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ABSTRACT. Economic and legal pressures on the structural engineers force them to consider un-
certainty in the domains interacting, through boundary impedances, with their design structure.
A probabilistic model of this impedance is constructed around a mean hidden state variables
model using a nonparametric method. This mean model is constructed using only deterministic
tools. The methodology is applied to the design of a gas tank on a layered soil.

RÉSUMÉ. Des facteurs économiques et réglementaires poussent les ingénieurs à prendre en
compte les incertitudes existant dans les domaines en interaction, via des impédances de fron-
tière, avec les structures qu’ils modélisent. Un modèle probabiliste de ces impédances est
construit par une méthode non paramétrique, autour d’un modèle moyen à variables d’état
cachées identifié à partir de calculs déterministes. L’approche est appliquée au dimensionne-
ment sismique d’une cuve de stockage de gaz sur sol stratifié.
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Figure 1. Uncertain unbounded domain Ω coupled to a structure through a boundary
Γ

1. Introduction

In aeronautics, hydrodynamics and geodynamics, engineers have to deal with un-
bounded domains - atmosphere, sea or soil - interacting through boundary impedance
matrices with the structures they are designing (Wolf, 1985). More generally, domain
decomposition techniques make use of impedance matrices when the entire Finite El-
ement (FE) model of an engineering system is too large to be built all at once. Let
us consider an unbounded domain Ω, coupled through boundary Γ to a structure (fig-
ure 1). The impedance of Ω through Γ will be denoted Z. At the continuous level, it is
the classical Dirichlet-to-Neumann operator, and the impedance matrix once numerial
approximation is applied. It links - for the local harmonic boundary value problem
defined on Ω - the displacement vector u and the stress vector t, defined on a given
basis of interface functions on the boundary Γ.

Z(ω)u(ω) = t(ω).

Conflicting security and economic issues require that the engineers be able to com-
pute, as precisely as possible, those impedance matrices. Unfortunately, that required
accuracy is often out of reach. In soil mechanics, for example, the scarcity of the avail-
able data on the mechanical parameters, their spatial variability, the errors introduced
by the measuring procedures, and the important errors due to the simplistic models
used (Favre, 1998), make the achievement of an exact estimation of an impedance
matrix illusory. In that case, a probabilistic model has to be constructed and the prob-
ability density function of the impedance - rather than a single mean value - estimated.

In that purpose, many different stochastic methods have been devel-
oped (Schuëller, 1997). They all share the same characteristic that they try to identify
the uncertainty on the parameters of the problem, and propagate that uncertainty to
the response of the system through the resolution of a system of stochastic differen-
tial equations. The most classical of those parametric methods is the Stochastic FE
method (Cornell, 1971, Ghanem et al., 1991) which works fine for the construction
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of the probabilistic model of the impedance of a bounded domain but cannot be ex-
tended to unbounded domains. Even when coupled with the (deterministic) Boundary
Element (BE) method (Savin et al., 2002), only a bounded subdomain is considered
to have uncertain characteristics.

In this article, a method is presented to construct the probabilistic model of an
impedance matrix, avoiding the construction of the probabilistic model of the dy-
namic stiffness matrix of the unbounded domain. The link between the value of the
parameters of the mechanical model and the value of the impedance matrix is therefore
not explicitely given, and the parametric methods cannot be used. A nonparametric
method, recently introduced (Soize, 1999, Soize, 2000), is chosen. It is based on the
maximum entropy principle (Jaynes, 1957), constrained only by the unquestionable
information on the model.

The causality of the impedance matrix being one of these constraints, a mean
model has to be constructed which enforces it (cf. section 2). The principle of the non-
parametric method of random uncertainties in linear structural dynamics is then briefly
recalled, followed by the construction of the probabilistic model for the impedance
matrix (cf. section 3). The required identification of the mean model from experimen-
tal or computational results is then described (cf. section 4). Finally, this construction
is applied for the design under seismic loading of a gas tank resting on a pile founda-
tion (cf. section 5).

2. Mean model of the impedance matrix

As any physical quantity, the impedance matrix must verify, in the time domain,
the causality condition. It states only the natural law that no effect should take place
without a cause, or mathematically written:

u(t) = 0 ,∀t < 0 ⇒ (Ẑ +×u)(t) = 0 ,∀t < 0,

where t → Ẑ(t) is the inverse Fourier transform of the impedance matrix in the
frequency domain ω → Z(ω). Any model, mean or probabilistic, for the impedance
matrix should enforce that relation. In the frequency domain, three methods may be
used: the Kramers-Kronig relations (Kronig, 1926, Kramers, 1927); the expansion of
the impedance matrix on a basis of Hardy functions (Pierce, 2001); or the construction
of the impedance matrix on an underlying system ensuring causality (Chabas et al.,
1987).
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2.1. Kramers-Kronig relations

The first method was originally used in electromagnetic problems and relates the
real and imaginary part of any causal quantity in the frequency domain. In the case of
the impedance matrix it states that

ℜ{Z(ω)} =
1

π

∮

R

ℑ{Z(ω′)}
ω − ω′

dω′.

where ℜ{Z} and ℑ{Z} are, respectively, the real and imaginary part of the impedance
matrix, and

∮

stands for Cauchy’s integral. This relation is still used in experimental
physics where the imaginary part of a quantity can sometimes be measured indepen-
dently from its real part. Here, it is not constructive as no information is available on
ℑ{Z}.

2.2. Expansion on a basis of Hardy function

Another possibility is to expand the impedance matrix on a basis of functions that
are known to span the entire space of causal functions: the Hardy functions space H.
As the family (ω → en(ω))n≥0, defined, for ω ∈ R, by

en(ω) =
1√
π

(

1

iω − 1

) (

iω + 1

iω − 1

)n

,

is an orthonormal basis of H, the impedance matrix can be expanded, for ω ∈ R, in

Z(ω) = −ω2
Z−2 + iωZ−1 + Z0 +

∑

n≥0

Zn+1en(ω),

where Zn is the nth coordinate - frequency-independent - of the pseudo-differential
part of Z in the basis (en)n≥0. Unfortunately, the convergence rate of the approxi-
mation

∑N
n=0

Znen of Z for increasing values of N is not known, and the a priori
unknown signature of the coordinates Zn would require the construction of compli-
cated sets of random matrices at the hour of using the nonparametric method.

2.3. Hidden state variables model

Finally, the impedance matrix can be constructed on an underlying system ensur-
ing that the causality property is verified. It is sought with the same structure as the
impedance matrix of a mechanical system whose vibrations in the time domain are
governed by a second-order differential equation with constant coefficients. For some
systems - a bounded linear elastic system, for example - this approach corresponds ex-
actly to the classical modeling: the impedance is the condensation on the nΓ degrees
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of freedom (DOFs) of the boundary of the n × n dynamic stiffness matrix A written
as

A(ω) = −ω2
M + iωD + K. [1]

where M , D and K are the real, frequency-independent, matrices of mass, damping
and stiffness. M is in M

+
n (R), the set of all n × n real positive-definite matrices and

D and K are in M
+0
n (R), the set of all n × n real positive semi-definite matrices.

In the general case, this approach defines an approximation pattern for the
impedance matrix and, although the notation will be kept, A, M , D and K are
not the actual dynamic stiffness, mass, damping and stiffness matrices. Likewise, the
variables that appear in this model are related to the real DOFs of the physical system
only indirectly. This model of the impedance matrix will therefore be called a hidden
state variables model.

The bloc-decomposition of the dynamic stiffness matrix on the nΓ DOFs of the
boundary and the nh hidden state variables,

A(ω) =

[

AΓ(ω) Ac(ω)
AT

c (ω) Ah(ω)

]

, [2]

leads to an impedance matrix in the form:

Z(ω) = AΓ(ω) − Ac(ω)A−1

h (ω)AT
c (ω), [3]

and the bloc-decomposition corresponding to equation [2] for the mass, damping and
stiffness matrices leads to, with identification to equation [1],

AΓ(ω) = −ω2
MΓ + iωDΓ + KΓ,

Ac(ω) = −ω2
Mc + iωDc + Kc,

Ah(ω) = −ω2
Mh + iωDh + Kh.

where MΓ ∈ M
+
nΓ

(R), DΓ,KΓ ∈ M
+0
nΓ

(R), Mh ∈ M
+
nh

(R), Dh,Kh ∈ M
+0
nh

(R)
and Mc,Dc,Kc ∈ MnΓ,nh

(R).

Equation [3] can be rewritten in the following form:

Z(ω) =
N(ω)

d(ω)
, [4]

where ω 7→ N(ω) and ω 7→ d(ω) are two polynomials with constant coefficients
(matricial for N and scalar for d). The degrees of N and d verify deg N = deg d+2.
The values of the matrices M , D and K of this mean model for the impedance matrix
can be identified from computational or experimental results (cf. section 4).
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3. The nonparametric method

The nonparametric method was originally developped in linear structural dynam-
ics (Soize, 1999, Soize, 2000, Soize, 2001a) with applications in vibrations and
transient elastodynamics, and was extended to nonlinear dynamical systems (Soize,
2001b) and to the medium frequency range (Soize, 2003). The coupling of struc-
tures with different levels of uncertainty has also been considered in (Soize et al.,
2003, Chebli et al., 2004) and a nonparametric-parametric approach has been pre-
sented in (Desceliers et al., 2003) to model each source of uncertainty with the most
appropriate method. Hereafter are only recalled the main ideas, with no proof. The
reader should refer to (Soize, 1999, Soize, 2000) for more details.

The main concept of this method is to identify, for each problem, the unquestion-
able information, and to use the maximum-entropy principle to derive a probabilistic
model using only that available information. This information is scarcer than that used
in the parametric methods and includes for example, in linear structural dynamics, the
positive-definiteness of the mass matrix and the existence of the moments of the in-
verse of that matrix. Here the available information is composed of the causality of
the impedance matrix, which is enforced by the hidden state variables model that was
chosen, and the classical information available for the mass, damping and stiffness
matrices. This information consists in their signature, their square-integrability, the
integrability of their inverse (controled by a dispersion parameter δ) and their mean
value.

More precisely, let Bn (be it M , D or K) be a n × n random matrix such that:

1) Bn is a random matrix with values in M
+
n (R), almost surely;

2) Bn is a second-order random variable: E{‖Bn‖2
F } < +∞;

3) The mean value Bn of Bn is given in M
+
n (R): E{Bn} = Bn;

4) Bn is such that: E{ln(detBn)} = ν , ν < +∞;

where ‖Bn‖F = (tr{BnB∗
n})1/2 is the Frobenius norm of Bn, E{·} is the mathe-

matical expectation, and the fourth condition enforces the integrability of the inverse
of Bn, which is controlled equivalently by ν or a dispersion parameter δ that can be
identified from experiments. Using the maximum entropy principle, the probability
density function pBn

of Bn, constrained only by this information, can be calculated
analytically, with respect to a measure d̃Bn on M

S
n(R), the set of all n×n symmetric

real matrices.

A method was devised to compute efficiently Monte-Carlo trials of such a random
matrix Bn, given its mean value Bn and a dispersion parameter δ. It can also be shown
that, if no correlation is explicitely introduced as a constraint in the maximum entropy
method between the elements of a set of random matrices, then they are independent
variables. This proves that the matrices M , D or K, each one with its own mean
value (M , D and K) and dispersion parameter (δM , δD and δK) can be drawn
independently. For each triplet of Monte-Carlo trials [M ,D,K], a realization of the
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dynamic stiffness matrix A is computed using equation [1] and, finally, a realization
of the impedance matrix Z is obtained with equation [3].

The construction of this probabilistic model of the impedance matrix therefore
requires the knowledge of the mean values M , D and K and dispersion parameters
δM , δD and δK . The identification of the dispersion parameters is described in (Arnst
et al., 2005, Soize, 2005, Ratier et al., 2005), and that of the mean matrices is described
in the next section.

4. Identification of the matrices M , D, K of the mean model

The identification of the mean values M , D, K of the mass, damping and stiffness
matrices in the hidden state variables model of the impedance matrix is performed in
two steps:

1) The algebraic form [4] of Z is considered, and the value of the coefficients
of the polynomials N and d are sought so as to minimize an error function between
Z = N/d and a given impedance matrix Z̃, that was either measured experimentally
or computed. The first step is then an interpolation of a given (matricial) function by
a (matrix) rational function. Since the degree of N and d is a priori unknown, an iter-
ation on the number of hidden state variables has to be set to obtain an approximation
sufficiently accurate.

2) Given the coefficients of the polynomials N and d in [4], the second step con-
sists in finding the mass, damping and stiffness frequency-independent matrices M ,
D, K giving rise in equations [1-3] to such coefficients. No approximation is per-
formed in that step, although, as will be seen, more than one solution may arise.

The interesting feature of that methodology is that it separates the problem into
one very generic approximation problem that can be solved by virtually any of many
existing methods (Guillaume et al., 1996, Allemang et al., 1998, Pintelon et al., 2001),
and one more specific identification problem that does not involve any approximation.
Particularly, the error function of step 1 can be adapted to the type of mean impedance
available: experimental or computational. For the purpose of the example in this arti-
cle (cf. section 5), a linear least squares approximation with orthonormal polynomial
vectors was used but it will not be described here and the reader is refered to (Pintelon
et al., 2004, Bultheel et al., 1995). For the remainder of this section, only step 2 of the
identification will be considered.

Let Φ an orthogonal nh × nh real frequency-independent matrix, Mc a nΓ ×
nh real frequency-independent matrix and U the n × n real frequency-independent
matrix, defined by

U =

[

InΓ
−Mc

0nΓ,nh
Φ

]

[5]

where InΓ
is the nΓ × nΓ real identity matrix, and 0nΓ,nh

the nΓ × nh real null
matrix. It is obvious from equation [3], that the sets of matrices [M ,D,K] and
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[UMUT ,UDUT ,UKUT ] lead to the same impedance matrix, and therefore that
they are equivalent sets if only the impedance is given.

Starting from a set [M ,D,K], if Φ is chosen as the matrix of the eigenvectors of
the generalized eigenvalue problem for Mh and Kh, normalized with respect to Mh

(by hypothesis, Φ also diagonalizes Dh), and Mc = Mc, then we have

UMU
T =

[

mΓ 0nh,nΓ

0nΓ,nh
Ih

]

, [6]

and

UDU
T =

[

dΓ dc

dT
c dh

]

,UKU
T =

[

kΓ kc

kT
c kh

]

, [7]

where dh = diag(2ζkωk)1≤k≤nh
and kh = diag(ω2

k)1≤k≤nh
are diagonal matri-

ces. Since for any matrix U in the form of equation [5], the sets [M ,D,K] and
[UMUT ,UDUT ,UKUT ] are equivalent, we freely choose to perform the iden-
tification on a set in the form of equations [6-7]. The impedance matrix can then be
written

Z(ω) = −ω2
mΓ + iωdΓ + kΓ −

nh
∑

k=1

(iωdc + kc)(iωdc + kc)
T

−ω2 + 2iζkωkω + ω2
k

[8]

On the other hand, the matricial rational function ω → N(ω)/d(ω) can be ex-
panded in a unique pole-residue form:

Z(ω) =
N(ω)

d(ω)
= −ω2

R−2 + iωR−1 + R0 +

2nh
∑

k=1

Rk

iω − pk
. [9]

In the general case, the poles and the residue are complex, but can be paired as they are
present with their complex conjugate. Let us denote two elements of a pair with α and
β, so that the Rα

k + R
β
k and Rα

k pβ
k + R

β
kpα

k are real. Equations [8-9] yield obvious
identifications for mΓ, dΓ, (ωk)1≤k≤nh

and (ζk)1≤k≤nh
and lead to the following

system of equations for the kk
c , the dk

c and kΓ:










dk
ckkT

c + kk
c dkT

c − 2ζkωkdk
cdkT

c = −(Rα
k + R

β
k ) , 1 ≤ k ≤ nh

kk
c kkT

c − ω2
kdk

cdkT
c = (Rα

k pβ
k + R

β
kpα

k ) , 1 ≤ k ≤ nh

kΓ +
∑nh

k=1
dk

cdkT
c = R0

The first 2nh equations can be solved by diagonalization and, finally kΓ can be com-
puted from the knowledge of the dk

c .

5. Seismic design of a gas storage tank on a layered soil

The method presented in this paper is applied in this section to the seismic design
of a concrete gas storage tank set on a circular rigid superficial foundation on a layered
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Figure 2. FE model of the gas storage tank
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Figure 3. Real and imaginary parts of the FRF of the highest point of the tank to a
unit plane shear wave excitation: FE-BE deterministic model (dashed line); Mean
hidden variables model (dash-dotted line); envelope of the Monte-Carlo trials (grey
patch); mean of the trials (solid line)

soil. The tank is 80 meters-wide and 38 meters-high and is modeled deterministically.
The soil is constituted of a 50 meters-deep soft layer (ρ = 2000kg/m3, E = 5.33 ×
109N/m2, ν = 0.33 and β = 0.001) on top of a stiffer half-space (ρ = 2500kg/m3,
E = 6.0 × 109N/m2, ν = 0.33 and β = 0.001). The mean soil impedance matrix
is computed using the BE method (Miss3D program (Clouteau, 2003)). The tank is
modeled using the FE method (figure 2). The Frequency Response Function (FRF) of
the horizontal displacement of the highest point of the structure for a unit plane shear
wave excitation propagating from infinity is considered. The real and imaginary parts
of that FRF are drawn in dashed line on figure 3.
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The hidden state variables model of the mean impedance matrix is constructed,
yielding a correct approximation of the BE result with only one hidden variable, and
the corresponding FRF is drawn on figure 3 in dash-dotted line (it is almost perfectly
covered by the solid line). Finally, the probabilistic model of the impedance matrix
is approximated using 1000 Monte-Carlo trials (the mean and the covariance of the
impedance matrix converge after a few hundred trials) for equal dispersion param-
eters for the mass, damping and stiffness matrices: δM = δD = δK = 0.1. For
each impedance matrix, the corresponding displacement of the top of the building is
computed and drawn on figure 3.

6. Conclusion

The method presented in this paper allows to construct a nonparametric prob-
abilistic model of the soil impedance matrix that takes into account both the data
uncertainties and and the modeling errors. The only required knowledge is a mean
impedance matrix and a set of dispersion parameters that can be identified from
experiments (Arnst et al., 2005, Soize, 2005) or that one can vary in a parametric
study (Ratier et al., 2005). The mean impedance matrix can be either computed or
measured, and is approximated by a hidden variables model that ensures its causality.
The way to draw the realizations of the random impedance matrix is given and the
response statistics are computed by the Monte-Carlo method. Although the method
was presented in the case of seismic engineering, it is useful for a very broad range of
applications: any problem involving an unbounded domain is eligible. It may prove
interesting even for large bounded domain, as the reduction of the analysis to boundary
impedance matrices reduces the computational costs compared to classical paramet-
ric methods where the entire uncertain domain has to be modeled. The application
showed the applicability of the method for an industrial design problem.
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