with

such an approach can be found in (Soize, 2006; Soize, 2008b).

Method (ii.1) allows any random vectorA in L2
N to be represented but the repre-

sentation can require a very large number of coefficients yielding very difficult prob-

lems for their identification. In general, method (ii.2) does not allow any random

vector A in L2
N to be represented but allows a representation to be constructed in a

subspace of L2
N when w runs through all the admissible space (but, in opposite, the

identification ofw is realistic and efficient.

1.4. Construction of the probabilistic models using the maximum entropy principle

The measure of uncertainties using the entropy were introduced by (Shannon,

1948) in the framework of Information Theory. The use of the maximum entropy

principle (that is to say the maximization of the level of uncertainties) to construct

a prior probability model of a random variable under the constraints defined by the

available information, were formalized by (Jaynes, 1957). This principle appears as a

major tool to construct the prior probability model (1) of uncertain parameters of the

mean model for the parametric probabilistic approach, (2) of both model-parameter

uncertainties and modeling errors for the nonparametric probabilistic approach and

(3) of the generalized approach of uncertainties corresponding to a full hybridization

of the parametric and nonparametric probabilistic approaches.

Let a = (a1, . . . , aN ) be a real vector and let A = (A1, . . . , AN ) be a second-
order random variable with values in R

N whose probability distribution PA is defined

by a probability density functiona 7→ pA(a) onR
N with respect to da = da1 . . . daN

and which verifies the normalization condition
∫

RN pA(a) da = 1. In fact, it is as-
sumed that A is with values in any bounded or unbounded part A of R

N and conse-
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quently, the support of pA is A. The available information defines a constraints equa-
tion on R

µ written as E{g(A)} = f in which E is the mathematical expectation,

f = (f1, . . . , fµ) is a given vector in R
µ and where a 7→ g(a) = (g1(a), . . . , gµ(a))

is a given function from R
N into R

µ. Let C be the set of all the probability density

functions a 7→ pA(a) defined on R
N with values in R

+ verifying the normaliza-

tion condition and the constraints equation E{g(A)} = f . The maximum entropy

principle consists in finding pA in C which maximizes the entropy (that is to say the

uncertainties),

pA = argmax
p∈C

S(p) , S(p) = −

∫

RN

p(a) log(p(a)) da

in which S(p) is the entropy of the probability density function p. Introducing the

Lagrange multiplier λ ∈ Lµ ⊂ R
µ associated with the constraints where Lµ is the

subset of R
µ of all the admissible values for λ, it can easily be seen that the solution

of the optimization problem can be written as

pA(a) = c0 1A(a) exp(− < λ, g(a) >) , ∀a ∈ R
N

in which < x ,y >= x1y1 + . . . + xµyµ and where 1A is the indicatrix function of

set A. The normalization constant c0 and the Lagrange multiplier λ are calculated

in solving a nonlinear vectorial algebraic equation deduced from the normalization

condition and from the constraints equation. This algebraic equation can be solved

using appropriated algorithms. Then, it is necessary to construct a generator of in-

dependent realizations of random variable A whose probability density function is

that which has been built. In small dimension (N is a few units), there is no diffi-

culty. In high dimension (N hundreds or thousands), there are two major difficulties.

The first one is related to the calculation of an integral in high dimension of the type

c0
∫
A
g(a) exp(− < λ, g(a) >) da which is necessary to implement the algorithm

for computing c0 and λ. The second one is the construction of the generator once

c0 et λ have been calculated. These two aspects can be solved using the Markov

Chain Monte Carlo methods (MCMC) (see for instance (Kaipio et al., 2005; MacK-

eown, 1997; Spall, 2003)). The transition kernel of the homogeneous (stationary)

Markov chain of theMCMCmethod can be constructed using theMetropolis-Hastings

algorithm (Hastings, 1970) or the Gibbs algorithm (Geman et al., 1984) which is a
slightly different algorithm for which the kernel is directly derived from the transition

probability density function and for which the Gibbs realizations are always accepted.

These two algorithms construct the transition kernel for which the invariant measure is

PA. In general, these algorithms are effective but can not be when there are regions of

attraction that do not correspond to the invariant measure. These situations can not be

easily detected and are time consuming. Recently, a new approach (Soize, 2008a) of

the class of the Gibbs method has been proposed to avoid these difficulties and is based

on the introduction of an Itô stochastic differential equation whose unique invariant

measure is PA and is the explicit solution of a Fokker-Planck equation (Soize, 1994).

The algorithm is then obtained by discretization of the Itô equation.
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2. Nonparametric probabilistic approach of uncertainties for elliptic boundary

value problems

For the general case of elliptic boundary value problems, the nonparametric

probabilistic approach of uncertainties can fe found in (Soize, 2009). The mean

computational model resulting from the finite element discretization of the strictly

elliptic boundary value problem under consideration is written as [ K ] [x ] = [ b ]
in which [ K ] is a positive-definite (n × n) sparse real matrix, where [x ] is a

(n × m) real matrix made up of the unknowns and where [ b ] is a given (n × m)
real matrix. The nonparametric probabilistic approach cannot directly be used, one

hand because of the presence of topological zeros in the sparse matrix [ K ] and
partly because for problems in high dimension the large full random matrix [ K ]
could not be managed (if n = 107, then there is 0.5 × 1014 nonzero elements!). It

is therefore necessary to build a reduced model of dimension N ≪ n knowing that

a reduction of modal type would not be effective with respect to the convergence

in N . The proposed approach in (Soize, 2009) consists in associating with the

mean computational model, the stochastic equation [ K ] [X ] = [ b ] and a family

{[KN ], N = 1, . . . , n} of (n × n) random matrices belonging to the set SE+

defined in (Soize, 2005) such that the random solution [X N ] of the stochastic

equation [ KN ] [XN ] = [ b ] is a second-order solution E{‖ [XN ] ‖2
F} = c < +∞

such that limN→nE{‖ [XN ] − [X] ‖2
F} = 0, where N ≤ n is the dimension

of the reduced-order model. For fixed N , random matrix {[K N ] is defined by

[ KN ] =
{
[ΦN ]([KN ]−1 − [KN ]−1)[ΦN ]T + [ K ]−1

}−1
with [ΦN ] the (n × N)

real matrix whose columns are the N orthonormal eigenvectors of [ K ] associated
with the N first positive eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λN . The diagonal matrix

[KN ] made up of the eigenvalues λ1, . . . λN are written as [KN ] = [LN ]T [LN ] and
the full random matrix [KN ] is such that [KN ] = [LN ]T [GN ] [LN ] in which [GN ]
is the (N ×N) full random matrix belonging to the set SG+ defined in (Soize, 2005).

We then have E{[KN ]} = [KN ]. Obviously, the (n× n) full random matrix [KN ]
is never assembled and the specialized algorithm detailed in (Soize, 2009) is used.

As an example, we consider the following problem in linear elastostatics. The fi-

nite element mesh of the domain is shown in Figure 1 (a) and there are 17, 355 DOF.

The material is linear elastic homogeneous and isotropic. There are Dirichlet condi-

tions on part of the boundary and there are m = 4 independent static loads applied

on the outer lateral surface of the cylinder. The level of uncertainty is defined by the

value of the dispersion parameter δ of the random matrix [GN ]. The stochastic solver
is based on the use of the Monte Carlo method for which n s = 20, 000 independent
realizations are used. Figure 1 (b) shows the mean square convergence of the random

solution as a function of dimension N of the reduced-order model and for δ = 0.5.
Convergence is reached forN ≥ 300. Let U (or V ) be the random variable represent-

ing the component of the random response for which the mean value (or the standard

deviation) is the largest. Let FU (u) = Proba{U ≤ u} (or FV (v)) be the cumulative
distribution function of U (or V ). For ns = 20, 000 and N = 500, Figures 2 (a) and
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(b) show the graphs of functions u 7→ log10 FU (u) and v 7→ log10 FV (v) for several
values of δ.
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Figure 1. Finite element mesh (a). Mean-square convergence with respect to N (b)
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Figure 2. Graph of u 7→ log10 FU (u) (a) and graph of v 7→ log10 FV (v) (b) for
δ = 0.1 (no symbol), δ = 0.2 (x), δ = 0.3 (square), δ = 0.4 (down triangle), δ = 0.5
(up triangle)

3. Nonparametric probabilistic approach of uncertainties in 3D elastodynamics

with geometric nonlinearities

The nonparametric probabilistic approach of uncertainties for the general case of

3D elastodynamics with large displacements and with linear material behavior, that is

to say, in the presence of geometric nonlinearities has been introduced in (Mignolet

et al., 2008b). The nonparametric probabilistic approach of uncertainties for this non-
linear dynamical system yields the following stochastic reduced-order model for the

displacement random field U(x, y, z, t) =
∑n

i=1 Qi(t)ϕi
(x, y, z) and the stresses

random field S(t) = s0 +
∑n

i=1 s
(1)
i Qi(t) +

∑n
i,j=1[S

(2)]ij Qi(t)Qj(t) in which
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the random vectorQ(t) of the generalized coordinates verifies the nonlinear stochas-
tic differential equation [M n]Q̈(t) + [Dn]Q̇(t) + KNL(Q(t)) = F (t), in which

the vector of the generalized nonlinear elastic forces is written as {K NL(q)}i =∑n

j=1[K
(1)]ij qj +

∑n

j,ℓ=1K
(2)
ijℓ qjqℓ +

∑n

j,ℓ,p=1K
(3)
ijℓp qjqℓqp, and where the ran-

dom matrix [KB] is written as [KB] =

[
[K(1)] [K̃

(2)
]

[K̃
(2)

]T 2[K̃
(3)

]

]
. The random matrices

[Mn], [Dn] and [KB], for which the level of uncertainties is controlled by δM , δD
and δKB

, are statistically independent, symmetric and positive definite almost surely

and belong to ensemble SE+. The random matrices [K (1)], [K̃
(2)

] and [K̃
(3)

] are sta-
tistically dependent and are deduced from random matrix [K B]. The random tensors

K
(2)
ijℓ andK

(3)
ijℓp are statistically dependent and are deduced from [K̃

(2)
] and [K̃

(3)
].

The construction of the random coefficients of the nonlinear terms in the stochastic

reduced model requires to know the corresponding deterministic coefficients of the re-

duced mean model. These coefficients can be calculated using the method developed

in (Muravyov et al., 2003; Mignolet et al., 2008b) for general nonlinear dynamical
systems in large displacements and only requires the use of any commercial software

allowing nonlinear elastic analyses to be performed.

As an example, we consider a steel straight beam, fixed at both ends, with

length 0.2286 m, 0.0127 m width and 0.000775 m thickness. The excitation is a

point force applied to the center of the beam and has flat spectrum over the band

[−2000 , 2000]Hz. The beam is discretized in 40 CBEAM finite elements with Nas-

tran. The elastic modes of the linearized system (12 plane modes and 10 transverse

modes) are chosen so that the modal response converged. The values of the parame-

ters δM = δD = 0 and δKB
are chosen for that the first natural frequency (transverse

mode) is 4% of the coefficient of variation. Figure 3 shows the results for the random

spectrum of the random transverse response in the middle of the beam.

4. Nonparametric probabilistic approach in low- and medium-frequency

vibroacoustics and experimental validation

The nonparametric probabilistic approach of uncertainties for complex vibroa-

coustic systems with an application to an automotive vehicle can be found in (Durand

et al., 2008). There are uncertainties in the vibroacoustic computational model for the
structure, for the internal acoustic cavity and for the vibroacoustic coupling interface.

The level of uncertainties are identified using experiments. A unique vibroacoustic

computational model is developed for one type of car with several optional extra that

induces variability in the vibroacoustic responses of the real system. The goal is the

prediction of sound pressure in the acoustic cavity induced by the rotation of the en-

gine for regimes [1500 , 4800]rpm corresponding to the frequencyband [50 , 160]Hz.
The structure-borne excitations are dynamic forces applied to the engine mounts. The

vibroacoustic system consists of a linear viscoelastic structure coupled with an acous-

tic cavity filled with a dissipative acoustic fluid. In the frequency domain ω, the dis-
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Figure 3. (a): mean model (very thin dashed line), statistical mean value (very thin
solid line), confidence region at 95% (upper and lower thin solid lines). (b): confi-
dence region at 95% for two response levels; low amplitude as figure (a) (upper and
lower thin solid lines); high amplitude equals to 2.25× the low amplitude case (upper
and lower thick solid lines)

placement vector of the structure is u(ω) with ns DOF. The acoustic-pressure vector

is p(ω) with nf DOF. The reduced mean model is constructed using theN s first elas-

tic modes ϕ
α
of the structure in vacuo and the Nf first acoustic modes ψ

β
of the

acoustic cavity with rigid walls. The reduced mean model is then written as (Ohayon

et al., 1998), u(ω) =
∑Ns

α=1 q
s

α
(ω)ϕ

α
and p(ω) =

∑Nf

β=1 q
f

β
(ω)ψ

β
with




[As(ω)] [C]

ω2[C]T [Af (ω)]






qs(ω)

qf (ω)


 =



f s(ω)

ff (ω)


 ,

where [As(ω)] = −ω2[M s] + iω[Ds(ω)] + [Ks(ω)] is the generalized dynamic stiff-
ness of the structure, [Af (ω)] = −ω2[Mf ] + iω[Df ] + [Kf ] is the generalized

acoustic stiffness of the acoustic cavity and the (Ns × Nf ) rectangular matrix [C]
is the generalized vibroacoustic coupling matrix. The use of the nonparametric prob-

abilistic approach of uncertainties yields the following stochastic reduced model. For

all ω fixed in the frequency band of analysis, the random response is represented by the

random complex vectors U(ω) =
∑Ns

α=1Q
s
α(ω)ϕ

α
and P (ω) =

∑Nf

β=1Q
f
β(ω)ψ

β

such that




[As(ω)] [C]

ω2[C]T [Af (ω)]






Qs(ω)

Qf (ω)


 =



f s(ω)

f f (ω)




with [As(ω)] = −ω2[Ms]+iω[Ds(ω)]+[Ks(ω)], [Af (ω)] = −ω2[Mf ]+iω[Df ]+
[Kf ] and [C] random matrices such that [M s], [Ds(ω)], [Ks(ω)] belong to ensem-
ble SE

+, where [M f ] belongs to SE
+ but where [Df ] and [Kf ] belong to SE

+0, and
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finally, where [C] belongs to SEinv, these three ensembles of full random matrices be-

ing defined in (Soize, 2005). The probability distribution is completely defined for

each ensemble of random matrices and only depends on the dimension of the random

matrix, on its mean value (for instance E{[M s]} = [M s], etc) and on a dispersion
parameter which controls the level of uncertainties. These dispersion parameters are

denoted by δMs
, δDs

, δKs
, δMf

, δDf
, δKf

and δC . The stochastic solver is based on

the use of the Monte Carlo method. The means-square convergence is studied with re-

spect to the number of independent realizations and with respect to the reduced-order

model dimensionsNs andNf . The mean computational model of the automotive ve-

hicle is made up of a finite element model having 978, 733DOF in displacement for the
structure (see Figure 4 (a) and of a finite element model having 8, 139 DOF in pressure
for the acoustic cavity (see Figure 4 (b)), the mesh being compatible on the vibroa-

coustic coupling interface. The reduced mean computational model has 1, 722 elastic

(a) (b)

Figure 4. Finite element mesh for the structure (a) and for the acoustic cavity (b)
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Figure 5. Acoustic-pressure modulus at a given point in the acoustic cavity for a given
engine excitation as a function of the frequency (rotation per minute). Measurements
(20 thin solid lines). Reduced mean model (mid thick solid line). Confidence region at
0.95 in dBA (between upper and lower thick solid lines)

modes for the structure and 57 acoustic modes for the cavity. The level of uncertainties
are represented by δ = {δMs

, δDs
, δKs

} for the structure, by δf = δMf
= δDf

= δKf
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for the acoustic cavity and by δC for the vibroacoustic coupling. The dispersion pa-

rameters δf and δ have been identified from experimental measures performed on 30
cars for acoustics and 20 cars for vibrations (Durand et al., 2008). Figure 5 validates
all of the stochastic modeling and displays the confidence region at 0.95 for the sound
pressure at a given point in the cavity and for a given excitation of the engine. The

calculations are done using the stochastic reduced vibroacoustic model for the ex-

perimentally identified dispersion parameters. The Monte Carlo method is used with

m = 600 independent realizations.

5. Generalized probabilistic approach of uncertainties in computational

dynamics using random matrices and polynomial chaos decompositions

A generalized probabilistic approach of uncertainties has recently been proposed

(Soize, 2010) for computational model in structural linear dynamics and can be ex-

tended without difficulty to computational linear vibroacoustics and to computational

nonlinear structural dynamics. This method is an extension of the nonparametric prob-

abilistic approach of uncertainties presented in the previous sections and allows the

prior probability model of each type of uncertainties (model-parameter uncertainties

and modeling errors) to be separately constructed and identified. The modeling er-

rors are not taken into account with the usual output-prediction-errormethod (Beck et
al., 1998) but with the nonparametric probabilistic approach of modeling errors intro-
duced above and based on the use of the randommatrix theory. A chaos decomposition

(Ghanem et al., 1991) with random coefficients (Soize et al., 2009)is used to repre-
sent the prior probability model of random responses. The random germ is related

to the prior probability model of model-parameter uncertainties. The random coeffi-

cients are related to the prior probability model of modeling errors and then depends

on the random matrices introduced by the nonparametric probabilistic approach of

modeling errors. If experimental data are available, then the prior probability model

of the random coefficients can be improved in constructing a posterior probability

model using the Bayesian methods (see for instance (Bernardo et al., 2000; Kaipio et
al., 2005; Spall, 2003; Congdon, 2007; Carlin et al., 2009)). The theory, an identifica-
tion procedure of each type of uncertainties and a numerical validation are presented in

(Beck et al., 1998). We present an example of the generalized approach as an illustra-

tion of this generalized probabilistic approach of uncertainties. The designed system

is a slender cylindrical elastic medium with length 10m and has a rectangular section

with height 1.1m and width 1.6m. The elastic medium is made of a composite mate-

rial. The displacement field is zero on the part of the two end sections. The frequency

band of analysis is B =]0 , 1200] Hz. A point load is applied close to the middle of

the slender cylinder with a flat spectrum onB. We are interested in the transversal dis-

placement of the neutral line at an observation point belonging to the neutral line and

close to the end section. A reference solution of the real system has been constructed

in developing a 3D elastic model of the real system. The mean model is made up of

a damped homogeneous Euler elastic beam with length 10 m and simply supported.

From the Euler beam theory, the first eigenvalue (square of the first eigenfrequency)
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can be written λ1 = a1 x. The model-parameter uncertainties leads us to model x by a

random variableX . The prior probability model of random variableX is constructed

using the maximum entropy principle and yields a Gamma probability distribution for

which the mean value is given and for which the dispersion is controlled by the coeffi-

cient of variation δX . The identification of parameter δX is performed using the maxi-

mum likelihood method for the lowest random eigenvalue Λ 1 and yields δX = 0.093.
We consider the stochastic reduced model constructed (1) with the parametric prob-

abilistic approach of uncertain parameter X for which δX = 0.093 and (2) with the

nonparametric probabilistic approach of modeling errors for the mass and stiffness op-

erators. Consequently, the dispersion parameters describing the statistical fluctuations

induced by modeling errors are δM and δK . The method used for the identification

of δM and δK is explained in (Soize, 2010) and yields δM = 0.9 and δK = 0.15.
Figure 6 displays the comparisons between the response of the mean model, the ref-
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Random FRF for uncertain parameter and model uncertainties

(a) (b)

Figure 6. Confidence region of the response at 0.98 (between upper and lower thick
solid lines), reference response (mid solid line), response of the meanmodel (thin solid
line) at observation point. (a): parametric probabilistic approach. (b): generalized
probabilistic approach

erence response of the real system and the confidence region of the random response

(1) calculated with the parametric probabilistic approach with δX = 0.093 (figure (a))
and (2) calculated with the generalized probabilistic approach, that is to say, with the

parametric probabilistic approach of model-parameter uncertainties for δX = 0.093
and with the nonparametric probabilistic approach of modeling errors for δM = 0.9
and δK = 0.15. These figures show that the coupling of the two probabilistic ap-

proaches for model-parameter uncertainties and modeling errors allow the quality of

the prediction to be considerably improved. The method proposed allows the role

played by each type of uncertainties to be separately quantified.

6. Conclusions

This paper has presented a very brief survey concerning advances in uncertain-

ties modeling, their quantification and their propagation through linear and nonlinear

mechanical systems in static and dynamics.
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